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Abstract During dynamic instability, self-assembling microtubules (MTs) stochastically alternate

between phases of growth and shrinkage. This process is driven by the presence of two distinct

states of MT subunits, GTP- and GDP-bound tubulin dimers, that have different structural

properties. Here, we use a combination of analysis and computer simulations to study the

mechanical and kinetic regulation of dynamic instability in three-dimensional (3D) self-assembling

MTs. Our model quantifies how the 3D structure and kinetics of the distinct states of tubulin dimers

determine the mechanical stability of MTs. We further show that dynamic instability is influenced by

the presence of quenched disorder in the state of the tubulin subunit as reflected in the fraction of

non-hydrolysed tubulin. Our results connect the 3D geometry, kinetics and statistical mechanics of

these tubular assemblies within a single framework, and may be applicable to other self-assembled

systems where these same processes are at play.

Introduction
Microtubules (MTs) are polar tubular polymers formed by the self-assembly of the protein tubulin.

MTs are ubiquitous in eukaryotic cells, where they are a major component of the cellular cytoskele-

ton, and participate in a number of essential cellular functions, such as cell migration, morphogene-

sis, transport within cells and cell division (Desai, 1997; Gupta et al., 2015; Huber et al., 2013;

Fletcher and Mullins, 2010). They are also involved in regulating the shape and dynamics of axons,

cilia and flagella (Mimori-Kiyosue, 2011).

The basic building blocks of MTs are tubulin heterodimers. These are formed by a-tubulin and b-

tubulin, two structurally similar globular proteins with mass of about 55 kDa. ab-tubulin dimers are

arranged longitudinally into flexible tubulin filaments called protofilaments (PFs). A number

(between 9 and 16, typically 13) of such PFs then assembles by lateral interactions to form the MT

lattice (Mandelkow et al., 1986; Chrétien and Wade, 1991; Mitchison, 1993; Tilney et al., 1973).

MT growth occurs by the addition of tubulin dimers mainly at the plus end, where b-tubulin is

exposed. Upon hydrolysis of guanosine-tri-phosphate (GTP), tubulin subunits undergo a structural

conversion that weakens lateral bonds, destabilises the subunit in the MT lattice and converts the

relatively straight tubulin state into a state that is bound to guanosine-di-phosphate (GDP) and is

characterised by an increased longitudinal curvature (Wang and Nogales, 2005; Alushin et al.,

2014).

MTs are not static assemblies. They can repeatedly and stochastically vary their length by under-

going alternating phases of assembly and disassembly both in vivo and in vitro. This phenomenon is

termed ‘dynamic instability’ and it is essential to a number of cellular functions, such as chromosome
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separation, the remodelling of spatial organisation of the cytoskeleton during mitosis or the explora-

tion of extracellular environment (Mitchison and Kirschner, 1984; Gildersleeve et al., 1992;

Cassimeris et al., 1988; Sammak and Borisy, 1988). Understanding the factors that regulate MT

dynamic instability is central to cell physiology and disease. Yet a detailed understanding of dynamic

instability still remains elusive (Aher and Akhmanova, 2018; Hemmat et al., 2018). This difficulty

originates in part from the fact that dynamic instability is the result of several mechanical and kinetic

aspects operating at multiple time and length scales (Figure 1).

As such, dynamic instability of MTs has been the focus of extensive experimental and theoretical

work (Mandelkow et al., 1986; Chrétien and Wade, 1991; Mitchison, 1993; Tilney et al., 1973;

Mitchison and Kirschner, 1984; Fygenson et al., 1994; Gildersleeve et al., 1992;

Cassimeris et al., 1988; Sammak and Borisy, 1988; Hemmat et al., 2018; Aher and Akhmanova,

2018; Dogterom and Leibler, 1993; Brun et al., 2009; Antal et al., 2007; Mahadevan and
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Figure 1. Connecting mechanical and kinetic aspects of MT dynamic instability across multiple time and length scales. MTs are composed of tubulin

heterodimers formed of a-tubulin and b-tubulin. Both a-tubulin and b-tubulin are bound to GTP, but only the GTP that is bound to a b-tubulin is

hydrolysable (Nogales et al., 1998). When the tubulin dimer is part of the MT lattice, GTP hydrolysis increases the spontaneous longitudinal curvature

along the dimer axis. This causes GDP-tubulin dimers to be less tightly bound in the MT lattice (Wang and Nogales, 2005; Alushin et al., 2014). In the

scheme, GTP-tubulin dimers are shown in green, while GDP-tubulin dimers are shown in blue; dark color indicates b-tubulin and light colour indicates

a-tubulin. Tubulin dimers are connected head-to-tail into PFs. Typically, 13 such PFs align laterally to form the MT lattice, which is a long and hollow

cylindrical shell with an outer diameter of approximately 25 nm and a thickness of about 5 nm (Mandelkow et al., 1986; Chrétien and Wade, 1991;

Mitchison, 1993; Tilney et al., 1973). The mechanical stability/instability of the MT tube structure results from a competition between lateral and

longitudinal curvatures. While MTs made of GTP-tubulin are relatively straight (about 5˚ per subunit), MTs made of GDP-tubulin tend to curve outward

longitudinally at the plus end due to the longitudinal spontaneous curvature of GDP-tubulin dimers (about 12˚ per subunit) (Chrétien et al., 1995).

Consequently, MTs consisting of GDP-tubulin (hydrolyzed MTs) tend to be mechanically less stable that their non-hydrolysed counterparts. The images

show: (a) Schematic structure of an unhydrolyzed ab-tubulin dimer with bound nucleotides highlighted in orange (Alushin et al., 2014). (b) EM image

showing the characteristic shape of a depolymerising MT plus end, resembling a ram’s horn (VanBuren et al., 2005). (c) Sequence of TIRF microscopy

images of a MT end illustrating the switching between phases of polymerisation and depolymerisation during dynamic instability; catastrophe is

associated with the loss of the GTP-caps (green fluorescence is from a protein that is believed to associate with the GTP cap). (a) is adapted from

Alushin et al. (2014); (b) is reproduced from Austin et al. (2005). (c) is reproduced from Duellberg et al. (2016) under the Creative Commons

Attribution License CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/).

Ó 2005 Company of Biologists Ltd. All rights reserved. Panel B is reproduced from Austin et al. (2005) with permission. It is not covered by the CC-BY

4.0 licence and further reproduction of this panel would need permission from the copyright holder.
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Mitchison, 2005; Nogales et al., 1998; Wang and Nogales, 2005; Alushin et al., 2014;

Zovko et al., 2008; Hoog et al., 2011; Mandelkow et al., 1991; Chrétien et al., 1995;

Austin et al., 2005; Gardner et al., 2011; Hunyadi and Jánosi, 2007; Rice et al., 2008; Kueh and

Mitchison, 2009; Jánosi et al., 1998; Molodtsov et al., 2005; VanBuren et al., 2005; Zapperi and

Mahadevan, 2011; Bertalan et al., 2014b; Wu et al., 2009; Duellberg et al., 2016;

Seetapun et al., 2012; Cheng et al., 2012; Cheng and Stevens, 2014; Jain et al., 2015;

Aparna et al., 2017; Zakharov et al., 2015). Studies initially invoked a kinetic view capturing MT

dynamic instability phenomenologically by different rates of polymerisation and depolymerisation

depending on the state of the tubulin-phosphate complex (Dogterom and Leibler, 1993;

Brun et al., 2009; Antal et al., 2007). Evidence of changes in the structural properties of MT subu-

nits during hydrolysis later showed how lattice-bound tubulin dimers undergo a structural conforma-

tional change that increases their curvature (Wang and Nogales, 2005; Alushin et al., 2014;

Mahadevan and Mitchison, 2005), suggesting that outward curving tips of hydrolysed MTs can

cause such structures to be mechanically unstable (Zovko et al., 2008; Hoog et al., 2011;

Austin et al., 2005; Mandelkow et al., 1991; Chrétien et al., 1995; Gardner et al., 2011;

Hunyadi and Jánosi, 2007; Rice et al., 2008; Kueh and Mitchison, 2009). Several coarse-grained

computer simulations have since then adopted this structural-mechanical view, considering MT elas-

ticity explicitly, to understand different aspects of dynamic instability, including hydrolysis-driven

mechanical deformations near the cap (Jánosi et al., 1998), force generation by shrinking microtu-

bules (Molodtsov et al., 2005), or 3D sheet-like/blunt tips (VanBuren et al., 2005), or stochastic

microtubule tip configurations and their relation to catastrophe (Zakharov et al., 2015). Few studies,

however, have attempted to capture this mechanical view with the aim of emphasizing the qualita-

tive features necessary for dynamic instability and providing phase diagrams that delineate the zones

where dynamic instability is seen. Those that exist, for example (Zapperi and Mahadevan, 2011;

Bertalan et al., 2014b), focus on the 1D limit, where MTs are modelled as adsorbed chains: the pre-

dictions from these models can be qualitatively different from those that correctly account for the

3D geometry of MTs (see ‘Mechanical stability of 3D MTs in the presence of quenched disorder’).

Here, we use a combination of theory and simulations to establish how the kinetics of polymeriza-

tion and the mechanics associated with the 3D geometry of MTs act together across multiple scales

to regulate dynamic instability. We also establish the role of disordered remnants of GDP-tubulin in

determining the statistics of MT rescue. All together, our study provides a set of qualitative phase

diagrams that delineate the regions of parameter space where dynamic instability is seen, consistent

with previous observations while providing experimentally testable predictions.

Methods

Computational model
To complement the theory (see ‘A phase diagram for mechanical stability of 3D MTs’), we developed

a minimal coarse-grained computational model of MT mechanics and dynamics. To characterize the

tubulin heterodimers, we use two patchy spheres linked together by a flexible hinge. We derive the

patchy particles from coarse-grained representations of colloidal particles that are decorated by

patches on their surface; the patches represent specific anisotropic interactions that promote bind-

ing with patches on other particles. In our model, interactions between dimers are described by

patches carrying two types of interactions: longitudinal and lateral contacts (Huisman et al., 2008).

Longitudinal contacts link dimers head-to-tail, arranging them into PFs. Lateral contacts connect par-

allel PFs to form the cylindrical shell of the MT. Each dimer has two longitudinal contacts and four

lateral ones, corresponding to three patches per monomer (Figure 2a). Interactions between two

patches on monomers i and j are described by the following potential (Feng and Liang, 2012):

Vpatchyðr; �i; �jÞ ¼ VSðr; �i; �jÞþVBðr; �i; �jÞþVTðr; �i; �jÞ: (1)

We see that there are three distinct contributions associated with the stretching (VS), bending (VB)

and twisting (VT ) modes, and we choose the following forms for these potentials:
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VBðr; �i; �jÞ ¼ bð�2i þ �2j ÞDrðrÞD�ð�iÞD�ð�jÞ (3)
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Figure 2. Definition of computer simulation and mechanical model. (a) The GTP-tubulin subunit (ab-heterodimer)

in our coarse-grained computer model. The blue patches (1 and 2) are longitudinal connecting points, while the

pink patches (3 to 6) are lateral ones. This setup allows the dimer to curve inward along the MT longitudinal

direction and outward laterally. The positions of the patches allow us to control the longitudinal and lateral

curvatures of the subunit, giving a strong curvature (12˚) to hydrolysed dimers and a weaker curvature (5˚) to non-

hydrolysed dimers. (b) The interaction potential Vpatchyðr; �i; �jÞ between two patchy particles as a function of their

centre-to-centre distance r for �i ¼ 0 and increasing �j ¼ �. Inset: the bending angles �i and �j are defined as the

angles between the centre-to-patch line and the centre-to-centre line; the twisting angle ’ij is defined by the

projection of the normals ni and nj on the plane perpendicular to the centre-to-centre line. (c) Our mechanical

model describes a MT as a continuous, thin elastic sheet. This is parameterised as a surface of revolution obtained

by rotating the function RðxÞ ¼ R0 þ uðxÞ along the MT long axis (x-axis), where R0 is the natural radius of the MT

and uðxÞ describes the local deformation of the surface away from R0. We approximate lateral interaction

potentials between tubulin subunits in neighbouring PFs by a set of spring potentials (springs with stiffness S).

Bending of the PFs in the MT causes the connecting springs to stretch. This competition between bending energy

and stretching energy determines the mechanical stability of MTs. Inset: hydrolysed tubulin dimers curve naturally

in two directions as described by the longitudinal and lateral spontaneous curvatures k and !, respectively.
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DrðrÞ ¼
1� sin4 p
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0 �� �d
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Here, r denotes the center-to-center distance between monomers, while the angles �i and �j
describe the spatial directions of the patches (Figure 2b). The Morse potential term VS, defined in

Equation 2, describes the non-covalent interaction between patches, with � being the depth of the

potential well, r0 the equilibrium distance between monomers, and a is a parameter that controls the

curvature of the potential well and, hence, determines the stretching modulus (see Equation 7).

When r<rm, where rm ¼ r0� logð2Þ=a, the potential VS behaves as an isotropic repulsive interaction. In

the range rm � r<rc, where rc ¼ 5r0 is the cutoff for VS (VS is set to zero for r� rc), VS is modified by

multipliers D�ð�iÞ and D�ð�jÞ. This yields an anisotropic attractive potential that exists only when the

patches are aligned. Indeed, the multipliers D�ð�iÞ and D�ð�jÞ, which are defined in Equation 6,

weaken the attraction between the patches when these are not aligned (Figure 2c): D� reaches its

maximum value when �¼ 0. The cutoff of D� is �d ¼p=3 and limits the influence of the patches within

particular range of spatial directions. The potential terms VB and VT , defined in Equations 3 and 4,

characterise bending and twisting deformations respectively. They are described as classical har-

monic potentials with curvature b, respectively, c, and are modified by the multipliers DrðrÞ, D�ð�iÞ
and D�ð�jÞ, which are defined in Equations 5 and 6. These multipliers limit the range of VB and VT to

specific spatial locations and directions. The cutoff of Dr is set as rd ¼ 2:7r0, which is smaller than rc

(the cutoff of VS). This choice makes VB and VT shorter-range interactions compared to VS.

The parameters in our coarse-grained computational model are linked to the mesoscopic

mechanical properties of MTs (see section ’Mechanics’) including the interfilament spring stiffness S,

the filament bending stiffness B and the filament torsional rigidity K as

S¼ 2a2l�; B¼ bl; K ¼ 8c

l
; (7)

where l is the length scale of tubulin dimers. l takes different values depending on whether we are

calculating longitudinal or lateral properties. In particular, we set l¼ 2r0 ¼ 8 nm when calculating lon-

gitudinal properties and set l¼ r0 ¼ 4 nm for lateral ones (see Appendix 1 and Table 1 for further

details on the computer simulation model and a summary of parameter choices). We choose the

potential-well parameters in our simulations such that the resulting mesoscopic mechanical parame-

ters Equation 7 are consistent with the experimentally measured values of the mechanical properties

of typical MTs (Gittes et al., 1993; Mickey and Howard, 1995; Felgner et al., 1996; Tolomeo and

Holley, 1997; de Pablo et al., 2003; Sept and MacKintosh (2010); Deriu et al., 2010). Simulations

of this coarse-grained model of MTs were performed using Molecular Dynamics (MD), as described

in Appendix 1.

Results

A phase diagram for mechanical stability of 3D MTs
Our analytical model to study the mechanical stability of 3D MTs is a function of the underlying

parameters describing MT mechanics, MT growth kinetics and subunit hydrolysis, which we first con-

sider in the deterministic limit (see ’A phase diagram for mechanical stability of 3D MTs’). This forms

the basis for studying the mechanical stability of MTs when there is heterogeneity in the state of

tubulin, that is it could be either GTP or GDP bound (see ‘Mechanical stability of 3D MTs in the pres-

ence of quenched disorder’), and allows us to investigate the role of GTP-remnants (containing ran-

dom fractions of non-hydrolysed subunits) on rescue (see ‘Role of GTP-remnants in rescue’).

The starting point of our mechanical model is that MTs exist as individual polymers with persis-

tence lengths in the O(mm) range, which is much larger than the typical length of MTs (mm range)

(Fletcher and Mullins, 2010; Huber et al., 2013). This observation suggests that MTs can be

Michaels et al. eLife 2020;9:e54077. DOI: https://doi.org/10.7554/eLife.54077 5 of 29

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.54077


considered to have a well-defined shape that is not affected significantly by thermal fluctuations.

Moreover, previous studies indicate that lateral bonds between tubulin dimers are considerably

weaker than longitudinal ones (VanBuren et al., 2002; VanBuren et al., 2005; Molodtsov et al.,

2005). We model MTs as a set of adherent PFs that have bending stiffness B; we approximate lateral

interactions between PFs by a series of spring potentials (springs of stiffness S) and assume that

extending these springs beyond a critical displacement causes MTs to become mechanically unsta-

ble and break, potentially leading to dynamic instability.

Kinetics
Previous studies (Wang and Nogales, 2005; Alushin et al., 2014) suggest that tubulin dimers that

are part of the MT lattice have different mechanical properties depending on their hydrolysis state.

In particular, upon hydrolysis the tubulin dimer undergoes a structural transformation from a rela-

tively straight state to a state with finite curvature. In a 3D setting, the tubulin dimer can be curved

both in the longitudinal direction and in the lateral direction. Let kð0Þ denote the longitudinal curva-

ture of tubulin dimers in their GTP-state and let kð¥Þ be the longitudinal curvature in the hydrolysed

state. For simplicity, we assume that the hydrolysis reaction affects primarily the longitudinal curva-

ture of the tubulin dimers, such that their curvature ! in the azimuthal direction can be considered

to be constant. This assumption can be relaxed, see Appendix 2. Thus, as a result of GTP-hydrolysis,

the longitudinal curvature of tubulin dimers, k, changes with time, which we assume follows first

order kinetics so that

dk

dt
¼ kHðkð¥Þ�kÞ; (8)

where kH is the rate of hydrolysis. While bound tubulin changes its structure, unbound (bound) tubu-

lin can attach (detach) to (from) the free end of the MTs, which we also describe using a minimal first

order kinetic law for the evolution of the length of the MT nðtÞ (expressed in number of subunits) so

that

dn

dt
¼ kþ½m�� k� ¼ kG: (9)

Here kG is the net growth rate, kþ is the elongation rate constant, k� is the dissociation rate con-

stant and, for simplicity, we have assumed a constant subunit concentration ½m� in solution.

Table 1. Values of parameters used in our coarse-grained simulations.

Parameter Value Description

r0 4 nm Equilibrium distance between tubulin monomers

�0 7.665 � 10-20J Potential energy depth for longitudinal interactions

� 5˚ or 12˚ Angle between a-tubulin and b-tubulin within a GTP- or GDP-dimer

�chain 3˚ See Equations 24-29

�side1 103.45˚ or 90˚ See Equations 24-29

�side2 13.8˚ See Equations 24-29

llong 2r0 Longitudinal size of tubulin dimers

llat r0 Lateral size of tubulin dimers

along; alat 20/r0 Parameters that control longitudinal and lateral stretching stiffness

blong 20�0 Parameter that controls longitudinal bending stiffness

blat 10�0 Parameter that controls lateral bending stiffness

clong 500�0r
2

0
Parameter controls longitudinal twisting stiffness

clat 0:5�0r
2

0
Parameter that controls lateral twisting stiffness

�long �0 Potential energy depth for longitudinal interactions

�lat 0.0906e0 Potential energy depth for lateral interactions
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Mechanics
In addition to MT growth and subunit hydrolysis, we also need to account for the elastic deformation

of the MTs since the geometric state of the assembly is linked to its mechanical state. Individual PFs

can bend, but are also constrained by inter-filament interactions, so that there are two contributions

to elastic energy: (i) curvature energy associated with the bending of PFs, (ii) stretching energy of

the springs connecting neighbouring PFs. We capture these energy contributions in a continuum pic-

ture that describes a MT as a thin elastic surface of revolution obtained by rotating the function

RðxÞ ¼ R0 þ uðxÞ along the long MT axis (x-axis), where RðxÞ is the local radius of MT and R0 is the nat-

ural radius (Figure 2c). In the small gradient approximation, corresponding to u0 � 1, the total elas-

tic energy can be written as (see Appendix 2 for details):

Etot ¼
Z

¥

0

B

2
½u00�k�2 þS

2
½u0�2 þ S

2
u2

� �

dx; (10)

where S¼ Bð1þ!R0Þ2=R2

0
and 0 ¼ q=qx denotes derivative with respect to x. The first term in Equa-

tion 10 is the energy of MT that penalises deviations from its natural curvature kðtÞ which itself
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Figure 3. Role of lateral and longitudinal curvatures in mechanical stability of a 3D MT in the absence and presence of quenched disorder. (a)

Schematic phase diagram for mechanical stability/instability with three axes (two mechanical axes and one kinetic axis): longitudinal curvature

parameter a ¼ ðBk2=Su2cÞ
1=2, lateral curvature parameter b ¼ ðSuc=BkÞ1=2, and ratio of growth rate to hydrolysis rate g ¼ t k=t G. (b) 2D phase diagram

separating regions of mechanically stable and unstable MTs as a function of a and b. Data points are from computer simulations and the solid line is

the prediction of Equation 13. (c)-(d) Implementation of lateral (c) and longitudinal (d) disorder at the level of the spring stiffness S in our coarse-

grained computer model. The data points are simulation results and the solid lines are fits to Equation 16 and Equation 17. The data show that lateral

disorder acts to destabilise MTs mechanically (c), while longitudinal disorder strengthens MTs (d). In both cases, disorder was generated using the

distribution of spring constants in Equation 14 with s ¼ 0:02hSi, that is the disorder parameter was k ¼ 50. The amount disorder of each tubulin subunit

represents the average value of the relative stiffness S=hSi of its two lateral interactions. See Videos 1–4 for movies illustrating the mechanical stability

of a MT with and without quenched disorder (see Videos 1–4).

The online version of this article includes the following source data for figure 3:

Source data 1. This spreadsheet contains the data for Figure 3B,C and D.
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reflects its state of hydrolysis. The second term is a surface energy term that penalises area increase

due to the outward curving of the surface. The third term is the stretching energy of the springs.

The minimum energy configuration results from a competition between bending energy, which

favours a natural curved MT state, and elastic spring energy, which favours a straight cylindrical MT

configuration. The overall shape of the axisymmetric tubule is then obtained by solving the Euler-

Lagrange equation associated with Equation 10 (see Appendix 2 for details):

Bu0000 �Su00þ Su¼ 0 (11)

subject to the boundary conditions uð¥; tÞ ¼ u0ð¥; tÞ ¼ 0 (fixed minus end), u00ð0; tÞ ¼ k and u000ð0; tÞ ¼ 0

(free plus end), and is coupled to the kinetic Equations 8 and 9.

Condition for mechanical stability
There are three natural dimensionless parameters (two mechanical parameters and one kinetic

parameter) in our model that read:

a¼ Bk2

Su2c

� �1=2

; b¼ Suc
Bk

� �1=2

; g¼ kG

kH
: (12)

The first parameter a describes the effect of

longitudinal curvature. The second parameter b

pertains to lateral curvature. Coupling these

mechanical parameters to the kinetics of subunit

hydrolysis and MT growth introduces an addi-

tional relevant dimensionless parameter g, which

is the ratio of the rate of hydrolysis of GTP-tubu-

lin dimers to the net rate of addition of GTP-sub-

units to the MT plus end (see Appendix 2 for

details).

These parameters serve as the basis for a

phase diagram for the mechanical stability of a

3D MT (Figure 3a). Assuming that a mechanical

instability arises when the elastic MT is deformed

so that the radial displacement crosses a critical

value (uð0Þ>uc), we can solve Equation 11 in

terms of the maximal deformation uð0Þ to yield a

condition for when the MT is mechanically unsta-

ble. Rewriting this in terms of the scaled longitu-

dinal curvature yields a critical value (see the

Appendix 2 for details):

a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4b2

1�e�n=g

q

� 1

2b2
: (13)

above which MTs are mechanically unstable (the

transition curve in the ab-plane in Figure 3a).

This critical value depends on the lateral curva-

ture parameter b, which is related to MT radius

through b’ 1=R0. In particular, the critical value

for a is maximal (a¼ 1) when b¼ 0, that is

R0 !¥. This situation corresponds to the limit of

a one-dimensional MT (Zapperi and Mahade-

van, 2011). The critical value for a then

decreases with increasing lateral curvature b,

that is decreasing MT radius. Overall, these

results suggest that MTs with smaller radius are

mechanically less stable than MTs with larger

Video 1. MT growth and hydrolysis kinetics. This movie

shows the interplay between MT growth kinetics (we

focus here only on the addition of GTP-tubulin subunits

at the plus end) and the subsequent hydrolysis of the

incorporated subunits in the older parts of the MT. The

interplay between growth and hydrolysis can be seen in

the emergence of a growing front and a hydrolysis

front that move with different speed. In this case, the

hydrolysis front does not catch up with the growth front

at the plus end, yielding a stabilising GTP-cap and a

mechanically stable MT configuration for the entire

duration of the simulation. The growth rate is rG ¼ 10
�4

steps�1, while the probability of hydrolysis for each

dimer is given by pH ¼ e�rH t , where rH ¼ 10
�10 steps�1

is the rate of hydrolysis. Note the separation of

timescales between MT growth and subunit hydrolysis

(rG � rH ). To keep the helical structure stable, we use

the following parameters blong ¼ 8�0, blat ¼ 4�0 and

clong ¼ 5�0r
2

0
, while the other mechanical parameters are

the same as listed in Table 1.

https://elifesciences.org/articles/54077#video1
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radius, consistent with the intuition that increasing azimuthal curvature increases the mechanical

strain on the MT and thus makes it more likely to fracture. Furthermore, increasing the rate of MT

growth over hydrolysis acts to stabilise MTs mechanically. In the mechanically stable phase, hydroly-

sis is slower than the addition of GTP-tubulin at the plus end, leaving a stabilising GTP-cap of size n

(see Appendix 2, Video 1). In the mechanically unstable phase, hydrolysis is faster than subunit addi-

tion at the plus end. Consequently, the ‘hydrolysis front’ takes over the ‘growth front’, which desta-

bilises MTs. In this case, the PFs curve outward near the plus end, leading to a characteristic

morphology of depolymerising MTs that resembles rams’ horns (VanBuren et al., 2005) (see Appen-

dix 2, Video 2). The transition curve separating these fast and slow hydrolysis regimes depends on

both the longitudinal and lateral curvatures of the MT.

In Figure 3b, we show that crossing the transition curve given by Equation 13 causes a switch

from the mechanically stable phase into the mechanically unstable phase. This could result from var-

iations in either a, b or g. For MTs in the mechanically stable phase, catastrophic failure can still

occur via thermal activation. In this regime, the rate of catastrophe follows Arrhenius’ law

rc ’ expðDE=kBTÞ, where kBT is the thermal energy and DE is the energy barrier given by

DE / a� 1þ b2 is a measure of the ‘distance’ from the transition curve Equation 13 in the phase

diagram of Figure 3b; the further away a MT is from this transition curve, the less likely it is to

undergo catastrophe. The dependence of the rate of catastrophe on MT radius is through the

parameter b, such that ln rc / 1=R2

0
. Thus, at constant temperature and at fixed values of the mechan-

ical parameters, the rate of catastrophe increases with decreasing MT radius or, equivalently,

decreasing PF number.

Comparison with computer simulations
We used our computer simulations to test the prediction from Equation 13 for how the critical value

of a varies with b, which is a function of MT radius R0 that is controlled by changing the number Nf

of PFs in the MT. The results (Figure 3b) show that the critical value for a is maximal when b ¼ 0,

and decreases with increasing b, in agreement with the theoretical prediction of Equation 13 (solid

line).

Mechanical stability of 3D MTs in the presence of quenched disorder
Having considered the deterministic limit where growth kinetics, hydrolysis and longitudinal/lateral

curvatures characterise the mechanical stability of a 3D MT, we now consider the role of randomness

by including a random fraction of GTP-tubulin dimers in their lattice. We can model this situation by

introducing quenched disorder in the state of the tubulin subunit. Quenched disorder describes the

general situation when certain parameters in the

system become random variables; disorder can

be considered to be ‘quenched’ when the prob-

ability distribution of parameter values either

does not vary with time or it varies with time

slowly compared to some underlying fast

dynamics, and thus cannot be described solely

using equilibrium statistical mechanics. In the

context of MTs, such a separation of timescales

emerges very naturally when comparing fast

polymerization/depolymerization kinetics and

the comparatively slower GTP turn-over.

Since the primary mode of MT instability is

due to the breaking of lateral bonds, a natural

parameter for discussing the role of disorder is

the spring stiffness S. The underlying motivation

for this choice is that mechanical forces can influ-

ence the rates of chemical reactions. Indeed,

mechanical work contributes to the free energy,

which in turn determines the rates of a chemical

reaction (Howard, 2001). In our context, GDP-

Video 2. MT catastrophe. This movie shows the

interplay between MT growth and subunit hydrolysis.

The rate of hydrolysis is rH ¼ 5� 10
�6 steps�1 while the

growth rate is decreasing from rG ¼ 5� 10
�3 steps�1 to

rG ¼ 2� 10
�6 steps�1. Hydrolysis destroys the GTP-cap

of MT and causes catastrophe. The mechanical

parameters are the same as in Video 1.

https://elifesciences.org/articles/54077#video2
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tubulins within the MT lattice experience

mechanical stresses due to the strong curvature.

These mechanical stresses can shift the polymeri-

sation-depolymerisation equilibrium and favour

free monomers. This is consistent with the idea

that GDP-tubulins are less tightly bound to MTs

than GTP-tubulins (Wang and Nogales, 2005; Alushin et al., 2014), even if the chemical bonds are

identical.

Thus, instead of having a well-defined spring constant S throughout the MT, we consider a MT

with varying S. Each lateral interaction is characterised in principle by a different spring constant S,

which is drawn from a time–independent probability distribution pðSÞ of spring constants. For conve-

nience, we choose the Gamma-distribution

pðS;k; hSiÞ ¼ kkSk�1 expð�kS=hSiÞ
hSikGðkÞ

; (14)

where GðxÞ is the Gamma function, hSi is the average spring stiffness, and the parameter 1=k¼ s=hSi,
with s being the standard deviation of the distribution, is the coefficient of variation that describes

the degree of disorder in the system. The choice of the Gamma-distribution admits a simple parame-

terisation in terms of the coefficient of variation that allows us to explore a range of different

extreme value statistics. For instance, for k¼ 1 the Gamma distribution pðS;1; hSiÞ yields the expo-

nential distribution with intensity l¼ 1=hSi, while for k� 1 it yields a normal distribution with mean

�¼ khSi and variance s2 ¼ khSi2. We distinguish two limiting modes for disorder: lateral (Figure 3c)

and longitudinal (Figure 3d). Any realisation of disorder can then be decomposed into a combina-

tion of these two limiting modes.

Video 3. Role of lateral quenched disorder in MT

mechanical stability. This movie illustrates the stability

of a MT in the presence of lateral disorder in the spring

stiffness S, which describes the strength of lateral

contacts between PFs. Note that lateral disorder

causes the MT to be mechanically unstable along

directions with weakest lateral bonds (the MT ‘cut

opens’ along these weak directions). The color code

indicates the local value of S for each subunit, which is

obtained by averaging over the relative stiffness of its

two lateral bonds (drawn from the Gamma-distribution

(14) with k ¼ 50). The simulation parameters are the

same as listed in Table 1, except that we set � ¼ 5:8�

for all tubulin dimers.

https://elifesciences.org/articles/54077#video3

Video 4. Role of longitudinal quenched disorder in MT

mechanical stability. This movie illustrates the stability

of a MT in the presence of longitudinal disorder in the

spring stiffness S. Note that the MT is in this case

mechanically more stable than in the presence of

lateral disorder. This is because longitudinal disorder

leads to the presence of ‘rings’ of strong bonds that

prevent the MT from peeling off completely. The

simulation parameters are the same as in Video 3.

https://elifesciences.org/articles/54077#video4
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Lateral disorder
In the presence of disorder in S, lateral interactions are characterised by variations in S azimuthally

but not longitudinally. In this case, whether the MT undergoes catastrophe depends on the breaking

of the weakest lateral bond along the circumference of the MT, resulting in a MT that is ‘cut-open’

along the longitudinal direction (Figure 3c and Appendix 2, Video 3). This situation is fully analo-

gous to what happens when pulling a one-dimensional chain by its ends: the chain will break as soon

as its weakest link breaks. The mechanical stability of a MT with lateral disorder is thus equivalent to

the mechanical stability of a MT with uniform spring stiffness hSmini, where hSmini denotes the aver-

age value of the weakest spring stiffness along the MT circumference. This replacement maps the

study of the mechanical stability of a MT with lateral disorder onto a problem of extreme value sta-

tistics (Zapperi and Mahadevan, 2011; Bertalan et al., 2014b): the determination of hSmini for a

system of N independent and identically distributed links with spring constants S1; � � � ; SN . In Appen-

dix 2, we show that hSmini can be calculated from Equation 14 using extreme-value statistics,

yielding:

hSmini
hSi ¼ 1

k
G

kþ 1

k

� �

Gðkþ 1Þ
N

� �1=k

: (15)

The condition for mechanical instability of a MT with lateral disorder in S is thus obtained by

replacing hSi by hSmini in Equation 13, yielding:

a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4b2

1�e�n=g

q

� 1

2b2

ffiffiffiffiffiffiffiffiffiffiffiffi

hSmini
hSi

s

: (16)

Since hSmini<hSi, Equation 16 predicts that the transition curve between mechanically stable and

unstable MT regions shifts towards the instability region. Thus, lateral disorder weakens MTs.

Longitudinal disorder
A different situation arises when quenched disorder is distributed longitudinally. Here, the strongest

lateral bond determines MT stability. In fact, longitudinal disorder leads to the presence of ‘rings’ of

particularly strong bonds that prevent the MT from depolymerising completely (Figure 3d and

Appendix 2, Video 4). The mechanical stability of a MT with longitudinal disorder is thus equivalent

to that of a MT with uniform spring stiffness hSmaxi, where hSmaxi is the expected value of S associ-

ated with the strongest lateral bond. Using extreme-value statistics, one finds (see Appendix 2)

hSmaxi=hSi ¼ ðge þ logNÞ=k, where ge » 0:5772 is the Euler-Mascheroni constant (Taloni et al., 2018;

Bertalan et al., 2014b; Zapperi and Mahadevan, 2011). Hence, the curve separating mechanically

stable and unstable regions in the presence of longitudinal disorder is Zapperi and Mahadevan

(2011):

a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4b2

1�e�n=g

q

� 1

2b2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

hSmaxi
hSi

s

: (17)

Since hSmaxi>hSi, longitudinal disorder in S reinforces MTs.

It is important to note that longitudinal disorder is the only mode of disorder present in a 1D MT

(Zapperi and Mahadevan, 2011). Lateral disorder is thus a defining feature of the 3D geometry of

MTs. Our results thus reveal a fundamental role of MT dimensionality: while in a 1D setting

quenched disorder stabilises MTs mechanically, in a 3D setting it can destabilise MTs.

Comparison with computer simulations
We have tested the theoretical predictions of Equation 16 and Equation 17 using our coarse-

grained simulations (Figure 3c,d). Quenched disorder was realised using Equation 14 with disorder

parameter k ¼ 50. These simulations confirm that longitudinal quenched disorder increases the

mechanical stability of MTs (Figure 3c), whereas the effect of quenched disorder in the lateral direc-

tion is to destabilise MTs mechanically (Figure 3d).
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Role of GTP-remnants in rescue
Using our theoretical model of mechanical stability of 3D MTs in the presence of quenched disorder,

we are now in the position to investigate the role of remnants of GTP-tubulin in rescue. Rescue

refers to the transition from depolymerisation to polymerisation during MT dynamic instability but is

still poorly understood (Brouhard, 2015). Experiments indicate that GTP-tubulin addition at the plus

end is not critical for rescue (Gardner et al., 2013; Walker et al., 1988), but that the presence of

remnants of GTP-tubulin along the MT lattice in so-called ‘GTP-islands’ can lead to MT rescue

(Tropini et al., 2012; Dimitrov et al., 2008; Aumeier et al., 2016; Gardner et al., 2013;

Vemu et al., 2018). In particular, experiments in vivo have revealed a strong correlation between

rescue probability and the presence of remnants of GTP-tubulin in older parts of the MTs, suggest-

ing that these ’GTP-remnants’ can function as rescue sites (Dimitrov et al., 2008). This view was fur-

ther supported by the observation that the presence of a slowly hydrolyzable analogue of GTP

bound to tubulin subunits contributes to MT rescue (Tropini et al., 2012. Aumeier et al., 2016) also

demonstrated the possibility to generate GTP-islands along the MT lattice in a controlled manner by

means of laser damaging and subsequent repair of the damaged site by incorporation of GTP-tubu-

lin from solution (Schaedel et al., 2015): rescue occurred at laser-damaged sites in the presence of

free GTP-tubulin (Aumeier et al., 2016). Separately, recent studies (Vemu et al., 2018; Vemu et al.,

2019) reported of a damage-repair mechanism that stabilises MTs mediated by the enzymes spastin

and katanin. Overall, these studies suggest that disordered GTP-islands in an otherwise structurally

periodic lattice are involved in rescue regulation. Since these GTP-remnants are characterised by a

random mixture of different states of tubulin, we ask if our framework might help to quantify these

observations.

Computer simulations
We first used our coarse-grained simulations to study the role of disordered GTP-remnants in MT

rescue. We generated reinforcing islands by inserting, in the middle of a fully hydrolysed, depoly-

merising MT, a ring consisting of several layers of GTP-tubulin dimers (Figure 4a). We then observed

whether the reinforcing GTP-islands were able rescue the depolymerising MTs as a function of two

parameters: 1) the length of the GTP-island Nrf (defined here as the number of layers in the island)

and 2) the fraction f of GTP-tubulin in the island. The results of these simulations (Video 5) are

shown in Figure 4b. Note that the parameter f controls the amount of disorder present in the island

at the level of GTP-hydrolysis. This mimics both the scenario when rescue islands are formed

because not all GTP-tubulin is able to hydrolyse, as suggested in Dimitrov et al. (2008), or when

rescue islands result from the incorporation of GTP-tubulin during the repair process of a damaged

site, as suggested in Aumeier et al. (2016). If disorder varies slowly over time compared to the char-

acteristic timescale of polymerisation/depolymerisation, we can model slow changes of MT mechani-

cal properties by making the relevant mechanical parameters explicit functions of time. For the

parameters in our simulation, we find that when the reinforcing island is one layer long (Nrf ¼ 1), the

probability of rescue is close to zero, irrespective of the GTP-fraction in the reinforcing island. Inter-

estingly, when Nrf>1, we observe that rescue probability prescue increases with f in a highly nonlinear

manner. Specifically, prescue is either close to zero or close to one for most values of f, with a sharp

increase in the transition region.

Percolation model of rescue
To qualitatively understand the observed nonlinear behaviour of rescue probability with GTP-fraction

in the reinforcing island f, we propose a site percolation model of rescue (Figure 4c). Site percola-

tion is concerned with the following question: given a random graph, in which each site is (indepen-

dently) occupied with probability q or empty with probability 1� q, what is the probability that a

connected path of occupied sites exists between the boundaries of the graph? In our percolation

model of rescue, each site of the reinforcing island is occupied by a GTP-tubulin dimer with probabil-

ity f, while it is occupied by a GDP-tubulin dimer with probability 1� f. In Sec. ’Role of quenched

disorder in mechanical stability of MTs’, we have shown that the presence of randomly distributed

weak lateral bonds (mediated by GDP-tubulin) can destabilise MTs mechanically when disorder is

longitudinal. As such, a MT will be mechanically unstable when a connecting path of GDP-tubulins

runs longitudinally through the reinforcing island (Figure 4c). The question of whether a reinforcing
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island with GTP-fraction f is able to rescue a depolymerising MT is thus analogous to site percola-

tion with q ¼ f. The rescue probability prescue thus relates to 1� pperc, where pperc is the probability of

percolation of a longitudinal path of GDP-tubulin subunits through the length of the reinforcing

island. Figure 4d shows that the results of site percolation on a square lattice of dimensions 13� Nrf

with varying f are in qualitative agreement with simulated rescue probabilities (Figure 4b).

Discussion
Our multi-scale approach to dynamic instability incorporates the mechanics and 3D geometry of

MTs, the kinetics of tubulin addition and GTP-hydrolysis, and quenched disorder in the state of the

tubulin subunit. Our results provide a series of phase diagrams for the presence of dynamic instabil-

ity, revealing the dimensionless mechanical and kinetic parameters controlling the problem. Com-

pared to previous analytic studies of dynamic instability, our results reveal the key role of the 3D
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Figure 4. Role of disordered GTP-islands in rescue. (a) Schematics showing the rescue of a depolymerising MT reinforced by a disordered GTP-tubulin

island. In this example, the length of the reinforcing island is Nrf ¼ 3 and the GTP-island consists of 20 GTP-tubulin dimers, which corresponds to a

GTP-fraction of f ¼ 20=ð3� 13Þ ’ 0:51 (see Video 5). (b) Simulated rescue probability by GTP-islands as a function of GTP-fraction f and reinforcing

island length Nrf . The rescue probability prescue was estimated by repeating simulations six to ten times for each pair f and Nrf . (c) Percolation model for

the role of disordered reinforcing GTP-islands on MT rescue. (d) Simulated site percolation on a square lattice with dimensions Nrf � 13 as a function of

GTP-fraction f and island length Nrf . The probability of percolation was obtained by averaging over 103 realisations for each pair f and Nrf .

The online version of this article includes the following source data for figure 4:

Source data 1. This spreadsheet contains the data for Figure 4B.

Source data 2. This spreadsheet contains the data for Figure 4D.
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geometry of MTs. In particular, we find that the

mechanical stability of a MT is strongly affected

by its radius (Mahadevan and Mitchison, 2005);

a MT with a smaller radius is mechanically less

stable than an identical MT with a larger radius.

Since MT radius has been shown to vary

because the number Nf of PFs composing MTs

typically ranges between 9 to 16 (Chrétien et al.,

1992; Chalfie and Thomson, 1982;

Chaaban and Brouhard, 2017; Cueva et al.,

2012; Dı́az et al., 1998), our study suggests

quantitative experimental tests via measurements

of catastrophe rates rc as a function of PF number

Nf to verify the theoretical prediction for the rate

of catastrophe logðrcÞ / 1=N2

f . Another key pre-

diction from our study is that the rescuing power

of GTP-islands displays a sharp drop at interme-

diate values of GTP-fraction. In particular, the

percolation model predicts that there is a critical

point for the GTP-fraction, f ¼ fc, below which

reinforcing islands lose their ability to rescue MT

disassembly. The numerical value of the threshold

fc depends on the thickness of the reinforcing

island as well as on the MT lattice structure. This

critical GTP-fraction could be determined experi-

mentally and compared to theory by using non-

hydrolyzable analogs of tubulin (Tropini et al., 2012), to control the amount of disorder at the level

of the state of tubulin subunit in the island, in combination with super-resolution microscopy

(Huang et al., 2009) to establish island length. Finally, we note that our assumption of the form of

the quenched disorder in terms of the Gamma distribution is just that - an assumption. Further

experimental work will be required to solve the inverse problem of estimating the average GTP-frac-

tion in GTP remnants from rescue probabilities determined experimentally (Dimitrov et al., 2008;

Aumeier et al., 2016; Vemu et al., 2018) to see if we might determine both the form of the disor-

der and the intrinsic parameters characterising it, thus allowing future research to address the ques-

tion of how to control dynamic instability.
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Appendix 1

Computer model
We assign a local coordinate system to each dimer to describe its overall rotation, as well as

the relative position of the patches within the dimer. To describe the whole dimer, we need

three basis vectors t; s and n is directed along the long dimer axis and points from the a-

tubulin to the b-tubulin. s and n lie in the plane perpendicular to t. This coordinate system is

particularly convenient for describing the rotation of a dimer as a whole. However, it cannot

capture the relative rotation of the a- and b-tubulin monomers in the dimer. This inner

rotation can only be along the axis n, and thus two patches coordinate systems (one for each

tubulin in the dimer) can be obtained by rotating the local coordinate system around n as:

tb ¼ t cosð�=2Þ� s sinð�=2Þ; (18)

sb ¼ t sinð�=2Þþ s cosð�=2Þ; (19)

nb ¼ n; (20)

ta ¼ t cosð�=2Þþ s sinð�=2Þ; (21)

sa ¼ t cosð�=2Þþ s sinð�=2Þ; (22)

na ¼ n; (23)

where � is the angle between the vectors ta and tb (the axes of the two monomers), as shown

in Appendix 1—figure 1a.
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Appendix 1—figure 1. Computer model. (a) The local coordinate systems of a dimer. (b) Top,

left and front views of two spheres forming a dimer and the six patchy points.

There are two types of connections between dimers: longitudinal and lateral contacts.

Longitudinal contacts link dimers head to tail and arrange them into PFs. Lateral contacts

connect parallel PFs arranging them into a cylindrical MT shell. Each dimer has two

longitudinal contacts and four lateral ones, that is there are six patchy points on each dimer.

These are numbered as in Appendix 1—figure 1b or Figure 2a of the main text. The

coordinates of the six patchy points are described by the following equations:

R1 ¼ tb cosð�chainÞ� sb sinð�chainÞ; (24)

R2 ¼ ta cosð�chainÞ� sa sinð�chainÞ; (25)
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R3 ¼ ðtb cosð�side1Þ�nb sinð�side1ÞÞcosð�side2Þþ sb sinð�side2Þ; (26)

R4 ¼ ð�tb cosð�side1Þþnb sinð�side1ÞÞcosð�side2Þþ sb sinð�side2Þ; (27)

R5 ¼ ðta cosð�side1Þ�na sinð�side1ÞÞcosð�side2Þþ sa sinð�side2Þ; (28)

R6 ¼ ð�ta cosð�side1Þþna sinð�side1ÞÞcosð�side2Þþ sa sinð�side2Þ: (29)

The values of the angles �chain;�side1;�side2 are given in Table 1.
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Appendix 1—figure 2. Mesoscopic mechanical properties of MTs as functions of the parame-

ters in the coarse-grained simulations model. (a) Young’s modulus E vs a, (b) torsional rigidity K

vs c and (c) bending stiffness B vs b. Solid lines correspond to the theoretical predictions (see

Equation 7 in Section ’Computational model’ of main text), and are in good agreement with

the computer simulations.
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Appendix 2

Theoretical model
Here we provide additional mathematical details pertaining to the theoretical model discussed

in the main text, in terms of the elastostatics of the structure and kinetics of polymerisation/

depolymerisation and hydrolysis. Finally, we study this model in the presence of quenched

disorder.

Mechanical stability of 3D MTs (statics)
Our model considers two contributions to the total elastic energy of MTs: 1) a curvature

energy term describing the bending of PFs in the MT and 2) the stretching energy of the

springs that connect neighboring PFs. We now consider these two energy contributions in

detail.

Curvature energy
We describe the curvature energy term by means of the Helfrich (1973):

Ecurvature ¼
Z

dA
k1

2
ð2HÞ2 þ k2K

� �

; (30)

where k1 and k2 are bending rigidities, H ¼ ðk1 þk2Þ=2 is the mean curvature, K ¼ k1k2 is the

Gaussian curvature, k1 and k2 are the principal curvatures, and dA is the surface area element.

We describe the MT as a continuous elastic sheet modelled as a solid of rotation obtained by

rotating the function RðxÞ along the x-axis, which describes the microtubule growth axis

(Appendix 2—figure 1a). We assume that the MT possesses a natural radius R0 (when flat)

and, for convenience, we write RðxÞ ¼ R0 þ uðxÞ, where uðxÞ describes the deviation of local

radius RðxÞ from R0. The MT surface is thus parameterised as ðx;RðxÞcos’;RðxÞsin’Þ where x2
½0;¥Þ and ’2 ½0;2pÞ. In this parametrisation, x¼ 0 corresponds to the MT plus end, while x¼¥
corresponds to the minus end. We then use the following expressions for the mean and

Gaussian curvatures of a surface of revolution Gray, 1997:

HðxÞ ¼ RðxÞR00ðxÞ� ð1þR0ðxÞ2Þ
2RðxÞ½1þR0ðxÞ2�3=2

; KðxÞ ¼ �R00ðxÞ
RðxÞ½1þR0ðxÞ2�2

; (31)

where 0 ¼ d=dx denotes derivative with respect to x, and the surface area element is

dA¼ 2pRðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þR0ðxÞ2
q

dx. From these expressions, we note that the Gaussian curvature term,

KðxÞdA¼�R00ðxÞ=½1þR0ðxÞ2�3=2dx, is fully integrable, that is it gives rise to boundary terms only.

We thus focus on the mean curvature term only. To this end, we consider a small gradient

approximation, which corresponds to u0ðxÞ� 1. We then write RðxÞ ¼ R0þ uðxÞ in Equation 31

and after keeping only the leading order terms, we find

ð2HÞ2dA’ 2p R0 u
00ðxÞ2þ u0ðxÞ2

2R0

 !

dxþR; (32)

where R stands for higher order terms in u0ðxÞ or for boundary terms (i.e. terms that are fully

integrable and thus, after integration, simply shift the curvature energy by a constant value).
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Appendix 2—figure 1. Continuum elastic shell model of microtubule. (a) To describe the

curvature energy, MTs are modelled as thin elastic surfaces of revolution obtained by rotating

the function RðxÞ ¼ R0 þ uðxÞ along the MT long axis (x axis). R0 is the natural radius of the MT.

(b) Neighbouring PFs within the MT are connected by Nf Hookean springs with stiffness ks.

Our calculation so far has accounted for bending energy relative to a flat cylindrical MT. To

account for the natural longitudinal and lateral curvatures of subunits (k and !, respectively),

we extend the Helfrich Hamiltonian as follows:

Ecurvature ¼
Z

dA
k1

2
ð2H� 2H0Þ2 þ k2K

� �

; (33)

where H0 ¼ ðkþ!Þ=2 is the natural (or spontaneous) mean curvature. In the small gradient

approximation (u0 � 1), the leading contribution to the curvature energy in the presence of

natural curvatures k and ! is found to be

ð2H� 2H0Þ2dA’ 2p R0½u00ðxÞ�k�2þ u0ðxÞ2
2

ð1þ!R0Þ2
R0

 !

dxþR: (34)

Thus, the curvature energy is

Ecurvature ’
Z

¥

0

B

2
½u00ðxÞ�k�2 þS

2
u0ðxÞ2

� �

dx; (35)

where B¼ 2pR0k1 and S¼ Bð1þ!R0Þ2=R2

0
.

Elastic spring energy
The second contribution to the total elastic energy of MTs is due to the stretching energy of

the springs connecting neighbouring PFs. To construct this energy contribution, we model the

cross section of the MT as a set of PFs connected by Nf harmonic springs with stiffness ks
(Appendix 2—figure 1b). The stretching energy is proportional to the square of the

deviations of the distance d between PFs from their equilibrium position d0. By symmetry in

the ’ direction, springs are stretched by dðxÞ ’ �NRðxÞ ¼ 2pRðxÞ=Nf (�N is defined in

Appendix 2—figure 1b). The rest length of springs is d0 ¼ �NR0 ¼ 2pR0=Nf . Thus, the

stretching energy per unit length of the system of Nf springs can be estimated as:

Nf �
ks

2
½dðxÞ� d0�2 ’

Nfks

2

2p

Nf

� �2

½RðxÞ�R0�2: (36)

Thus, writing RðxÞ ¼ R0þ uðxÞ, the stretching energy is found to be:
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Estretch ’
S

2

Z

¥

0

uðxÞ2dx; (37)

where S¼ 4p2ks=Nf .

Total elastic energy
In summary, the total elastic energy of a 3D MT can be written in terms of uðxÞ by combining

the contributions from curvature energy and spring energy:

Etot ¼ Ecurvature þEstretch ’
Z

¥

0

B

2
½u00ðxÞ�k�2þS

2
u0ðxÞ2 þ S

2
uðxÞ2

� �

dx: (38)

The first term describes the longitudinal bending energy of the MT away from the natural

curvature k. The second term comes from the lateral curvature. At leading order, this term is a

surface energy term that penalises the increase in surface area when the MT curves out; the

parameter S plays the role of a surface tension. Finally, the third term is the stretching energy

of the springs, which gives rise to an energy density contribution proportional to uðxÞ2.

Euler-Lagrange equation and minimum energy configuration
Having defined the elastic energy functional for the problem, Etot ½u� ¼

R

¥

0
Hðu; u0; u00Þdx

(Equation 38), we now consider the associated Euler-Lagrange equation that describes the

minimal energy configuration of MTs:

dEtot½u�
du

¼ qH
qu

� d

dx

qH
qu0

� �

þ d

dx2
qH
qu00

� �

¼ 0: (39)

Using Equation 38, Equation 39 is found to be:

Bu0000 �Su00þ Su¼ 0: (40)

Subject to the following boundary conditions

uð¥Þ ¼ u0ð¥Þ ¼ 0 ðMTflatatx¼¥; i:e:atMTminusendÞ; (41)

u00ð0Þ ¼ k ðnaturalcurvatureatx¼ 0; i:e:atMTplusendÞ; (42)

u000ð0Þ ¼ 0 ðnoshear force intheMTÞ (43)

the analytical solution to Equation 40 reads:

uðxÞ ¼ kl2

l2
1
ðl2�l1Þ

e�l1xþ kl1

l2
2
ðl1 �l2Þ

e�l2x; (44)

where

l1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

‘2a
�

ffiffiffiffiffiffiffiffiffiffiffiffi

1

‘4a
� 4

‘4
b

q

r

ffiffiffi

2
p ; (45)

and the two relevant length scales in the problem are

‘a ¼
B

S

� �1=2

; ‘b ¼
B

S

� �1=4

: (46)

The first length scale is associated with the lateral curvature of the MT. In fact, from S¼
Bð1þ!R0Þ2=R2

0
it follows ‘a ¼ B=Sð Þ1=2’ R0.
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Condition for mechanical stability/instability of 3D MTs
To study the mechanical stability/instability of MTs as a function of its mechanical parameters,

we assume that the springs connecting PFs break if their extension exceeds a critical value uc.

From Equation 44 we thus obtain the following condition for mechanical instability:

uð0Þ ¼ k‘2b 1þ
‘2b
‘2a

 !

>uc: (47)

To rewrite this in a more transparent way in terms of the dimensionless parameters, we first

define the scaled longitudinal and lateral curvatures:

a¼
ffiffiffiffiffiffiffiffi

Bk2

Su2c

s

; b¼
ffiffiffiffiffiffiffi

Suc
Bk

r

: (48)

so that the parameters a and b are related to the characteristic length scales defined in

Equation 46 through

a¼ ‘b
‘c

� �2

; b¼ ‘c
‘a

; (49)

where ‘c ¼
ffiffiffiffiffiffiffiffiffiffi

uc=k
p

is a length scale corresponding to the geometric average of the longitudinal

radius of curvature and the critical extension uc.

The condition Equation (47) can be reformulated most conveniently as

b>

ffiffiffiffiffiffiffiffiffiffiffi

1�a
p

a
, a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4b2
p

� 1

2b2
; (50)

The resulting curve is shown in a phase diagram in Appendix 2—figure 4a.
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Appendix 2—figure 2. Role of kinetics on mechanical stabillity of MTs. (a) Phase diagram for

mechanical stability of 3D MTs, as described by Equation 50. (b) Effect of the relative rates of

tubulin hydrolysis and MT growth (g ¼ kG=kH ) on mechanical stability of MTs, as described by

Equation 62. See: link to Videos 1 and 2.
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Appendix 2—figure 3. Scaling behaviour of critical curvature. (a) Scaling behavior of the critical

longitudinal curvature kc with bending stiffness B and spring stiffness S (inset). The scaling

relationship over the range of B and S values investigated in the simulations is found to be
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kc / ðB=SÞ�0:53, in agreement with the predictions of Equation 55. (b) Scaling exponent s

(Equation 55) as a function of ‘b=‘a interpolates between the limits s ¼ �0:5 for ‘b=‘a ! 0

and s ¼ �1 for ‘b=‘a ! ¥.

The online version of this article includes the following source data is available for figure 3:

Appendix 2—figure 3—source data 1. This spreadsheet contains the data for Appendix 2—

figure 3a.

Equation (50) predicts that there is a critical value for the longitudinal curvature, kc, above

which MTs are mechanically unstable. We now study the scaling behaviour of kc with system

parameters such as the bending stiffness B and spring stiffness S. To this end, we performed a

series of computer simulations by varying the longitudinal bending stiffness B of PFs and the

lateral connecting strength �, which in turn determines the spring stiffness S. The results are

shown in Appendix 2—figure 3a. We find that kc follows a scaling law with the longitudinal

bending stiffness B and S, kc ~ ðB=SÞs. This scaling behaviour is shown in the double-

logarithmic plots in Appendix 2—figure 3a, where the slope corresponds to the scaling

exponent s ~ � 0:53. The observed scaling behaviour can be rationalised using (50), which can

be rewritten as

kc / ðB=SÞs; (51)

where s is the scaling exponent, given by

s¼ q logðkcÞ
q logðB=SÞ : (52)

After rewriting Equation 47 as

kc ¼
uc

‘2b 1þ ‘2
b

‘2a

� � (53)

we find

s¼ q

q logðB=SÞ logðucÞ� log ‘2b

� �

� log 1þ
‘2b
‘2a

 !" #

¼�1

2
� 1

1þ ‘2
b

‘2a

� �

q

q logðB=SÞ
‘2b
‘2a

 !

; (54)

where in the second step we have used ‘b ¼ ðB=SÞ1=4 (Equation 46). Finally, using

qxa=q logx¼ axa, we arrive at:

s¼�1

2
1þ 1

1þ ‘2a
‘2
b

0

@

1

A¼
�0:5 when ‘b�‘a

�1 when ‘b�‘a

�

(55)

The scaling exponent s interpolates between �0.5 for ‘b � ‘a (limit of a single-filament

model of MT Zapperi and Mahadevan, 2011) and �1 for ‘b � ‘a (limit of strong lateral

curvature), see Appendix 2—figure 4b. This scaling behaviour for kc has been verified using

our coarse grained simulations of depolymerising MTs in Appendix 2—figure 3a of the main

text. Representative values for the mechanical parameters in the simulations are B¼
1:23� 10

�26 Nm2, S¼ 91 MPa and R¼ 10 nm. These values give ‘b ¼ ðB=SÞ1=4 ’ 3:4 nm, ‘a ¼ 10

nm and, therefore, s’�0:55, in close agreement with the simulations in Appendix 2—figure

4a.

Coupling mechanical stability with MT kinetics
We now combine our static calculation of mechanical stability of MTs with the dynamics of

subunit hydrolysis and MT polymerisation/depolymerisation. This allows us study how kinetics

affect the phase diagram of Appendix 2—figure 3a. Let kG be the rate of addition of subunits

to the MT end and let kH be the rate of hydrolysis of GTP-tubulin dimers. With these
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parameters we can construct a dynamic dimensionless parameter as the ratio between the

times for hydrolysis and growth

g¼ kG

kH
: (56)

To understand how the dynamic parameter g modifies the static stability of the MTs, our

starting point are the kinetic equations in the main text:

dkðtÞ
dt

¼ kHðkð¥Þ�kðtÞÞ; d!ðtÞ
dt

¼ kHð!ð¥Þ�!ðtÞÞ; (57)

dnðtÞ
dt

¼ kþ½m�� k� ¼ kG: (58)

Equations 57 and 58 can be combined together by expressing time as t¼ n=kG (follows

directly from the solution to Equation 58). The solution to Equation 57 can thus be expressed

as

kðnÞ ¼ k 1� e�kHn=kG
� �

þkð0Þe�kHn=kG ¼ kð¥Þ 1� e�n=g
� �

þkð0Þe�n=g; (59)

!ðnÞ ¼ !ð¥Þ 1� e�n=g
� �

þ!ð0Þe�n=g: (60)

Using this parametrisation, we can express the condition for mechanical instability,

Equation 47, as

1� e�n=g
� �

a 1þab2
1þ !0R

1�!0R
e�n=g

� �2
" #

>1: (61)

This condition can be solved with respect to a to yield the following expression for the

phase boundary:

a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
4b2

1þ !0R

1�!0R
e�n=g

� �2

1�e�n=g

s

� 1

2b2
1þ !0R

1�!0R
e�n=g

� �2
: (62)

The resulting phase diagram as a function of g is shown in Appendix 2—figure 4b. We see

that increasing g increases the region of mechanical stability of MTs. The physical

interpretation of this result is that MTs remain mechanically stable as long as the transition

curve, Equation 47, is reached after a stabilising cap of length n is added onto the MT end.

Increasing the rate of MT growth, kG, over subunit hydrolysis, kH , favours the formation of the

stabilising cap. In the limit when ! does not vary with time, Equation 61 reduces to

1� e�n=g
� �

að1þab2Þ>1; (63)

which can be solved to yield Equation 13 of the main text.

Mechanical stability of MTs in the presence of laterally-
distributed quenched disorder
As argued in the main text, in the presence of lateral disorder, the mechanical stability of a MT

is controlled by its weakest link. To understand this quantitatively, we replace the MT with

lateral disorder with an equivalent one with uniform spring stiffness hSmini, where hSmini
denotes the average value of the weakest spring stiffness. This replacement maps the study of

the mechanical stability of a MT with lateral disorder onto a problem of extreme value

statistics (Zapperi and Mahadevan, 2011; Bertalan et al., 2014a): the determination of
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hSmini. To this end, consider N independent and identically distributed links with spring

constants S1; � � � ; SN . We assume that the values of spring constants are random and

distributed according to a Gamma-distribution

pðSÞ ¼ kkSk�1 expð�kS=hSiÞ
hSikGðkÞ

; (64)

where hSi is the average spring stiffness (Appendix 2—figure 4a). The ratio between the

standard deviation s and the average hSi

Cv ¼
s

hSi ¼
1

k
(65)

is the coefficient of variation, a key parameter which we use to describe the degree of

disorder in the system; small values of k correspond to nearly ordered system while large

values correspond to a strongly disordered system.

With Smin ¼ mini Si being the smallest value of spring constants and letting

PNðSÞ ¼ Pr½Smin<S� (66)

be the cumulative probability distribution for Smin over the N links, we can calculate PNðSÞ
directly from the definition of PNðSÞ, yielding

1�PNðSÞ ¼ Pr½Smin � S� ¼
Y

N

i¼1

Pr½Si � S� ¼ ð1�PðSÞÞN ; (67)

where

PðSÞ ¼
Z S

0

pðS0ÞdS0 (68)

is the cumulative probability distribution of S. For large N, we can approximate the exact

expression in Equation 67 as

PNðSÞ ¼ 1�ð1�PðSÞÞN ’ 1� exp �NPðSÞ½ �: (69)

The interesting behaviour of PNðSÞ happens for small values of S,when PNðSÞ is controlled by

the low-value tail of PðSÞ. The cumulative distribution function PðSÞ can then be calculated

explicitly from Equation 64 as

PðSÞ ¼ gðk;kS=hSiÞ
GðkÞ ; (70)

where gðk;xÞ is the incomplete gamma function. Since we are interested in the low-value tail of

PðSÞ, we can use the small x expansion of gðk;xÞ

gðk;xÞ ’ xk

k
þ� � � ; x! 0 (71)

to arrive at the following expression

PðSÞ ¼ gðk;kS=hSiÞ
GðkÞ ’ ðkS=hSiÞk

Gðkþ 1Þ ; (72)

which is valid for S! 0 (Appendix 2—figure 4b). The cumulative probability distribution for

Smin then converges to a Weibull distribution

PNðSminÞ ¼ 1� exp �NðSmin=S0Þk
h i

;withS0 ¼
Gðkþ 1Þ1=khSi

k
: (73)

The average value for the weakest spring constant Smin is therefore
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hSmini
hSi ¼ 1

k
G

kþ 1

k

� �

Gðkþ 1Þ
N

� �1=k

: (74)

Having solved the extreme-value statistics problem of determining hSmini allows us to
estimate the transition curve separating regions of mechanical stability and instability for a MT

exhibiting lateral disorder. The curve separating these zones is obtained by replacing hSi by
hSmini in Equation 50, yielding:

a¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4b2
p

� 1

2b2

ffiffiffiffiffiffiffiffiffiffiffiffi

hSmini
hSi

s

; (75)

where we note that hSmini<hSi. Thus, by comparing Equation 75 with the deterministic result

Equation 50, we see that, in the presence of lateral disorder, the curve separating

mechanically stable from mechanically unstable MTs shifts in such a way as to increase the

region of mechanical instability. Lateral disorder thus weakens MTs, making them more

susceptible to catastrophic failure.
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Appendix 2—figure 4. Gamma distribution. (a) Gamma distribution Equation 64 with k ¼ 5. (b)

Cumulative probability distribution PðSÞ for the Gamma distribution, Equation 70, and low

value-tail, Equation 72 (dashed line).
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