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Biohybrid robotics takes an engineering approach to the expansion and
exploitation of biological behaviours for application to automated tasks.
Here, we identify the construction of living buildings and infrastructure as
a high-potential application domain for biohybrid robotics, and review tech-
nological advances relevant to its future development. Construction, civil
infrastructure maintenance and building occupancy in the last decades
have comprised a major portion of economic production, energy consump-
tion and carbon emissions. Integrating biological organisms into automated
construction tasks and permanent building components therefore has high
potential for impact. Live materials can provide several advantages over
standard synthetic construction materials, including self-repair of damage,
increase rather than degradation of structural performance over time, resili-
ence to corrosive environments, support of biodiversity, and mitigation of
urban heat islands. Here, we review relevant technologies, which are cur-
rently disparate. They span robotics, self-organizing systems, artificial life,
construction automation, structural engineering, architecture, bioengineer-
ing, biomaterials, and molecular and cellular biology. In these disciplines,
developments relevant to biohybrid construction and living buildings are
in the early stages, and typically are not exchanged between disciplines.
We, therefore, consider this review useful to the future development of
biohybrid engineering for this highly interdisciplinary application.
1. Introduction
Biohybrid robotic construction, a potentially broad field, couples interrelated
engineered systems and biological systems. In the related fields of bioinspira-
tion and biomimetics, extensive approaches exist for a range of applications,
including building design, materials, construction and robotics (see [1–4]).
However, in this review, we look to biohybrid robotics not as a form of
bioinspiration, but as a subset of robotic hybrid societies (see [5]), in which
biological organisms and robotic elements perform collective behaviours in a
self-organizing way. With this understanding, we can define biohybrid living
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buildings as those where robotic, mechanical and live biologi-
cal elements—potentially also with user interaction—
collectively accomplish built structures for human occupancy.

Construction is a relevant application for biohybrid
robotics, as biological organisms excel at producing material
with limited resources, and robots excel at flexible and pro-
grammable control. Though automation in architecture,
engineering and construction (AEC) sectors is rapidly growing
in popularity and sophistication [6], investigation of biohybrid
robotics in this context is currently rare and is an emerging
research trend. We are aware of two projects pursuing founda-
tional research for biohybrid living buildings, one being our
own flora robotica, for shaping biohybrid structures [7,8], the
other being Living Architecture (LIAR), for programmable
energy and resource infrastructure in building components
[9]. In this review, we do not address all potential aspects of
biohybrid living buildings, but focus specifically on the process
of construction, including operations like material deposition
and shaping. For buildings where living organisms are
involved in construction, we identify the essential challenge
to be steering biological growth or deposition into shapes or
patterns that perform building functions. These can include
not only the structural system (perhaps of multi-storey
height) but also building envelope functions such as shading,
thermal insulation, moisture barrier, air barrier and delivery
of building utilities. Though bio-mechanical hybrid structures
can conceivably be constructed by manual manipulation
alone, the growth times are likely to be long and the construc-
tion tasks laborious, suggesting the usefulness of automation.
Furthermore, the inclusion of self-organizing robotic partners
enables continual management of the full biological deposition
or growth process, which inherently involves some degree of
unpredictability. In order to guide and shape biological
elements during construction, robots might indirectly influence
the organisms through the construction and manipulation of
mechanical scaffolds, or directly influence them by providing
stimuli specific to the species.

As biohybrid construction has been infrequently studied so
far, we review the approaches that could be foundational for
future developments. Broadly, we first review robots that inter-
act with biological organisms, then construction involving
biological organisms, and finally construction involving robot
collectives. We seek to answer the following broad questions,
in a sufficiently concrete way to facilitate future study: (1)
which biological organisms are known to responsively deposit,
generate, or shape living or non-living material and what natu-
ral mechanisms are understood to modulate these behaviours?
(2) What existing autonomous technologies interact, or could
be expected to interact, with organisms and behaviours that
fall into the aforementioned category? (3) What methods
have been, or could be, used to incorporate living organisms
or their depositions into construction outcomes or processes?
(4) Which existing robot control, hardware and user-interface
approaches are relevant to the management of construction
processes that incorporate living organisms?

2. Hybridizing robots and biology
Though studies investigating the construction potential of bio-
hybrid robots are rare, many existing examples of robotic
interaction with organisms could be foundational for novel
applications. Plants and material-depositing animals are two
major categories of organisms that are candidates for biohybrid
construction (figure 1). In this section, we first review the beha-
viours of these two organism categories that could be useful for
steering or shaping their deposition or growth into constructed
artefacts. We then review robots that interact with biological
organisms on various scales, including organisms that might
not be directly applicable to the task of construction, as their
approaches to interaction could be extended in useful ways.

2.1. Organisms that are candidates for biohybrid
construction

2.1.1. Material-depositing behaviours of animals
Social insects (e.g. ants, honeybees, wasps, termites), collectively
construct ‘houses’ (nests) in a decentralized and self-organized
way. Their construction occurs through low-level interactions
among themselves and with their environment, which they
continually reconstruct by building (general: [10]; ants: [11];
honeybees: [12]; wasps: [13,14]; termites: [15,16]).

Some simple mechanisms impact the insects’ patterns
of material deposition or further shaping, such as thermo-
regulation [17,18], tunnel digging [19,20] or vibrational
communication [21]. More complex mechanisms involve
spreading of chemical gradients and modulation of animals’
behaviours based on the local concentration of these sub-
stances [22]. Such substances can be pheromones emitted
by the queen, by the brood, or by building workers [23].
Alternatively to pheromone gradients, there can also be gra-
dients in the density of the physical presence of brood,
workers, or building materials, which can also function as a
form-giving template [24]. Construction can be complexified
by cascades of environment-changing behaviours that are
triggered through environmental cues and signals—a
phenomenon known as stigmergy [25]. To roughly summar-
ize, stigmergy is a category of mechanisms by which social
insects communicate among themselves not directly but by
responding to the conditions found in the environment,
which may have been modified by any of the insects [26].
One example of this is termite nest-building as shown in
figure 1b, where the termites do not directly communicate
about what to build, but rather simply respond to the already
placed material in making their individual decision about
where to place the next [25]. Another example is in how
ants forage for food, wherein they again do not communicate
directly, but rather choose their path based on the pheromone
trails collectively left by the colony [27]. The presence of these
behavioural feedback loops, and the nonlinearity of
stimulus–response relationships, can lead to a significant
increase in the complexity of the produced nests [10].

Beyond social insects, many animals construct their nests
through material collection and deposition, including birds
[28], badgers [29], mole rats [30] and beavers [31]. Beavers,
as a prominent example, exhibit a construction activity that
can be seen from a stigmergic perspective. The beaver not
only constructs its nest by depositing material collected in
the surrounding environment but uses this material to con-
struct water dams which in turn heavily shape that
environment. The resultant environmental changes can then
trigger further building activities in the nest or dam (e.g. cor-
rectional restructuring depending on water level and water
flow). Some animals also construct nests by depositing
material they have secreted. Prominently, silkworms build
cocoons from secreted protein forming strong fibres [32],
somewhat similar to spiders weaving their nets [33].



(a) (b)

Figure 1. Natural methods of shaping and material deposition, found in plants and social insects. (a) A tree-shaped substantially by natural tropisms; image used
with license. (Image retrieved from Wikimedia Commons, from username Roberto Fiadone. Used with Creative Commons license CC BY 3.0. Image copyright holder
chose and approved the license at upload.) (b) A termite mound built with natural stigmergy; image used with license. (Image retrieved from Wikimedia Commons,
from username Thomas Fuhrmann. Used with Creative Commons license CC BY 4.0. Image copyright holder chose and approved the license at upload.) (Online
version in colour.)
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2.1.2. Modelling material-deposition by animals
The nest construction of paper wasps and termites has been
modelled several times with qualitatively different approaches.
For example, [34] intensively examines the search-space of
‘stigmergic rule scripts’ implemented in a lattice swarm
model, finding several rule-sets that produce a paper wasp-
like nest. However, the cognitive abilities of individual
modelled wasps need to be strong in this approach, able to
process 211 different nest configuration properties. Other
studies show that an alternative approach—simple sets of a
few locally applied rules—can also be derived from observing
the wasps. These sets are capable of modelling the dynamics of
nest growth, suggesting that the wasps may govern their con-
struction behaviours using only a few simple rules based on
simple local assessments [13,14]. As a construction principle,
this looks rather general and applicable across many domains.
However, the study of [35] suggests that behaviours evolved in
nature are evolved for a specific animal, task and environment,
and therefore the derived construction principle may not be
useful for understanding animal construction generally.

In the related fields of bioinspiration and biomimetics, if
the desired application closely resembles the conditions of
the biological inspiration source, models have been success-
fully translated across physical spatio-temporal domains. For
example, collective transport of material observed in ants
has successfully been used as a modelling inspiration to
develop control for autonomous robot swarms which collec-
tively transport objects [36,37]. This suggests that extending
such models to biohybrid cases, where robots and organisms
collaborate, could be investigated. Modelling approaches for
self-organizing robots are discussed further in §§ 4.2 and 4.3.3.

2.1.3. Motion and tropism behaviours of plants
In addition to the behaviours of material-depositing animals,
we look at the behaviours of plants that may be relevant for
shaping biohybrid artefacts. Perhaps contradicting common
perception, plants show a remarkable diversity of move-
ments. Apart from passive propagules (detached pieces
riding external forces) and motion due to purely physical pro-
cesses (e.g. hydro-responsive curling in the resurrection plant
[38]), there is a plentitude of physiologically controlled active
growth and motion responses. Active plant movements can
be grouped into:

(i) autonomous, endogenously controlled movements;
(ii) externally triggered non-directional responses (i.e.

nasticmovements), where stimulus location is irrelevant
for response; and

(iii) externally triggered directional responses (i.e. trop-
isms), where stimulus location determines the
direction of growth and motion, see example in
figure 1a.

Of the autonomous movements, the most universal is cir-
cumnutation, which occurs in elongating tissues of all plants.
This behaviour, whereby tissues wind around their mean
growth direction, is most notable in climbing plants that
wind around a support, such as the common bean or morn-
ing glory [39–41]. This basic motion interacts with other
motion behaviours, especially irreversible tropisms involving
growth. Nastic movements are typically fast and reversible
responses where direction is incidental, such as the closing
of a venus’s fly trap regardless of the excitement direction
[42]. Because of the context of applying robot–organism inter-
action to construction, we focus on the directional tropisms of
plants, reviewed below. In natural settings, many of these
responses occur simultaneously, with the strength of
each response weighted differently according to species,
developmental stage, tissue and situation.

Tropisms are directed growth responses guided by stimuli
and enacted through the plant hormone auxin. Plants react to
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a variety of environmental cues with tropic movements, par-
ticularly at the roots [43–45]. Tropic changes in growth
direction occur by redistributing concentrations of auxin, trig-
gering anisotropic growth and thus inducing curvature.
Plants employ gravity as a primary spatial cue to orient
their growth, via gravitropism. Stems generally grow against
the gravity vector, while roots grow along it. Lateral roots,
branches, or leaves often keep the gravity vector at a constant
angle to their growth direction. Gravity is sensed in regions
near growth tips (of shoots or roots) via subcellular statoliths
[46], ultimately leading to anisotropic expansion and division
of cells, causing directional re-orientation [47]. Even small
gravitational forces (as little as 0.1 g) can produce profound
effects on growth patterns (cf. wheat seedlings, [48]).

Plants react and adapt to mechanical impacts on all scales
[49–51], from stretch-activated ion-channels in cell mem-
branes to wind-swept trees minimizing surface of exposure
[52,53]. Although gravity is a type of mechanical stimulus,
the sensing and signalling pathways for gravitropic responses
only partially overlap with those for other mechanical impact
responses [54]. In general, mechanical forces provide plants
with information about their environments and themselves,
allowing for adaptive behaviour [55]. Thigmotropism (touch-
guided growth) can readily be observed in root tips growing
along the edge of dense soil clumps, assessing and following
the penetrability of the material while still generally satisfy-
ing their gravitropism [56,57]. Another thigmotropic
mechanism, common in climbing plants, helps tendrils coil
quickly around objects they touch using ionic signalling
and differential turgor-changes. If the stimulus is only transi-
ent, tendrils can uncoil again. However, if irreversible
responses (growth and lignification) have already occurred,
the coiling can no longer be undone [58,59].

Plants perceive light wavelengths from UV-B to far-red
(280–750 nm), incorporating it in a number of ways. For
example, the incident direction and duration of photo-
receptor exposure is used to help time key developmental
decisions and to continuously direct growth to exploit the
most promising local light situation [60–62]. Additionally,
light in the visual spectrum (400–700 nm) is a necessary
food staple of plants and is absorbed via photosynthesis
[63–65]. Concurrently, phototropism directs growth trajec-
tories relative to the incident angle of light, for which the
typical sensing mechanism is well-characterized. Blue light
(and to a lesser extent UV light) excites membrane-bound
proteins, relaying the signal to the cell or to responding tis-
sues further away. This again leads to the same
redistribution of auxin concentrations, and subsequently ani-
sotropic growth [66–68]. Phototropic responses and their
intensities vary largely across species, developmental
stages, and tissues. For instance, some climbing plants will
temporarily employ skototropism (growth towards shade) to
find a support to climb, by growing towards the darkest
spot, but not necessarily away from the brightest. There are
also reversible directional responses to light, such as the
light-stimulated movement of leaves [69,70] or the famous
heliotropic movement of young sunflowers before the
flower opens [71].

Being photosynthetic organisms, actively avoiding shade
is a major benefit to plants. They have evolved complex strat-
egies to manage shade or potential shade by harnessing their
full arsenal of light receptors [72]. These strategies include the
avoidance of projected future shade from nearby competitors
by triggering the well-researched shade avoidance syndrome
(SAS) [73]. This response is triggered by spectra enriched in
far-red (and possibly green: [74]) light, a good indicator of
the proximity of chlorophyll-bearing organisms. Mechanical
stimulation and plant-emitted volatile chemicals can also
feed into this response [61,73]. It usually results in elongated
stems and in petioles with reduced branching and root
growth. Meanwhile leaves tilt upwards (hyponasty) in an
attempt to outgrow competitors. Much less is known about
shade-tolerance mode, which is employed by plants growing
under a dense canopy to cope with long-term shaded con-
ditions. Typically, this response leads to an increase in
specific leaf area (SLA), an optimization of photosynthesis
for low-light conditions, and greater physical defence of
leaves [75].

Chemotropism (chemically guided growth) has long been
known in roots, which sense a plentitude of chemicals and
are seemingly aware of local and global needs [76]. In
shoot tissues, chemotropic growth has been shown in the
parasitic dodder, as it seeks and selects host plants in a
dark environment [77,78].

Plants control which tissues follow which environmental
cues, as well as the timing and magnitude of response. In this
way, a certain stimulus can influence or fully override the
direction growth would otherwise follow, according to fac-
tors like nutritional status [44]. The development of a
climbing bean is an illustrative example of this concept.
First, the germinating bean shoot grows against gravity, but
towards (blue) light. Soon, autonomous circumnutational
winding sets in, allowing the plant to use its sensing machin-
ery to assess the environment in much higher spatial
resolution [79], while increasing the odds of hitting and encir-
cling a support. If that occurs, thigmotropic cues help the
bean wind around the structure, while the other tropisms
are still present. More favourable light regimes allow the
bean to climb supports at more horizontal slopes, while
both light and gravity positively influence the circumnutation
radius. Finding a support triggers a change in development
as the plant is relieved of the need to mechanically support
itself [39,58,78]

All of these processes and sensing strategies are at the dis-
posal not only of herbaceous species like bean, but of self-
supporting woody species. Such species have been used in
the domains of architecture and plant shaping (see §3.3) to
build up adaptive living support structures over years or dec-
ades. The guidance of woody species through the stimuli and
tropisms described here, rather than through manual
manipulation, could be investigated. Beyond using the
plants’ natural growth and motion behaviours, the genetics
of plant development are increasingly becoming understood
[80], opening routes to ‘programming’ plants for functional
applications like construction.
2.1.4. Modelling plant growth and motion
A generic formalization that models the comprehensive bio-
logical phenomena of plant growth and motion across
species does not yet exist [81,82], but the many approaches
described in the literature are extensive, diverse and sophisti-
cated. Many models have been proposed (cf. reviews in
[53,83–87]), ranging from abstract geometric models to
detailed biological models of the motion behaviours
described in §2.1.3. Overall, we can roughly group the
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examples in the literature into the categories of (1) abstract
models or grammars inspired by plants, (2) computer
graphics models for plant visualization and (3) biological
models of observed plant dynamics. Though the topic of
plant modelling is too broad for us to comprehensively
describe, in this subsection we review some highlights from
these categories, focusing on relevance to biohybrid robots.

Arguably the most prominent type of abstract model or
grammar inspired by plant development is L-systems
[88–90]. An L-system is a formal language with a parallel
rewriting mechanism where a set of context-free generative
rules are applied to a set of symbols starting from an initial
seed. Many variations of L-systems are described in the litera-
ture, mostly with the purpose of extending the system to react
to environmental factors during development. In the
approach of [91], the symbols of the L-system are agents of
different types and their interactions and dynamics are
defined by a swarm grammar. Others have introduced the
concept of virtual plants explaining the development of
plants interacting with the physical and biotic environment
[92]. Some of the other methods of modelling an individual
plant’s morphogenesis are proposed by Bell [93] and Niklas
[94], complemented by the approach of [95] for a plant’s
motion. Some models are introduced to capture other aspects
of growth in plants. For example, the approach of [96,97] uses
a swarm intelligence approach to model morphogenesis,
inspired by plant resource distribution in response to
environmental factors. Many of these models could be inves-
tigated for the control of self-organizing robots in a biohybrid
system, particularly in combination with approaches dis-
cussed in §§ 4.2 and 4.3.3. They might also be extended for
integration with biological plant modelling data, as [98]
explore by integrating L-systems with multi-scale tree graph
(MTG) data structures, a common multi-scale representation
of plant architecture in biological sciences.

Modelling plants is an expansive and relevant topic in
computer graphics and animation. One general approach
uses generative models, such as the abstract models and
grammars described above, to simulate shape and develop-
ment of plants, reaching desired shapes by tuning
parameters (e.g. [99–101]). Another approach takes a hand-
drawn sketch or an image of a plant as generative input
and uses it to construct a visually realistic three-dimensional
(3D) model. In sketch-based modelling (e.g. [102,103]), a user
draws a sketch of the plant and the system approximates par-
ameters of a base model in order to construct the 3D plant
shape. In a similar approach (e.g. [104]), sketch gestures
from the user interact with the plant model to steer and
shape it with simple brushstrokes. These sketch approaches
can be combined with self-organizing models (e.g. [105])
and could be investigated in the context of the human–
biohybrid interfaces discussed in §4.4. In image-based
modelling, images of real plants are processed by methods
of computer vision and image processing, and an optimiza-
tion method infers the parameters for a graphical model of
the plants. For example, [106] use a differential evolution
method to retrieve a plant model from the real images
taken from the trees, incorporating its growth, sway in the
wind, and addition of leaves. A similar method on the
forest scale is reported by Zamuda & Brest [107], while
[108] present a different extension using a laser scan rather
than image. Though these approaches currently focus on
computer graphics, they could potentially be investigated
for extension to data-driven models of plant response to
stimuli in biohybrid set-ups, similar to the simple approach
of [109] described below.

Biological models are relevant to the application of bio-
hybrid robots, especially if they can be used to predict or
simulate a plant’s response to specific robotic stimuli. We
are not aware of any existing models that can universally
fulfil this need when engineering biohybrid systems with
plants. Ad hoc approaches to this problem (e.g. [109,110]) con-
struct a data-driven model by image processing time-lapse
records of a certain species in a given set-up, from a few
initial experiments. More generalized approaches could be
investigated, building from a variety of models in plant
science literature. Though many approaches exist for agricul-
tural purposes to improve crop yields (see example review by
Malézieux et al. [111]), these are not likely to extend to the
application of construction. Other plant science approaches,
however, focus on the growth patterns, trajectories and bio-
mechanics of individual plants, and are therefore adjacent
to the engineering task of steering and shaping growth
through automated robotic stimuli for biohybrid construc-
tion. Arguably the most relevant for this engineering
application are unified models of several tropisms (see
§2.1.3 for description of tropisms) such as that presented by
Bastien et al. [112], or comprehensive models of growth in a
specific species (e.g. [113]). Other relevant approaches focus
on a variety of topics, including generalized measurement
of growth volume [114]; image processing for spatio-temporal
leaf and root patterns [115]; genetic impacts on growth trajec-
tories [116]; impact of photosynthesis patterns on growth’s
response to resources [117]; geometry of nutation and its
relation to growth dynamics [41]; and building a framework
for simulation of growth and development [118].

2.2. Robots that interact with organisms
One approach to biohybrid robotics described in the litera-
ture is to use engineered tissues as part of the machine
[119,120]. In this review focused on construction as appli-
cation, we review robots that influence intact organisms, as
we are interested in their behaviours of depositing or grow-
ing building material. Robotics that incorporate biological
organisms can have any of the following interaction types:

(i) microscale (i.e. coupling with individuals),
(ii) mesoscale (i.e. interaction with groups, as artificial

agents or via local stimuli), or
(iii) macroscale (i.e. globally influencing environment).

Of the below robots interacting with animals, not all are
with organisms that are useful for construction. However,
their approaches to interaction could be investigated for
animals with material-depositing behaviours.

2.2.1. Coupling with individual animals
Today’s technology fails in delivering centimetre scale robots
which are able to perform autonomously and effectively in
unknown dynamic environments. In contrast, natural insects
are able to easily navigate in most environments while success-
fully maintaining control and stability. Therefore, as a
compromise, a biobiotic approach (i.e. cyborg system [121])
could be followed, allowing thewireless control and navigation
of insects to perform meaningful tasks in such environments.
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For example, cockroaches with backpack systems are manoeu-
vred wirelessly to perform line following behaviour using
neural stimulation [122], and augmented rats could be guided
by visual cues and solve mazes [123,124]. The ZigBee enabled
backpack system is equippedwith a tissue-electrode bioelectrical
coupling system which insures safe electrochemical stimula-
tion. Erickson et al. [125] further investigate the locomotion
response to various degrees of neuro-electric stimulation on
the Madagascar hissing cockroach (Gromphadorhina portentosa).
Investigation has also been done for bio-machines (i.e.
mechanical cyborgs), where sensing or actuating in a robot is
accomplished in part by biological tissues; [126] have shown
robot propulsion with frog muscle tissue.
J.R.Soc.Interface
16:20190238
2.2.2. Interaction with groups of animals or environments
Animal behaviour as a response to events in the environment
or to local interaction between group members has been
modelled by several methods, described above. Robotics
approaches can allow further investigation of animal behaviour,
by replacing swarm individuals with biomimetic robots and
then establishing cause-and-effect interaction sequences. The
ASSISI Project (Animal and robot Societies Self-organize and
Integrate by Social Interaction) [127], introduced a biohybrid
society composed of animals (e.g. fish and honeybees) and
robots. First, the robots interact with the animals, learning
their behaviour and adapting to it in order to be socially
accepted. Then, they feed information into the society through
physical channels, influencing the system to move towards
desired states. Robots and animals can make collective choices
in their habitats, while the robots couple separated habitats by
sharing information between them [128].

In one approach, [129] develop autonomous robots inte-
grated into groups of live cockroaches to influence collective
decision-making. The robots were designed to exhibit similar
behaviour to cockroaches and were coated with a chemical
blend to bear an acceptable chemical signal. In this work, the
robots were able to introduce bias into the decision-making
process by influencing the cockroaches into aggregating
towards a less favourable shelter. da Silva Guerra et al. [130]
follow a different approach for physical acceptance within
living crickets (Gryllus bimaculatus). By installing decoys (live
cricket heads) on the robots to increase the acceptance and
allow for proper interaction, the robotic crickets were able to
trigger specific insect behaviours by performing certain
repeated movements (e.g. courtship or agonistic behaviour).
Also, in the Chicken Robot project [131], a mobile robot
(i.e. PoulBot) was developed to collaborate and control a
group of chicks. Based on a learned filial imprinting
model, the robot was able to integrate and show leadership be-
haviour using acceptable movement patterns and appropriate
emitted sounds.

To investigate interaction with marine animals, [132]
construct a robotic fish (stickleback Gasterosteus aculeatus
L. replica) which can be remotely controlled to move around
in a fish tank. The robotic fish was able to exhibit leadership
behaviour by recruiting a single fish from a refuge, and by
initiating a turn in singletons and in groups of 10. An interest-
ing observation is that the individuals would respond to the
robotic fish to a greater degree than to others. The reasons
for this could be the behavioural model (i.e. the robotic fish
moves faster than other fish and without stopping) or posi-
tioning (i.e. the presence of the robotic fish at the front of the
group). In similar work [133], see figure 2b, experiments
were conducted implementing the following behavioural
patterns with guppies (Poecilia reticulata): swarm following,
integration, predator, and recruitment behaviours. Interest-
ingly, a robotic fish was able to recruit a group of fish to the
non-favourable area at the centre of the tank. Executing a
sequence of behaviours (first integration then recruitment)
helped the robotic fish to be integrated and accepted within
the swarm, hence, succeeding in its recruitment mission to
the desired target points. Later, [136,137] investigate accep-
tance of the robotic fish within the swarm in further detail.
The results indicated that natural appearance and motion
significantly increases the acceptance level of the artificial
individual. Hence, the precise modelling of animal behaviour
and individual characteristics is crucial. Along this line of
work, [138] develop a robotic fish (zebrafish Danio rerio
replica) which can beat its tail with different frequencies and
amplitudes. The experiments concluded that the tail beating
rate increases the acceptance level of the robotic fish within
the shoal.

The safety of both animals and robots is important within
biohybrid environments. The classical robotic task of collision
avoidance was re-approached by Gribovskiy & Mondada
[139] and Gribovskiy et al. [140] using methods such as
fuzzy control with the constraints of the new systems. Inter-
esting tasks for this system are mapping and exploration
[141] where the topological information about an unknown
environment is obtained based on local interactions without
localization. Whitmire et al. [142] follow an acoustic approach
where the biobots are equipped with a microphone. The
swarm of biobots was able to localize a sound source
which allows further investigation in search and rescue appli-
cations. In a similar context of search and rescue missions, the
concept of an invisible fence composed of biobots as a reliable
wireless sensor network is introduced by Latif et al. [143].
Also, the approach allows the biobots to guide each other
towards light sources in order to charge their batteries
using solar energy in extended mission durations. Yang
et al. [144] introduced a protocol for manoeuvring spiders.
The spiders were steered successfully in the left or right direc-
tions using electrical simulation. This work is considered an
important step towards creating a spider biorobot.

Research has also dealt with technological intervention at
the scale of full ecosystems, via distributed sensing, tracking,
and monitoring of wildlife [145], including animals that can
exhibit self-organizing behaviours in groups, such as birds
[146,147]. Beyond monitoring, the restoration of overall eco-
system health via mobile robotics has been proposed, to
increase biodiversity and combat desertification [148].
2.2.3. Coupling with individual plants
Robot actuators have long been developed to handle or har-
vest individual plants or organs in greenhouse settings, cf.
[149,150]. Recent developments trend towards deeper inte-
gration. Technological coupling with plants to form
biomachines (i.e. botanical cyborgs) has been explored for
sensing, display, and actuating [151]. One way of interacting
with plants is via their chemical and electrical signals
[152,153], which perform even long-distance communication
[154]. Robotic effects on plant signalling are used in plant
science research to understand physiological behaviours
[155]. Physiological responses of the plant to the environment



(a) (b)

Figure 2. Two approaches to interaction between robots and natural organisms. (a) A robot interacts with plants by providing directional light stimuli, as seen in
[134,135]. Image by authors. (b) A robotic fish interacts with a group of natural fish as an artificial agent in [136]; image from [136] and used with license. (Image
reprinted from fig. 1d of the Royal Society Open Science paper of Bierbach et al. [136], DOI, open access. Used with Creative Commons license CC BY 4.0. Authors
holding the image copyright approved the license at publishing.) (Online version in colour.)
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have been suggested as a basis for bio-sensors or phytosen-
sing (where the environment can be sensed indirectly via
the plant). The PLEASED project uses plant roots as an
organic approach to a distributed sensor network [156],
while a plant and mobile robot pair [157], and the flora robot-
ica project, use the plant as a sensor to inform devices [8].
Plants as bio-sensors has become a developed research
topic for environmental monitoring [158], and engineered
plants have been proposed even for especially challenging
environments [159]. Plants have also been used to power
very low-voltage devices [160]. By infusing organic conduc-
tive polymer into a cut plant’s vascular system, a plant has
even been used as functional circuitry [161].

Research on steering the morphological development of
individual plants is rare, as agricultural concerns, for
instance, do not motivate such studies. However, there is a
line of research on shaping plants that develops an auto-
mated process of evolving controllers that direct the growth
of a single plant to certain goals [109,110,162,163]. Machine
vision was used to understand the behaviour of single bean
plants in reaction to external light stimuli, and to construct
data-driven models of the plant’s growth and motion. The
models were used to control light stimuli and steer the
plants to predetermined targets, adaptive targets, and
around obstacles—in simulation and on real plants. This
approach is extended to robots with distributed control, pro-
viding stimuli to guide the decisions of climbing plants,
between several growth path options [134,135], see figure
2a. Similar methods applied on a much larger scale could
drive more complex construction processes with plants.

2.2.4. Interaction with groups of plants or environments
A plant-inspired robot has been developed in the Plantoid
project to mimic a root system [164], in research towards
soil monitoring. As root systems of plants use forms of indir-
ect communication, similar plant-inspired robots could
feasibly integrate into a group of real plants to influence
their behaviours, similar to approaches for robot interaction
with social insects described above. Automated vehicles
and robots are commonly used for industrialized agriculture,
automated greenhouses, and home gardening (e.g. [165–172])
for an expansive range of tasks (see [173]) due to their pre-
cision or cost efficiency in monitoring and supporting plant
growth [174,175]. Automation approaches have been devel-
oped even for especially challenging tasks like weed control
[176]. Guidelines have also been introduced for the design
of plant nursing robots [177]. Computer vision and other
imaging techniques for monitoring and 3D modelling of
plants are also well-developed [178–180]. Steering of plant
behaviours is again less explored. However, groups of
plants steered by stimuli have been proposed as interactive
displays for user devices [181,182].
3. Hybridizing buildings and biology
The majority of existing biohybrid construction uses some
combination of biological organisms, manual manipulation,
and static scaffolds or moulds. These generally hybridize bio-
logical and mechanical elements, without incorporating
automation. Examples that include robotic elements are lim-
ited, and usually focus on autonomously maintaining
organism health, rather than steering motion or shaping mor-
phology. Current bio-mechanical hybrid structures can be
roughly organized into the following categories:

(i) static mechanical scaffolds that support biological
organisms;

(ii) biological energy sources in buildings;
(iii) plant growth shaped into load-bearing elements; and
(iv) forming building components from amorphous living

material.

When shaping material into a fully equipped long-term
occupancy building, the roles to be materially performed
include not only the structural system but crucial building
envelope functions (e.g. thermal insulation, moisture barrier,
utility delivery). In this section, we review examples where a
biological element fulfils one or more of these roles. Because
infrastructural roles such as light emittance are often coupled
to a material role such as utility delivery, the distinction is not

https://royalsocietypublishing.org/cms/attachment/bcd28143-184e-4e55-aeee-8b700d1f57ef/rsos181026f01.jpg
https://doi.org/10.1098/rsos.181026
https://creativecommons.org/licenses/by/4.0/deed.en
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always clear. Therefore, the works here include some
examples that, though primarily infrastructural, we consider
to be integrated into material building components in a
way that might impact artefact shaping.

On one hand, in examples of static structural scaffolds
hosting organisms or of building components that cultivate
energy sources, the grown or deposited biological material
typically does not carry the primary structural load, but
rather contributes to a building envelope role. On the other
hand, in examples of plants shaped into structural elements
or of amorphous material shaped by moulding, the biological
material often acts as the primary structural system, with
envelope roles sometimes fulfilled either by artificial
elements or biological ones. To realize biohybrid living build-
ings, the approaches described below could be individually
extended, or potentially could be combined together in a var-
iety of ways, such that plants, material-depositing animals,
and microorganisms might coexist in a single living building.
This section concludes by identifying opportunities in the
reviewed bio-mechanical systems for extensions that integrate
robots as partners in shaping biohybrid artefacts.
90238
3.1. Static structural scaffolds that host biological
organisms

Structural scaffolds that incorporate organisms are organized
such that artificial elements form a mechanical scaffold upon
which the biological elements can grow or deposit material.
The mechanical scaffolds are static, steering biological
growth or deposition through their predetermined shape
and arrangement of components. The scaffolds leave voids
for the biological elements to fill, or form paths or surfaces
for them to follow. After biological material has been
added, the mechanical scaffolds stay in place as a permanent
part of the structure.
3.1.1. Scaffolds for animals depositing material
In structural systems involving animals that exhibit material-
depositing behaviours, mechanical scaffolds are designed to
steer deposition patterns specific to the species used. Silk-
worms are guided by density in the scaffold, while
honeybees are guided by voids. In the Silk Pavilion project
by Oxman et al. [183,184], shown in figure 3b, a domed
room-sized scaffold forms the substrate for silkworms to
deposit their threads. The scaffold comprises frame modules,
each of which is prefabricated and robotically wound with a
sparse pattern of silk threads. When released, the silkworms
seek to patch gaps in the pattern of existing silk threads, as
they naturally would for cocoon-building. The silkworms
do not cover the entire scaffold in dense silk fibres—rather,
their deposition is guided by density of the robotically
wound threads, as they are not able to cross gaps larger
than their body size. Therefore, intentional windows in the
sparse pattern of the scaffold are maintained when the silk-
worms fill in their dense matte of fibres. In the Co-occupied
Boundaries project by Ilgun & Ayres [185], an object-sized
3D printed polymer scaffold is shaped to leave voids for
honeybees to construct their comb according to their natural
behaviours, as shown in figure 3a. The printed polymer fila-
ment forming the scaffold is dense, but maintains gaps large
enough for honeybees to pass through, giving them pathways
to all sides of the scaffold. The rough material texture of the
scaffold and the sloping angles of its sides create surfaces to
which the honeybees can easily attach comb. The placement
of comb is guided by creating large voids with two or more
sides of enclosure. In both of these examples, the mechanical
scaffold must be structurally sufficient to support the load of
the biologically placed material. In the case of the [183,184]
Silk Pavilion, the fibres placed by the silkworms are not self-
supporting and cannot serve a structural role on their own.
In the case of the [185] Co-occupied Boundaries, the honeybee
comb is self-supporting once formed, although it requires a
scaffold for initial placement. The structural properties of
the comb are not further investigated by Ilgun & Ayres
[185], but due to the wax material of comb, it is unlikely
that it would be able to support large external loads.

Material deposited by animals, while often capable of ser-
ving some structural role on the scale of the associated
animal, is unlikely to be stiff enough on its own to carry
building scale loads or human occupants. Stiffening methods
such as resin impregnation could be investigated for these
materials to prepare them for a structural role, but this may
be a prohibitively inefficient construction process. Alterna-
tively, these materials could be investigated for non-structural
roles in building construction, such as thermal insulation or
façade cladding.

3.1.2. Scaffolds for microorganisms
Microorganisms are integrated with mechanical scaffolds as
part of structural systems, as well as for other functional
roles such as the cleaning of pollution. For structural systems,
[186] cultivate bacterially produced cellulose on 3D printed
polymer scaffolds. The bacterial cellulose grows to fully
coat the surfaces of the scaffold, and additionally forms
membranes across gaps. Similar to the silk fibres described
above, these cellulose membranes are unlikely to bear build-
ing scale loads, but might be investigated for other roles
such as thermal insulation or moisture membranes. In a
different approach, mycelium fungus is investigated for soil
decontamination by Sollazzo et al. [187] in their Symbiotic
Associations project. The mechanical scaffold, in this case,
does not serve a structural role for a building, but exclusively
supports the growth of the fungus. Though not a direct part
of the typical construction process, this approach could be
investigated for use on the larger building site or as part of
a structure’s foundation.

3.1.3. Scaffolds hosting plants or habitats
The combination of scaffolds and plants may be generally
familiar through gardening practices, such as the use of a trel-
lis to host a climbing plant. For buildings, basic mechanical
scaffolds on façades and roofs have been used extensively
in building construction to host plants as green walls and
green roofs [188,189]. This strategy is exemplified in façades
designed by Patrick Blanc, as described by Gandy [190].
The plants, and especially the soil mass required to host the
plants, serve a substantial thermal insulation role and may
also work to mitigate the urban heat island effect [191] and
manage urban stormwater [192]. The full range and limit-
ations of the economic and environmental aspects of green
roofs and other green infrastructure are for instance examined
in [193]. Examples in the literature work to advance the flexi-
bility or functionality of green walls approaches. For instance
[194] investigate 3D printed solutions for suitable growth



(a) (b)

(i)

(ii)

Figure 3. Natural material-depositing behaviours of animals in response to their environment. (a) Social insects such as bees will naturally build structures that are
adaptive to their environment, for instance by filling gaps with honeycomb; image used with license. (Image retrieved from Wikimedia Commons, from username
Onésime. Used with Creative Commons license CC BY-SA 3.0. Image copyright holder chose and approved the license at upload.) (b) Silkworms constructing a domed
pavilion, by depositing material according to the shape of the mechanical scaffold in their artificial environment [183,184]. Top and bottom images both used with
license. (Top image and bottom image both retrieved from Wikimedia Commons, both from username Sj. Both images used with Creative Commons license
CC BY-SA 4.0. Image copyright holder for both images has approved the licenses, verified by OTRS ticket number 2016072510000875.) (Online version in colour.)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190238

9

substrates, achieving flexibility in geometry and in fabrication
processes. Another approach to increase flexibility is taken in
the Plug-In Ecology project by Joachim [195], where plants are
individually hosted in modular building components that
can discretely pop in and out of a larger structure. Besides
flexibility, the functionality of plants on mechanical scaffolds
is increased in the Eco Boulevard in Vallecas, by Ecosistema
Urbano et al.1,2 and in the Baubotanik Plane Tree Cube
Nagold, Baubotanik Tower, and Baubotanik House of the Future
by Ludwig et al.3,4 and Ludwig & Schönle [196], in all of
which trees are planted upon an open structural frame that
is either temporary or permanent and are grown to fill in
gaps and form the façade of the building or to form the
load-bearing structure, rather than be added to an existing
fully enclosed façade. Providing an alternative functionality,
although not implemented in a building, the floating artificial
islands in the [197] RiverFIRST project act as a simple scaffold
like that of a green roof, to support a range of plants and ani-
mals present naturally in local habitats, with the aim of
increasing biodiversity (cf. urban biodiversity, [198]). The sys-
tems described above, and similar, typically incorporate some
robotic elements for automated irrigation, monitoring, and
maintaining health of the plants. However, none of the afore-
mentioned examples, or similar green walls we found in the
literature, use their robotic elements to steer the location or
shape of growth.
3.2. Biological energy sources in buildings
Cultivation of algae or microorganisms as energy sources in
buildings is an approach that typically incorporates auto-
mation to manage the infrastructural system and keep the
organisms healthy. Some examples are integrated into build-
ing components in a way that impacts envelope functions or
artefact shaping.
3.2.1. Growing algae for biomass
Algae are systematically cultivated and harvested for biomass
in dedicated photo-bioreactor plants, as reviewed by Proksch
[199]. Integrating this process into buildings allows the culti-
vation to occur on its site of eventual use, cutting down on
transportation energy or on distribution losses. A fully oper-
ational example of integration can be seen in the [200] BIQ
Algae House by architect Splitterwerk, shown in figure 4. The
algae façade panels by Elsayedet al. [201] act asmobile shading
devices for the building interior, in addition to their role of
continual energy production. This approach of designing the
integrated algae cultivation system to serve additional stan-
dard building functions is also explored by Decker et al.
[202], in the relationship between algae density in the panel
and interior light levels and distribution. Both of these
examples use rigid façade panels that are made to be mounted
in a specific way. Systems with greater flexibility in use case
allow cultivation in interiors of buildings or as part of urban
infrastructure. The HORTUS project by Pasquero & Poletto
[203] cultivates algae indoors and incorporates user inter-
action as part of the CO2 and oxygen ventilation loop. The
Urban Algae Canopy Module, as described by Ednie-Brown
[204] prototypes algae cultivation modules for use in public
plazas and other urban infrastructural spaces. The modules
can provide an additional function of shading, similar to the
façade panels described above, but do so in the form of a
canopy over open outdoor space.

https://upload.wikimedia.org/wikipedia/commons/f/fd/Abeilles_et_ruches_13.JPG
https://commons.wikimedia.org/wiki/User:On%E9sime
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://upload.wikimedia.org/wikipedia/commons/f/fa/Silk_Pavilion_silkworm2.jpg
https://upload.wikimedia.org/wikipedia/commons/d/df/Silk_Pavilion_silkworms_at_work.jpg
https://commons.wikimedia.org/wiki/User:Sj
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://ticket.wikimedia.org/otrs/index.pl?Action=AgentTicketZoom%26TicketNumber=2016072510000875
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Figure 4. The BIQ Algae House [200] with algae façade panels by Elsayed et al. [201] that cultivate biomass for energy production. Left and right images both used
with license. (Left image, titled ‘IBA Hamburg BIQ (2).nnw.jpg’, and right image, titled ‘IBA Hamburg BIQ Fassadenteil mit Mikroalgen.nnw.jpg’, are both retrieved
from Wikimedia Commons, both from username NordNordWest. Both images used with Creative Commons license CC BY-SA 3.0. Image copyright holder for both
images chose and approved the licenses at upload.) (Online version in colour.)
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3.2.2. Microorganisms as light sources
Bioluminescence has been investigated for infrastructural
applications [205], including bio-lighting in cities and a few
preliminary studies for bioluminescent building components.
In the Biolamp project by Genetic Architectures Research
Group & Estévez5,6 small discrete containers of biolumines-
cent bacteria are integrated into a domestic interior to test
whether useful light levels can result. By including a high
density of containers, a low but useful level of ambient
green light was achieved, but keeping the bacteria healthy
in such a decentralized organization was considered too chal-
lenging for the method to be pursued further [206]. The
Microbial Home biolight by PHILIPS7 addresses this bacterial
health challenge by consolidating larger containers in a
single location, and connecting each container to a source
of methane gas from an onsite biodigester [207]. In Biolumi-
nescent Field, a spatial art installation by Burggraf et al.,8

instead of using bacteria with a constant glow, containers
that can be manually agitated by users are filled with micro-
organisms that glow only when disturbed [208]. Providing
robotic stimuli to trigger bioluminescence in buildings
when desired, rather than uniformly, could be investigated.

3.3. Guiding plant growth into load-bearing elements
Many plant species do not require external support, and their
property of providing material with low resource cost can
easily be seen as advantageous for building construction.
However, it is less automatically clear that plants can fulfil
structural roles for occupant loads and multi-storey buildings.
Existing examples of guiding or constraining plants into struc-
tures mostly have been made by handcraft practitioners or
through indigenous traditions, partly because grown struc-
tures that are substantially large at present must have been
begun years or decades ago. These approaches include manu-
ally rearranging roots, weaving stems, constraining stems into
bundles, joining stems through grafting, and constraining
stems onto temporary moulds. As a whole, these examples
give evidence for the ability of plants to perform certain
structural or building envelope roles. Newer studies in scien-
tific or engineering fields extend these handcraft approaches,
for example by embedding permanent mechanical elements
into natural growth to perform supplementary roles (e.g.
floor plates, handrails), or by using robotic elements to
guide or shape plants through provision of stimuli.

3.3.1. Manually guiding growth in the Living Root Bridges
Several examples of building-sized structures, functioning
successfully for occupant loads, can be seen in the construc-
tions termed Living Root Bridges in Meghalaya, India
(figure 5). As described by Shankar[209] and Chaudhuri
et al. [210], these bridges, made from live plants over a
period of years or decades, are demonstrated to structurally
outlast steel suspension bridges in the area due to high
levels of moisture and dynamic loads such as flash floods.
According to [209], the Living Root Bridges, once constructed,
can last for centuries with minimal maintenance, and are
even used in the area to replace failing cable bridges. Shankar
[209] documents the following process of light manual gui-
dance of natural growth by which the bridges are formed
over a period of 15–30 years: first, a hollowed tree trunk sup-
ported by bamboo scaffolding is used to guide young, pliable
Ficus elastica roots across a desired bridge location, sometimes
from both sides; second, multiple layers of ficus roots are
guided through the trunk until the combined roots are self-
supporting and the trunk is removed; third, multiple layers
of roots are guided along the bamboo scaffold, until they
too are self-supporting and the bamboo is gradually
removed; finally (or simultaneously with the previous step),
‘dead load’ such as stones, wood planks and dirt are added
to fill gaps and to test the bridge for structural stability.
According to [209], mature bridges can carry loads of up to
35 people.

3.3.2. Mechanically constraining growth
While in their young, pliable state, plant stems can be manu-
ally placed in a desired position, and then mechanically

https://upload.wikimedia.org/wikipedia/commons/b/b6/IBA_Hamburg_BIQ_%282%29.nnw.jpg
https://upload.wikimedia.org/wikipedia/commons/1/1f/IBA_Hamburg_BIQ_Fassadenteil_mit_Mikroalgen.nnw.jpg
https://commons.wikimedia.org/wiki/User:NordNordWest
https://creativecommons.org/licenses/by-sa/3.0/de


Figure 5. One of the Living Root Bridges constructed by the manual rearrangement of root growth over long periods of time [209]; image used with license. (Image
retrieved from Wikimedia Commons, attributed to Arshiya Urveeja Bose. Used with Creative Commons license CC BY 2.0. Image copyright holder chose and approved
the license at upload.) (Online version in colour.)
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constrained in that position. Stable structures can, for
instance, be built with pliable woody species such as willows,
although the individual stems have low stiffness, by perma-
nently constraining the stems in tightly woven patterns or
in large, strong bundles. Over time, the individual plants
sometimes graft with their constrained neighbours, but we
are not aware of any examples where grafting is demon-
strated to give additional load-bearing capacity to bundled
stems. Examples of living willow construction are partially
reviewed by Ludwig [211] and more generally reviewed by
Gale [212] in their respective literature reviews. Gale [212]
notes that the construction methods used for these living
structures are based on ancient Sumerian techniques for
building with cut reeds, currently still used in Iraq. Though
these reed structures use dried plants rather than live
plants, their methods of bending and constraining can be
extended to live willows. Some of the simpler reed structures,
described by Mandilawi [213], closely resemble many of the
living willow structures. However, a significant category of
reed structures—termed mudhifs—are more advanced, able
to serve standard building functions for long-term occu-
pancy. New mudhifs, according to [214], are currently
underway that include water and electricity utilities, allowing
functions such as cooling, refrigeration and internet connec-
tion. Though the mudhifs, historically documented by
Broadbent [214] and analysed by Mandilawi [213], are
made from cut and dried reeds, their construction techniques
could be investigated for buildings made from living plants.

In the existing living willow structures, the woven or
bundled stems form a structural frame, but not a fully
enclosed interior. Two methods are documented in the litera-
ture for adding a façade or canopy to shelter occupants from
wind or rain. One method, for tightly woven living willows,
is to allow the foliage that grows from the stems to cover the
small gaps in the woven structure, as seen in the Living
Willow Tunnel by Gale.9 This does not provide a full enclo-
sure, but can effectively buffer wind or rain if growth is
allowed to mature for several weeks. The method can also
be used for bundled structures, despite the much larger
gaps, by following a longer construction process as seen in
the Hopland Willow Dome by Schaeffer et al.10 In this appli-
cation, as the willows in the bundled structure mature and
grow branches, the new shoots are periodically constrained
in locations where denser cover is desired, until the branches
are thick enough that their foliage can buffer rainfall. A thick
canopy was achieved in the Hopland Willow Dome within six
years of growth, as documented by Calkins [215]. The
second method is to use the living willows as structure
only, and to use typical building materials to shade and
shelter the structure’s interior, as seen in the tensioned textile
roof of the Rostock Willow Church by Kalberer & Strukturen.11,12

In the built examples using these two methods, their respective
canopies provide some degree of shelter, but they are far from
full enclosure for long-term occupancy. By contrast, themudhifs
described above include fully functioning façades and roofs,
with architectural details like columns, vaults, windows and
doors (see [213,214]). The finished mudhifs use exclusively
constrained reeds to form these architectural details, as the
structures can be untied and reassembled on other sites,
according to [214]. These mudhif construction techniques, so
far used only for dried reeds, could be investigated to extend
living willow structural frames into fully enclosed living
willow buildings for long-term occupation, depending on
whether the plants can be kept healthy in such a dense
structure.

Weaving and constraining willow is popular for hand-
craft of living sculpture, furniture, and small building
elements such as fences or garden tunnels [212,216,217].
Larger structures that exist in the literature are constructed
by bundling willow rather than weaving it, and have been
constructed from 1985 onward by Marcel Kalberer and
Sanfte Strukturen, as described by Kalberer & Remann
[218,219]. There are many examples of these Sanfte Strukturen
bundled living willow structures that are of multi-storey
height. These examples have only single-storey occupancy
however, so they do not test the ability of these structures

https://commons.wikimedia.org/wiki/File:Living_root_bridges,_Nongriat_village,_Meghalaya2.jpg
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to support live occupancy loads. Also, the larger of such
structures sometimes include metal poles for structural
reinforcement, according to [212]. The Auerstedt Auerworld
Palast by Kalberer & Strukturen13 had before 2011 success-
fully reached mature growth according to the original
design and was living healthily for a period of time according
to [212], although many of the willows seem to have died and
been removed in 2012, according to the website of the pro-
ject14. A similarly large structure, the Longrun Meadow Willow
Cathedral15 shown in figure 6, was constructed in Somerset,
UK. The most used of these structures has arguably been the
Rostock Willow Church by Kalberer & Strukturen11 described
above for its textile roof, part of the World Horticultural
Exposition in Rostock, Germany.
 R.Soc.Interface
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3.3.3. Joining constrained growths via grafting
Plants that become woody and structurally stiff in late growth
phases can be constrained while they are young, until the
plant has matured enough that constraints are no longer
needed to keep the plant in position. This strategy can
additionally be used with plants that have substantially
more structural potential than willow, but of course, these
species also have a longer growth period to reach maturity.
This method typically incorporates horticultural grafting
[220], induced during the process of mechanical constraint.
After initiation, constraints apply enough pressure that
stems are joined together through growth processes over
time. Examples of such structures have been reviewed in
part by Ludwig [211], Gale [212] and Katola & Goy [221] in
their respective literature reviews. When used to construct
sculpture, furniture, and other smaller elements, this strategy
is often termed arborsculpture or tree shaping, and has been
used to make a wide variety of growths [211,212,221–225].
Besides trunks or stems, it is also possible to keep partial
root systems above ground and shape them, as described
for ficus trees by Golan [226].

Several large sized grafted tree sculptures were con-
structed by Axel Erlandson decades ago [224], and have
thus had time to mature. His Gilroy Gardens Basket Tree16

shown in figure 7b, which comprises several trees woven
together to form a hollow diagrid-surface column, provides
evidence that mature shaped and grafted trees could have
structural success at multi-storey heights. Many grafted
living structures meant to function as buildings or architec-
tural elements have been begun by Kirsch [225], who
according to [212] and [211] has based his process on the
historic patents of [227,228]. The Kassel Waldgartendorf by
Kirsch & Block17 showed some success in its middle
growth phases, documented by Ludwig [211]. The existing
living tree structure that is designed to be functionally closest
to an occupied building is the Ash Tree House by Kirsch,18

planned to have a fully enclosed living roof, fully enclosed
living walls with windows, and several subdivided rooms
[225]. During its middle growth phases, the Ash Tree House
also had preparations added for electrical utilities, according
to [212]. Its design comprises tightly woven trees with only
small gaps between them, meant to eventually graft together
into solid continuous walls. This solid living wall strategy
however challenges plant health, and according to [211]
could not succeed in later phases. A very recently planted
structure, The Patient Gardener by Visiondivision & di
Milano19,20 plans to apply the arborsculpture approach to
construct a two-storey building structurally fit for occupancy.
Its design uses living trees as both wall supports and floor
supports by planning to bend and join the trees through
grafting at mid-height, forming an overall hourglass shape
for the structure. Its growth phases are still too early to pro-
vide evidence for whether its strategy of acute bending will
provide sufficient joint pressure for successful grafting, a
primary concern among arborsculpturists according to [212].
3.3.4. Combining constrained growth with mechanical scaffolds
In contrast to the fully living structures described above, the
literature also includes hybrid approaches, in which con-
strained living plants are combined with mechanical
scaffolds. Two strategies for these hybrid approaches are
documented in the literature, one which uses the mechanical
scaffold as a temporary mould, and one which embeds the
mechanical scaffold into plant tissue and incorporates it
permanently as part of the structure.

For the method of using mechanical scaffolds as remova-
ble moulds, the examples in the literature are the size of
furniture or building components, and plan for the grown
object to be harvested at a certain stage, for processing into
industrial products. Before the stage of harvesting, [229]
strap bamboo onto mechanical profile forms during growth,
constraining them in the shape of a vehicle frame. This
example is not yet extended to the processing stage after
growth. Finished furniture products such as stools, using
young trees strapped to small moulds during growth, have
been made by Chris Cattle for decades, as described by John-
son [230]. Products such as chairs and lamps are made by
Munro & Full Grown [231], using young trees strapped to
reusable industrial moulds in a process that nears mass man-
ufacture [232]. An extension of the mould method is
investigated by Beger et al. [233], using shaped tubes to
direct growth, instead of constraining it fully. Though the
existing uses of moulds are for furniture-sized elements,
and for products that are harvested rather than maintained
indefinitely in a living state, similar moulds could be investi-
gated for larger and longer-term growth, with moulds
applied incrementally or holistically.

The method of embedding mechanical scaffold in plant
stems over time, and thereby creating a biohybrid structural
system, has been investigated for the application of multi-
storey buildings. The Baubotanik Footbridge by Ludwig
et al.21 uses trees as living columns to support a steel platform
and handrail at second-storey height, as shown in figure 7a.
The mechanical platform and handrails maintained their
location and orientation throughout growth, as the stems
only grew radially in the zone where the mechanical elements
were incorporated, according to [234]. Though there were
originally trees planted diagonally as well as vertically, the
diagonals did not maintain health and did not survive
early growth phases. The vertical trees were still healthy 60
years after construction, as documented by Ludwig [234],
and had by that time fully encircled the steel railings at
their attachment points, embedding the railings into the
living trunks. In order to extend these results to taller
multi-storey buildings, the Baubotanik Plane Tree Cube
Nagold and Baubotanik Tower, referred to above in §3.1.3,
were built by Ludwig et al.3,4 In these two, free-standing
steel structures were first built with columns and floor
plates, with the intention to grow trees in a structural frame



Figure 6. The Longrun Meadow Willow Cathedral,15 an example living willow structure, built by permanently constraining the willow in large bundles; image used
with license. (Image retrieved from Wikimedia Commons, from username Geof Sheppard. Used with Creative Commons license CC BY-SA 3.0. Image copyright holder
chose and approved the license at upload.) (Online version in colour.)

(a) (b)

Figure 7. Example methods of combining constrained plant growth with mechanical scaffolds and with grafting. (a) An example growth phase of the Baubotanik
Footbridge by Ludwig et al.,21 where living trees support a steel platform; image used with license. (Image copyright: F. Ludwig. Image provided by Ferdinand
Ludwig, of the Baubotanik Footbridge project consortium,21 and used with permission.) (b) The Gilroy Gardens Basket Tree,16 where several trees were woven
together manually and grafted over time; image used with license. (Image retrieved from Wikimedia Commons, from username Palnatoke. Used with Creative
Commons license CC BY 3.0. Image copyright holder chose and approved the license at upload. Image adapted, as permitted by license.) (Online version in colour.)
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pattern around permanent floor plate perimeters at each
level, until the trees mature enough that they can structurally
support the floor plates and the temporary steel columns can
be removed [234]. The growth on both of these structures is
still too young to provide evidence for multi-level structural
frames from living trees.
3.3.5. Shaping plants by robotic control of stimuli
There are some examples of using robotics to steer the shape of
plant growth, at a size smaller than a room. These systems trig-
ger behaviours in the plants such as phototropism, by
providing stimuli such as a specific spectrum of light. The
behaviours of plants that can be interfaced for robotically
steered control are reviewed in §2. Centralized robotic control
of plant stimuli is explored by Wahby et al. [109,162],
Hofstadler et al. [110] and Wahby et al. [163], using a
purpose-specific model of plant growth combined with
controllers evolved in simulation to predictably steer growth
to two-dimensional geometric targets. In this set-up, the
plant has no mechanical scaffold, but the height to which it
can support itself is not tall enough for building-sized
growth. Steering with such stimuli is extended to distributed
robotic control and larger sized growth [134,135]. In this set-
up, the plants grow along a mechanical scaffold wall and the
shape of their growth pattern is guided by stimuli.
3.4. Forming building components from amorphous
living material

Organisms that produce material or grow to fill available
space on a surface or substrate can be used to form or
strengthen functional building components. Approaches in
the literature include bacterially produced cellulose, growth
of mycelium, and bacterially induced cementation.

https://upload.wikimedia.org/wikipedia/commons/0/0e/Longrun_Meadow_willow_cathedral_in_2011.jpg
https://commons.wikimedia.org/wiki/User:Geof_Sheppard
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Baskettree.jpg
https://commons.wikimedia.org/wiki/User:Palnatoke
https://creativecommons.org/licenses/by/3.0/deed.en
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3.4.1. Cellulose shaped into membranes
Biologically produced cellulose can be shaped into non-load-
bearing membranes that can serve as building shading
devices, moisture barriers, or air flow barriers. For instance,
cellulose produced by bacteria is used by Araya et al. [235]
to create thin translucent membranes that are not load-
bearing but with further development could be used in
buildings to mediate the occupied environment (e.g. daylight
or wind) and can potentially be self-healing. In the Gen2Seat
project by Terreform ONE et al.22,23 bacterial cellulose is used
to grow a thin membrane in its final intended position, cover-
ing a furniture volume [236]. This approach is envisioned by
Terreform ONE et al.24 to be extended to a building-sized
membrane in the art installation In Vitro Meat Habitat, by
use of cellulose or of laboratory-grown cells from animals
[236]. This vision of bacterially produced cellulose formed
directly on a building structure could be investigated for
development.
e
16:20190238
3.4.2. Load-bearing mycelium elements
The growth of fungal mycelium (i.e. mushroom roots) into
load-bearing building components, sometimes termedmycotec-
ture, is seen in several examples in the literature. Mycelium is
grown in rectangular substrate-filled moulds to form simple
bricks, dried when growth is mature, and used to construct a
small vault structure in the installation Mycotectural Alpha by
Ross & Far West Fungi.25 The mycelium bricks made for the
vault failed under a sharp point load but could withstand
substantial forces if the load was well distributed, according
to [237]. Through further investigation, a methodwas patented
by Ross [238] for producing a variety of highly standardized
mycelium bricks structurally reinforced by wood or steel. In
both reinforced and unreinforced cases, mycelium used in a
building envelope can perform thermal insulation functions
[237]. Though these investigations are small in size, a publicly
occupied mycelium structure of building size also exists in
the literature. The partially enclosed Hy-Fi building by The
Living et al.26 is single-storey occupancy of multi-storey
height and is constructed of unreinforced mycelium bricks
joined with fixed connections. Through a combination of
finite-element analysis (FEA) and load-testing bricks with
different combinations of properties (e.g. grow time, substrate,
and fungi nutrients), the bricks were developed to successfully
carry their compression and wind loads for that building
design and site [239,240]. In the above examples, themycelium
bricks are baked before construction, to stop the growth
process. Mycelium building components meant to remain
live after construction, to allow new growth to form, are inves-
tigated by Mayoral [241] in more intricate strut-and-node
shapes. These prototyped live components are not yet tested
for their structural performance, compared to the baked
mycelium components above. Live unreinforced mycelium
bricks are used to construct a small wall in the installation
Mycelium Mockup by AFJD Studio.27 The wall test results
are successful in continued growth after construction, by
which new mycelium growth bonds neighbouring
bricks together and mushrooms grow from the side of the
wall, according to [242]. After the exhibition, the wall is
dismantled and moved to an outdoor site [242] where the
mycelium is intended to contribute to soil bioremediation
(i.e. neutralization of contaminants, see [243]).
3.4.3. Microorganisms and biocementation
Biocementation of soil (i.e. hardening) and bioremediation of
concrete structures (i.e. restrengthening of degraded concrete)
with certain types of bacteria is a well-investigated area of
civil engineering, construction technology, and geotechnical
applications, as reviewed by Pacheco Torgal et al. [244]. In
these applications, the bacteria are not specifically shaped,
but rather act to fill any voids or porosity that occurs in the
material to which they are added. Microbes that induce the
production of minerals through biochemical reactions
can be used to form a biocemented crust on a volume, a
biocemented layer of a specific depth, or an overall biocemen-
tation of an entire monolithic structure [244]. In standard
concrete structures such as buildings, bacteria can be inter-
mixed to seal new cracks as they form, as in the examples
of [245,246], seen in figure 8. Bacteria can also be intermixed
in concrete structures in harsh conditions (e.g. submerged in
seawater or toxic materials) to support continual remediation
and improve the longevity of the structure, as in the example
of [247]. Beyond strengthening concrete, bacteria can cement
undisturbed soil in situ when added to the top of the volume,
percolating down throughout [248]. An extension of this
method is envisioned and modelled by the Computational Col-
loids project [249], in which bacteria are genetically modified
to induce mineral production in reaction to environmental
changes in pressure, forming a self-organizing foundation
for a building.

3.5. Structural modelling of biohybrid buildings
If biohybrid structural systems are to be built for standard
occupation, their features will need to be approved by regu-
latory bodies. Most of the above examples of publicly
accessible structures either might be categorized by their
authors as art installations, or are built in isolated terrain
where governments might not enforce building code regu-
lations. In order to systematically realize buildings for long-
term occupancy with biological elements in a structural
role, the biological portions will need to be demonstrated as
fulfilling structural provisions of relevant local and inter-
national building codes (see [250–253]). Models of structural
behaviour will be challenging for materials that are living
or are biologically deposited directly on site, therefore includ-
ing some degree of unpredictability. In the process of
developing the aforementioned Baubotanik structures, exper-
iments were conducted to modify the structural Young’s
moduli of stems of the used plant species. In these exper-
iments, a substantial variety in stiffness was achieved by
altering environmental conditions during growth [254].

To predict structural performance in living buildings, we
find two categorical approaches in the literature to be evi-
dently relevant, one being FEA and the other being various
artificial intelligence methods. FEA, which is standard
across engineering disciplines [255], is also used in biological
sciences for the study of plant biomechanics, among other
functions [256]. This application of FEA could be investigated
for extension to biological material in buildings, carrying
multi-storey and live occupancy loads. FEA was used, in
combination with material testing, to confirm the structural
behaviour and safety of the aforementioned Hi-Fy pavilion’s
fungal mycelium brick structure, in a way that was sufficient
to be accepted for temporary public occupancy [239,240].
Further pursuing this approach with the goal to establish
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Figure 8. Microbially induced deposition of calcium carbonate for self-healing of cracks in concrete [246], an example of biocementation. Images from [246] and
used with license. (Images reprinted from fig. 7 (subfigures a and b) of the Frontiers in Built Environment paper of Farrugia et al. [246], DOI, open access. Used with
Creative Commons license CC BY 4.0. Authors holding the image copyright approved the license at publishing.) (Online version in colour.)
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biological building blocks in construction, we propose that
biohybrid organisms be comprehensively specified in terms
of expected environmental conditions in relation to structural
and other properties such as amount of bio-material pro-
duced or shadow cast. The resulting database could be fed
into a general, centrally maintained registry, similar to the
one set-up for amino acid chains and proteins for synthetic
biology by MIT’s international competition on genetically
engineered machines (iGEM). One step further, also consider-
ing robustness that can result from sets of biohybrid agents
working together, biohybrid (sub-)systems could be speci-
fied accordingly. The robots, which can be well-specified to
begin with, could also fulfil the task of measuring the
plants’ proper development in accordance with the provided
registry information and communicate their findings like
sensor networks throughout the system and to the human
user, in case interference is required.

Though the mycelium in the example above was killed
before the bricks were aggregated, the unknowns of the
material still caused substantial variation in material per-
formance during the building’s short lifespan. After heavy
rainfall, moisture affected the stiffness of the mycelium
bricks in a way unanticipated by the engineers, causing
large deformations, according to [240]. The most affected
areas of the structure were rebuilt during the lifespan of the
building, successfully enabling continued public occupancy.

For the second approach, of various artificial intelligence
methods, there are examples in the literature used to predict
the behaviour of materials that are non-uniform or present
other challenges (cf. neural networks for concrete or 3D
prints [257,258]; genetic programming for limestone or geo-
polymers [259,260]. Such methods could be investigated for
predicting the structural performance of biological material
that is alive or is deposited in situ. The modelling techniques
used in the context of self-organizing systems (see §§ 4.2 and
4.3.3) could possibly also be applied here; but we are not
aware of any related work.
4. Robots for biohybrid construction
4.1. Centrally controlled robots in construction
Industrial robots have been extensively explored for off-site
prefabrication in AEC [261], in ways that have fundamentally
shifted AEC design and execution [262–265]. On-site con-
struction automation with industrial robots also enjoys
substantial exploration in the literature [266,267]. This realm
presents new challenges when compared to prefabrication,
as work takes place in unstructured environments rather
than laboratory or factory conditions [261]. Improved
approaches to existing construction processes are, of course,
an important challenge for on-site AEC automation [261].
Perhaps more ambitiously, as noted in an editorial on con-
struction robots by Yang [6], on-site AEC robotic processes
may present entirely new types of construction opportunities.
In the context of a new type of construction for biohybrid
buildings, where biological elements either grow or deposit
material in situ, we have to take into account uncertainty in
terms of sensory information (measurement precision and
noise), dynamics in terms of ever-changing environments
over different timescales, and diversity in terms of the tasks
robots need to fulfil—from planting seeds and watering to
self-assembling into scaffolds at high altitudes. The most ver-
satile robot is not a single entity but a collective of robots that
self-organize and coordinate their work to achieve goals no
individual would by itself. Hardware and software to achieve
construction automation via robot collectives is quickly
developing [268,269].

4.2. Realizing constructive robot collectives
Technically speaking, self-organization can be understood as
the distribution of control of a system over a considerable set
of its components [270]. This immediately applies to systems
comprised of autonomously acting agents, as each of those
follows its own agenda. Thus, biological systems are

https://www.frontiersin.org/files/Articles/443720/fbuil-05-00062-HTML/image_m/fbuil-05-00062-g007.jpg
https://doi.org/10.3389/fbuil.2019.00062
https://creativecommons.org/licenses/by/4.0/deed.en
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inherently self-organizing. When designing technological sys-
tems, one also has to consider that large systems that have to
work flexibly and be robust to local failures and changes in
the environment, can only be realized if individual com-
ponents may act autonomously—otherwise, the managerial
overhead, the communication overhead and the risk of
single points of failure do not allow scaling up of the
number of involved components or subsystems [271].

In the context of biohybrid systems, where large numbers
of agents or robots might be deployed to interact with plants
or animals in various ways, the capability to also concert
robotic construction efforts (e.g. to provide scaffolding for
the plants’ growth) is crucial. The intelligence of such
robots has to consider their environment and to closely
align their activity with their biological counterparts. The
ability to quickly adapt to new situations, for instance, if a
plant branches out, without losing the user-defined goals
out of sight, for instance to grow in height, requires the
robots’ controllers to handle a great variety of situations.
Even in cases where the possible growth directions are inten-
tionally restricted, as seen in figure 9, it has been shown that
the task of robotically managing several plants simul-
taneously is quite complex [134,135]. The variety of goals,
the expected flexibility, the complexity of the interactions in
biohybrid systems, and in addition, the uncertainties and
insufficient precision in perceiving and manipulating real-
world environments would require the robots to learn
[272]. If we can narrow down the tasks of a specific robotic
unit, we may be able to find a simple, reactive behaviour
that renders collaborative work possible [10] and robustly
succeeds even within a broad range of situations [270]. Yet,
even the realization of a modestly simple robotic unit that
could grow artefacts and thereby guide and support bio-
hybrid development is already challenging as stressed in
the following paragraphs.
4.2.1. Materials for self-organized construction
In order to conceive both robotics hardware and self-orga-
nized behaviours for construction tasks in the context of
biohybrid systems, we first shed some light on rigid and
amorphous materials—the two categories that have been
considered in the literature.

Magnenat et al. [273] made robots deploy cubic bricks to
bridge gaps and to stack them up as tower constructions.
Consistent alignment and cohesion between the bricks was
established by magnets. Similarly, [37] made use of deploy-
ment-ready building blocks. In order to better support
structural loads, protrusions on the surface ensured a tight
bonding mechanism between the elements. Aluminium
rods were deployed by Stroupe et al. [274]. Its size rendered
collaborative transportation by two robots necessary. An
alternative, also to render the transport easier is realized by
blocks of polyurethane foam [275]. The foam blocks were
glued together applying an adhesive. A less persistent
approach is to establish magnet bonds by means of electronic
components as realized by Werfel et al. [276,277].

Napp & Nagpal [278] used amorphous foam to construct
ramps to elevate grounded robots to higher construction
levels. In order to compensate for uneven surfaces, the flexi-
bility of amorphous materials was harnessed. Napp &
Nagpal [279] later succeeded in constructing larger volumes
using these ramps and foam material. Previously, [280] had
tested toothpicks (with glue on their tips), sandbags (with
rice and corn to fill the gaps) similar to [281], and said
foam. The resulting artefacts were examined for features
such as sensitivity to pressure, effort of transportation and
deployment and associated costs. Depending on the context,
different materials are favourable. The expansion of foam, for
instance, facilitates storage and transport but incurs greater
costs. Sandbags are cheaper and the resulting construction
is immediately usable, which is important in self-organizing
systems as otherwise the robots need to synchronize their
construction efforts. In order to achieve greater versatility,
[282] mixed two-component polyurethane and right away
printed the material by an airborne robot. In the context
of airborne construction, there have also been efforts to let
quadcopters build tensile structures from threads or ropes
[283–285].
4.2.2. Robotic hardware for self-organized construction
Considering hardware options for realizing self-organizing
robotic communities for the purpose of construction, there
are mainly the two categories of ground and airborne
units.

Most ground robots follow an approach that is also rep-
resented by the marXbot by Magnenat et al. [273] and
Soleymani et al. [286] or the Swarm Robotics Construction
System (SRoCS) by Allwright et al. [287]. The marXbot’s
small and lightweight base is augmented with a basic set
of sensors including a rotating distance sensor, 24
ultrasonic sensors and eight ground sensors. Its battery
lasts for up to 7 h. As actuators, the marXbot is equipped
with two magnetic arms, whereas the SRoCS realizes grab-
bing by means of a fork-lift. Working with the marXbot
and alike can be challenging. For instance, although they
are augmented with magnets, its grabbers may not work as
expected for transporting and deploying construction
elements as emphasized by Karakerezis et al. [288]. Another
challenge lies in the need to recharge the battery; it could
tap into environmental resources such as solar power and
recover during a long break or to visit an energy outlet,
which requires complex planning and path-finding routines.
Directing the robots across a dynamic construction site can
be a demanding chore in itself. Nigl et al. [289], for instance,
guide construction robots by means of rails. There are also
conceptual works such as by Saltarén et al. [290] which
shed light on the robots’ movement capability in more com-
plex scenarios, for instance if the robot needs to climb the
built structure to manipulate it. In the long run, robots
might become capable of reconfiguring themselves, thus
changing their shapes and functionalities as outlined by
Rus et al. [291]. Clearly, such concepts bear numerous
additional challenges but they might also hold the key to ver-
satile robotic systems needed to not only build by themselves
but also to actively support and direct plant growth in
biohybrid systems.

For the immediate realization of biohybrid systems, either
ground or airborne units can be chosen. Flight opens an
additional spatial, navigational dimension compared to
grounded units. But flight also means that minute errors
may quickly lead to crashes that result in complete failures
and loss of hardware. Precautions must be taken accord-
ingly—for instance by provision of accurate values of
remaining energy. Due to their reliable and robust flight,



Figure 9. A group of distributed robots providing directional stimuli to steer
plant growth on a mechanical scaffold [134]; image from [134] and used
with license. (Image reprinted from fig. 12(b) of the Royal Society Open
Science paper of Wahby et al. [134], DOI, open access. Used with Creative
Commons license CC BY 4.0. Authors holding the image copyright approved
the license at publishing.) (Online version in colour.)
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quadcopters have been studied in the context of construction
tasks [275,282–285,292,293]. In airborne contexts, however,
the transport and deployment of construction materials is
even harder than on the ground. A systematic inquiry on
handling construction materials in airborne set-ups was con-
ducted by Mellinger et al. [292]. It revealed the crucial role of
the relative position of the construction material both for
transport and deployment.
4.2.3. Discussing options for deployment
The precision and supposed ease of deployment of rigid con-
struction materials greatly depends on the rigour of the
building blocks’ manufacturing process. In addition to
these efforts, there are other drawbacks such as the need for
pre-designed joint mechanisms or the use of additional
adhesive materials, as well as an inability to build directly
on uneven terrain. However, rigid materials can bring
about great stability. Obviously, the less precise but adaptive
and ad hoc deployable amorphous materials can compensate
for the lack of flexibility of rigid materials. Therefore, [268]
concluded that a multi-stage process that considers different
materials at different times, similar to traditional building
construction, might be most beneficial. They also suggested
that a heterogeneous set of airborne and ground robots
might be most successful considering their individual
strengths and weaknesses—high risks but easy manoeuvr-
ability of airborne units and inflexible but strong and
robust grounded robots.
4.3. Control, collaboration and modelling
In general, the control of collective robot systems is challen-
ging. The usual approach is to keep the individual, local
controllers simple and create complexity from interactions
between robots. While system complexity can also be kept
low by letting the robots work in parallel without explicit
robot–robot interactions, the more ambitious objective
should be to let them closely interact and to create true collab-
oration between the constructing robots beyond mere
parallelization. The robot controller design can be supported
by models for better predictions about the expected global
behaviour.

4.3.1. Control
Construction of living buildings by biohybrid robots is cur-
rently too underexplored for the literature to include
established, purpose-specific approaches to control. Instead
externally standard approaches are used and novel
approaches are borrowed from other fields. Here, we restrict
our discussion mostly to multi-robot systems. The standard
approach in multi-robot set-ups is to limit the robot control-
lers to simple behaviours for two reasons. First, multiple
interactions between robots complicate the system [294,295],
hence, one wants to keep as many components simple and
manageable as possible. Second, the idea is to create complex
behaviours from the interactions between robots and their
collaboration, not from complex individual behaviours. This
is in line with the concepts of swarm intelligence [296] and
emergence [297].

The applied underlying concept for these rather simple
controllers is often behaviour-based robotics, such as the sub-
sumption architecture by Brooks [298]. The approach by
Mellinger et al. [299] uses standard techniques of (centralized)
control theory. Allwright et al. [287] use an ad hoc approach
resembling partially the idea of behaviour-based robotics.
Werfel et al. [37] use reactive control based on behavioural
rules. The main research question here is, how to derive or
generate these rules (see §4.3.3).

4.3.2. Collaboration
In multi-robot set-ups, the questions arise of whether and
how the robots should collaborate. Often the robots work
in parallel but rather independently (see for example colla-
borative material towing in [300], shown in figure 10). An
immediate challenge in multi-robot scenarios is that robots
have to avoid collisions between each other. In addition,
each robot should be granted access to shared resources
(e.g. space, charging stations, etc.), both deadlocks and
bigger interference effects should be avoided, too [301]. How-
ever, the ambition should be to go beyond a mere concurrent
parallelization and enable the robots to collaborate. Then one
can hope for super-linear performance increases [302–304]
and for self-organization into higher order entities, i.e.
teams, taking care of different parts of the task [305,306]. Effi-
cient collaboration between robots requires robot–robot
communication. An option is to use direct point-to-point
communication, however, often it is advantageous to allow
for asynchronous communication. Construction usually
requires that robots place building material at well-defined
positions, sometimes coordination between robots may be
required, and robots may not always meet at the material des-
tination site to directly communicate the position of the
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Figure 10. Collaboration of multiple robots on the construction sub-task of towing materials, inspired by a collaborative mechanism in social insects [300]; image
from [300] and used with license. (Image reprinted from fig. 1 (subfigures a and b) of the Royal Society Open Science paper of Wilson et al. [300], DOI, open access.
Used with Creative Commons license CC BY 4.0. Authors holding the image copyright approved the license at publishing.) (Online version in colour.)
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building material to be added next. Following again the con-
cepts of swarm intelligence, an option is to use stigmergy [25],
that is, asynchronous communication via the environment
(see §2.1.1). Stigmergy in construction usually means that
the presence or absence of building material itself is used as
cue [296,307]. The robots then have simple rules when to
place material where depending on the current, local state
of construction (cf. the wasp nest construction model by Ther-
aulaz & Bonabeau [34] discussed in §2.1.1). The designer of
the system has to take care that the summation over all
these simple behaviours results in the desired construction
without deadlocks (e.g. certain areas cannot be reached any-
more after placement of building material in unanticipated
sequences). This approach, however, still has a tendency to
mere parallelization. True collaboration would arise once
robots hand over building material, collectively transport
bigger pieces, and maybe even self-assemble, for example,
to reach high positions.
4.3.3. Modelling
As mentioned above, controlling interacting robots is already
a challenge but the control of multi-robot construction even
more so. If the robot controllers follow the concept of self-
organization with a strict limitation to local information to
stay scalable, then the overall system is difficult to govern.
Besides the standard tool of simulations [308], in multi-
robotics one also uses modelling techniques to predict
expected system behaviours. Specific for multi-robot bio-
hybrid systems for construction are the requirements of
spatial representation in the models and support for multiple
timescales. There are non-spatial models based on rate
equations in swarm robotics [301,309] that have successfully
been applied to different scenarios. However, for construction
it seems essential to represent space, hence, represent inter-
mediate configurations of the construction in space and
time. Options are models operating on continuous space
[295,310] or discretized space [37]. The discrete case seems
a considerably simpler approach, especially if the building
material is also discrete (e.g. bricks). Modelling, control and
construction are more challenging if the building material is
continuous [311]. In order to realize self-organizing buildings
for occupancy, it is necessary to satisfy government regu-
lations that are standard for AEC sectors (e.g. [250]), as
described in §3.5, meaning that details of the final structure
must be somehow guaranteed before construction begins.
Werfel et al. [37] address this by providing each mobile
robot with the plan for the final structure. Architects suggest
another approach whereby approval of a fully detailed plan
might not be necessary as long as the key features of the
structure can be guaranteed [312].

Support for multiple timescales is important once mobile
robots and/or human beings are combined with either natu-
ral plants or material-depositing animals. Timescales relevant
for mobile robotics and humans are seconds or fractions of
seconds, while relevant timescales for growth and motion
of natural plants and animals’ nests are hours, days, or
even weeks. Modelling techniques would hence be necessary
to generalize from small time-step phases to big time-step
phases (roughly relating to the technique of adaptive stepsize
in numerical analysis).
4.4. Human–biohybrid interfaces
Interaction with machines has been a challenge ever since
machines came about. The research discipline of human–
robot interaction (HRI) especially focuses on automata that
can behave autonomously and their interactions with
humans. A comprehensive introduction is provided by
Goodrich & Schultz [313]. HRI aims at discovering new
insights about interfaces for various degrees of autonomy—
from direct teleoperation of a robot to its full autonomy—
and for various situations involving one or more robots as
well as humans. In HRI settings, robots generally assume
one of the following roles: supervisor, operator, mechanic,
peer, bystander, and mentor. In the context of biohybrid sys-
tems, all these roles make sense but their objective also
extends beyond the human user to the other system com-
ponents. For instance, they can assume roles in relation to
the other robots, which is addressed by the research areas
of multi-agent [314], self-organizing [270], and complex sys-
tems [315] as well as, specifically, by swarm robotics
research [294,316]. We focus below on the particular chal-
lenge of HRI interfaces for a human user that needs to
guide an otherwise self-organizing biohybrid system. In
addition to guiding the system, according interfaces also
need to provide information about the current state of the
system and its potential development.
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4.4.1. Biohybrid design and control
von Mammen et al. [317,318] presented a prototype of an
augmented reality interface for biohybrid system design
(figure 11). They outfitted the user with a head-mounted dis-
play augmented with a pair of cameras to provide a
stereoscopic video feed of the environment. This video
feed could be overlaid with information about a simulated
biohybrid system. In the given case, the user was able to
seed simple plant-like structures that would grow upwards
and towards light sources. The strategic placement of
lamps allowed the user to steer the structural growth, for
instance, to climb around a pole. This augmented reality
(AR) prototype already hints at the potential design and
use-case for the next generation of AR prototypes for bio-
hybrid system design and control. In addition to the
different kinds of system components that could be deployed
(plants and lamp-‘bots’) and configured (at least the techni-
cal devices), the system allowed the user to fast forward into
the near future and explore the result in a real-world context.
Heinrichet al. [319] explored user control of self-organizing
construction more generally, through an interactive evolution
approach.

4.4.2. Guiding biohybrid swarms
Human–swarm interaction (HSI) can be considered a subset
of HRI research with a focus on controlling and inspecting
collective robotic systems (e.g. [320,321]). A rather recent
review on HSI is provided by Kolling et al. [322]. As pointed
out by Bashyal & Venayagamoorthy [323], in HSI questions
of scalability, harnessing the system’s intelligence and work-
ing with locally available knowledge are of special interest.
Due to the complexity that can arise in HSI scenarios and
that systems comprised of large numbers of interacting com-
ponents lend themselves well for distributing activities, use-
cases with multiple users are frequently considered as well
(e.g. [324–326]). Again, a wide spectrum from direct control
to full autonomy of the swarm is considered, with inter-
mediary steps being realized by either hierarchies in
command unfolding across the systems’ constituents or
by means of more or less abstract goal formulations by
the users.
4.4.3. Conclusion on human–biohybrid interfaces
Research towards interfaces between humans and biohybrid
systems is at an early stage. The target domain of biohybrid
systems yields new challenges or intensifies those considered
by HRI and HSI. For instance, different from interactive with
robot collectives only, there is the need to model behaviours
of reactivity and development of the inherently hetero-
geneous population of organisms in varying environments.
This directly impacts the responsiveness to various user-
induced stimuli and necessitates thinking in probabilities or
ranges of outcomes. The timescales involved pose another
challenge that needs to be addressed. The individual life-
spans of the organisms, their developmental stages, the
interaction with the environment—all these aspects may
play out on different dimensions of time. This insight also
reinforces the important role that simulations will play for
the informed design of biohybrid systems.
5. Discussion
Living organisms as building components have to be con-
sidered not only as continually growing entities, but also as
dynamic, open systems that change structurally and morpho-
logically in time. Many species are subjected to regular
changes. For instance in plant organs, mechanical properties
change due to the seasons and the developmental stages, and
annual plants do not disappear after dying but will continue
to mechanically impact the system. In a living system, certain
animal depositions and plant organs not only develop but
may spontaneously be withdrawn if they are no longer fulfill-
ing their intended role. Planning and coordination of
biohybrid construction processes will involve cycles of spatial
expansion and reduction.

Living organisms sense and respond to environmental
changes by adjusting their internal processes to overcome
threats and to take advantage of changed conditions. Organ-
isms successfully realize their developmental programmes
due to their plasticity. In addition, organisms actively shape
their environment. For example, trees change light conditions
for their lower branches, they change the soil structure,
underground water conditions, and the ambient air. The
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activities of living plants change the originally provided con-
ditions, such that future growth is not guaranteed. In
biohybrid construction, environmental conditions and the
physiological reactions of organisms will have to be moni-
tored and perhaps modulated continually, on long
timescales and large spatial scales.

The artificial elements of a biohybrid system also influ-
ence the environment. There are intentional influences, by
stimulating physiological reactions or providing scaffolds,
but there can also be side effects. For example, robots will
increase the temperature locally due to waste heat, influen-
cing animal behaviours and plant generative organs in
close proximity. This may not be harmful; flowers generate
complex heat patterns to attract and assist pollinators towards
flowers. In biohybrid construction the system will need to
autonomously deal with non-anticipated situations—a per-
vasive challenge throughout robotics, which is not yet
solved. One advantage of approaching this challenge within
a biohybrid system is that many actions may be required
only on intermediate and long timescales, compared to
typical robotics applications.

The slow speed of biohybrid construction compared to
standard construction may be its primary limitation,
especially if the structure is based on woody plant species
or other processes that last several decades. In addition, the
considerations we have previously raised [327] for biological-
engineered hybrids generally are still relevant in the case of
application to buildings, and may raise further domain-
specific limitations. Future work in the fields of gene modifi-
cation or synthetic biology may help to ameliorate
limitations, either by making growth speeds faster or
making grown or deposited materials stronger. Research
has advanced plant genetic engineering for instance to
improve their performance as biofuel [328]—it may indeed
be feasible to improve their performance as living structures
for occupancy.
6. Conclusion
Here, we have reviewed the existing understandings, technol-
ogies, and approaches that have contributed to the
development of biohybrid living buildings and construction,
or could be used in future studies targeting the relevant chal-
lenges. We have reviewed biological organisms and
behaviours that deposit, shape, or otherwise generate
material in a responsive and typically directional manner.
We have also reviewed the methods and technologies that
have coupled biological organisms with mechanical
elements, integrated them into a construction process or
infrastructure outcome, or coupled them with robots. Finally,
we have reviewed the autonomous approaches, namely those
that are self-organizing, that we expect to be relevant when
targeting construction that incorporates both robots and bio-
logical organisms. In the abstract and introduction, we note
that the targeting of biohybrid living buildings is in part
driven by the advantages that living material may offer
over traditional synthetic alternatives, and throughout the
review, we examine the literature for the occurrence of these
advantages. We find that both the self-repair of damage to
a living or synthetic structure and the resilience to corrosive
environments, achieved via biological organisms, has been
demonstrated several times in the literature, prominently in
the use of Ficus elastica roots in the Living Root Bridges [209]
and of bacteria in the remediation of concrete [247]. We
find that an increase in structural performance over time, as
opposed to degradation, has been demonstrated in examples
where woody plants form part of a load-bearing structure,
notably in the Baubotanik Footbridge.21 We find that support
for ecosystems, soil remediation and biodiversity have often
been proposed as key targets and challenges, such as by
Mohamed et al. [148] to combat desertification with robots,
but that examples of successful technological implemen-
tations remain a gap in the literature, in the topic of
biohybrid living buildings. We find that mitigation of the
urban heat island effect is regularly targeted by well-estab-
lished technologies such as green roofs [191], but that
integration of this objective into biohybrid robots or construc-
tion processes is a remaining challenge. In conclusion, we
find a high number and wide variety of references that
handle some combination of living organisms, robots, and
buildings and construction. However, we find that these
examples are quite disparate from one another, and that the
field has broad gaps and remaining challenges to achieve
construction of a biohybrid living building.

Data accessibility. This article has no additional data.

Authors’ contributions. M.K.H. organized the overall writing and editing
process and made the primary writing contribution. H.H., S.v.M.,
D.N.H. and M.W. wrote large sections of the paper; T.Sch., P.Z.,
T.Skr., M.D.S., R.K. and W.K. also wrote sections of the paper.
H.H., S.v.M., T.Sch., P.A. and K.S. supervised overall paper develop-
ment. M.K.H., H.H., S.v.M., P.Z., D.N.H., M.W. and P.A. made
editing contributions. All authors contributed to defining the content
of the paper and to the writing process. The key open challenges
handled in the paper were developed collectively among all authors.
Competing interests. We declare we have no competing interests.

Funding. Project flora robotica has received funding from the European
Union’s Horizon 2020 research and innovation programme under the
FET grant agreement, no. 640959.
Endnotes
1Urbano E et al. 2007 Eco boulevard in Vallecas. Images by the archi-
tect and republished in [221], 66. Building in Vallecas, Madrid, Spain.
2This citation, like several others in this paper, may look odd, as it
cites a company as an author. Buildings, like paper figures, are citable
works of intellectual property; example of how to cite images refer to
[329]; addition of buildings as of 1990 refer to [330]. If the team of
architects or builders has not written a scientific paper about their
structure, then we cite the third-party author who has published a
description and photograph(s) of the original work, from which we
were able to understand the structure. In this case, the citation style
we have chosen is such that the in-text citation (often including a
company as an author) is for the original structure, and its respective
bibliography entry in turn points to the third-party source publishing
its image.
3Ludwig F, Hackenbracht C, Baubotanik research group, and Neue
Kunst am Ried. 2009 Baubotanical Tower. Images by author and pub-
lished in [333], 86. Building in Wald-Ruhestetten, Germany.
4Ludwig F, Schönle D, Brocke I, Roesler C (SecOp/GaLaTech). 2012
Platanenkubus Nagold (Plane Tree Cube Nagold). Images by
author and published in [211], 254–255. Also published in [196].
Building at the 2012 Landesgartenschau in Nagold, Germany.
5Genetic Architectures Research Group, Estévez AT. 2008 Biolamps:
Genetic barcelona project, 2nd phase. Images by architect and pub-
lished in [206], 452. Room interiors at a private building in
Barcelona, Spain.
6See endnote 2
7PHILIPS. 2010 Microbial home: Biolight. Referenced without images
in [207], 6. Product prototype.
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8Burggraf N, Zauner S, and Thierfelder H. 2010 Bioluminescent field.
Images by designer and published in [208], 84, 191. Exhibit at Lumi-
nale 2010, Frankfurt Lighting Culture Biennale.
9Gale B. 2011 Living willow tunnel. Published in [212], 18. Built struc-
ture at Pierce’s Park in Baltimore, Maryland, USA.
10Schaeffer J, Kotin S, and Tebbutt C. 1996 Willow dome. Early
growth images published by the architects in [331], later growth
image by author published in [215], republished in [212], 3. Built
structure at the Real Goods Solar Living Center in Hopland, CA,
USA.
11Kalberer M, Strukturen S. 2003 Willow church. Images published in
[211], 48, and [332], 23. Building at the 2003 World Horticultural
Exposition in Rostock, Germany.
12See endnote 2
13Kalberer M, Strukturen S. 1998 Auerworld Palast. Images by author
and published in [212], 21, and [332], 20–21. Building in Auerstedt,
Germany.
14http://www.auerworld.com/auerworldpalast/
15Jennings S, Courtier S, Project Taunton. 2011 Longrun meadow
willow cathedral. Building that is a part of Project Taunton, located
in Somerset, UK.
16Erlandson A. 1940s Basket tree. Images by author published in
[222], republished in [211], 37, c. Built structures originally at Tree
Circus in Scotts Valley, California, USA, currently at Gilroy Gardens
in Gilroy, California, USA.
17Kirsch K, Block HF. 1993-1997 Waldgartendorf. Images by author
and published in [211], 50. Built structures near Kassel, Germany.
18Kirsch K. 1990 Ash tree house or ash tree dome. Images by author
and published in [212], 31, ca. Built structure in Bauhaus, Germany.
19Visiondivision and Politecnico di Milano. 2011 The patient gar-
dener. Images by author and published in [212], 35, Built structure
in Milano, Italy.
20See endnote 2
21Ludwig F, Storz O. 2005 Baubotanik research group, and
Neue Kunst am Ried. Baubotanik footbridge. Images by author
and published in [234], 184. Built structure in Wald-Ruhestetten,
Germany.
22Terreform ONE, Genspace, Ecovative Design LLC, Mitchell Joa-
chim, Oliver Medvedik, Melanie Fessel, Maria Aiolova, Ellen
Jorgenson, Shruti Grover, James Schwartz, Josue Ledema, Tania
Doles, Philip Weller, Greg Pucillo, Shivina Harjani, Jesse Hull,
Suzanne Lee, BioCouture, and NYU Gallatin. Gen2seat: Genetic gen-
eration seat. Images by author and published in [236], 2012. Furniture
installation in New York, NY, USA.
23See endnote 2
24Terreform ONE, Genspace, Mitchell Joachim, Eric Tan, Oliver Med-
vedik, and Maria Aiolova. 2008 In vitro meat habitat. Images by
author and published in [236], Art installation at Genspace in
New York, NY, USA.
25Ross P, Far West Fungi. 2009 Mycotectural alpha, a prototype tea-
house. Images by author and published in [237]. Temporary
installation at the Eating the Universe exhibition at Kunsthalle Düs-
seldorf in Düsseldorf, Germany.
26The Living, Ecovative Design, 3M, Arup, Atelier Ten, Build It
Green!, Autodesk Dynamo, SCAPE Landscape Architecture,
Advanced Metal Coatings Incorporated, and Associated Fabrication.
2014 Hy-fi. Images by architect and published in [239] and [240].
Temporary building at the Museum of Modern Art (MoMA) PS1 in
New York, NY, USA.
27AFJD Studio. 2015 Mycelium mockup. Images by Krista Jahnke and
published in [242], 121–124. Temporary installation at the CATA-
LYZE exhibition of the annual conference of the International
Society of Electronic Arts, at the Museum of Vancouver in Vancouver,
BC, Canada.
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