
MINI REVIEW
published: 02 October 2020

doi: 10.3389/fendo.2020.543623

Frontiers in Endocrinology | www.frontiersin.org 1 October 2020 | Volume 11 | Article 543623

Edited by:

Lilian Irene Plotkin,

Indiana University Bloomington,

United States

Reviewed by:

Johannes Jung,

Sanofi, Germany

Paulus Wohlfart,

Sanofi, Germany

*Correspondence:

Fei Jiang

nykqjf@njmu.edu.cn

Yang Xia

xiayang@njmu.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Bone Research,

a section of the journal

Frontiers in Endocrinology

Received: 17 March 2020

Accepted: 27 August 2020

Published: 02 October 2020

Citation:

Li J, Zhou Z, Wen J, Jiang F and Xia Y

(2020) Human Amniotic Mesenchymal

Stem Cells Promote Endogenous

Bone Regeneration.

Front. Endocrinol. 11:543623.

doi: 10.3389/fendo.2020.543623

Human Amniotic Mesenchymal Stem
Cells Promote Endogenous Bone
Regeneration

Jin Li 1†, Zhixuan Zhou 1,2†, Jin Wen 3, Fei Jiang 1,2* and Yang Xia 1,4*

1 Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China, 2Department of General Dentistry,

Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China, 3Department of Prosthodontics, School of

Medicine, College of Stomatology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China,
4Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China

Bone regeneration has become a research hotspot and therapeutic target in

the field of bone and joint medicine. Stem cell-based therapy aims to promote

endogenous regeneration and improves therapeutic effects and side-effects of

traditional reconstruction of significant bone defects and disorders. Human amniotic

mesenchymal stem cells (hAMSCs) are seed cells with superior paracrine functions on

immune-regulation, anti-inflammation, and vascularized tissue regeneration. The present

review summarized the source and characteristics of hAMSCs and analyzed their roles

in tissue regeneration. Next, the therapeutic effects and mechanisms of hAMSCs in

promoting bone regeneration of joint diseases and bone defects. Finally, the clinical

application of hAMSCs from current clinical trials was analyzed. Although more studies

are needed to confirm that hAMSC-based therapy to treat bone diseases, the clinical

application prospect of the approach is worth investigating.
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INTRODUCTION

Large bone defects and disorders, either congenital or acquired, severely affect the patients’
appearance and function (1). Moreover, the incidence of these bone diseases is high and has been
on the rise in the past decade. In terms of bone defects, approximately more than 350million people
suffer from fractures, about 46 million people have head injuries, and 20 million people are subject
to spinal injuries.Meanwhile, more than 300million people have been diagnosed with osteoarthritis
while about 20 million people have got rheumatoid arthritis around the world. Periodontal disease,
which tends to cause severe alveolar bone loss and tooth loss, also has a high prevalence rate of about
800 million (2). Currently, the reconstruction of the bone defects mainly depends on autologous
tissue transplantation due to various factors, such as biocompatibility and histocompatibility (3).
However, this strategy has limited applications due to a shortage of harvest sites, incomplete
integration into the defects, and risk of disease transfer (4). In addition to various defects, bone
disorders also include joint diseases associated with an autoimmune disorder, such as rheumatoid
arthritis (RA) (5), osteoarthritis (OA) (6), and ankylosing spondylitis (AS) (7). Typically, these
joint diseases are treated by drugs (for example, glucocorticoid, immunosuppressive agents, non-
steroidal anti-inflammatory drugs, and disease modifying antirheumatic drug) to reduce the
symptoms and improve the joint function; however, therapeutic interventions are essential in
the advanced stage characterized by loss of articular cartilage, subchondral sclerosis, osteophyte
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formation, and joint capsule thickening (8). Nowadays, tissue
engineering is gaining increasing attention and is expected to
resolve these clinical issues.

Different types of scaffold, bioactive factors, and seed cells
are the three major elements of tissue engineering. Thus, finding
an ideal scaffold to replace the autologous bone translation
in the treatment of bone disorder is under intensive research.
Nowadays, the scaffold matrix used for bone tissue engineering
includes inorganic material, polymers, and their composites
(9). In addition, bioactive factors, such as bone morphogenetic
protein-2 (BMP-2), fibroblast growth factor-2 (FGF-2), vascular
endothelial growth factor (VEGF), and epidermal growth factor
(EGF), also play a vital role in bone rebuilding (10). Among those
growth factors, BMP-2 and FGF-2 have been utilized to promote
bone regeneration and angiogenesis in clinical practice (11, 12).
Currently, stem cell-based tissue regeneration has some curative
effects (13), but the effect of seed cells in repairing the bone
disorders is yet controversial.

Endogenous regeneration, proposed in recent years, focuses
on the stimulation and regulation of endogenous factors to
achieve in situ tissue regeneration by applying bioactive factors
locally (14). Stem cells possess robust biological potential with
respect to self-renewal, multidirectional differentiation, and
paracrine functions (15, 16). These might act as bioactive
factors to activate the endogenous regeneration by local or
systematic applications (14, 17). The homeostasis of tissues and
organs relies on the coordination and regulation of the nervous,
endocrine, and immune systems (18). The endocrine system
is a complex network of hormone-producing cells and tissues,
which secrete a variety of hormones to act on distant and/or
adjacent target cells through endocrine, paracrine, autocrine,
or intracrine mechanisms to exert biological activities (19). In
addition to enteroendocrine cells, other tissues and cells, such as
retinal ganglion cells (RGCs) (20), bone (21), and muscle (22),
have paracrine and endocrine functions to maintain homeostasis.
Growth hormone (GH) can be expressed in RGCs, and retinal
GH has a paracrine role in ocular development and vision (20).
It has been widely accepted that stem cells could secrete a
variety of bioactive factors which regulate immune state of the
body and local microenvironment of tissue regeneration (23).
These mechanisms of stem cell-based therapy are to some extent
similar to those of some hormones, such as GH. Based on these
similarities, stem cell-based therapy might exert a positive effect
on promoting endogenous bone regeneration.

Stem cells are divided into embryonic stem cells and
adult stem cells (16). The embryonic stem cells for stem
cell therapy shows high tumorigenicity and ethical problems
in the application process (24). Adult stem cells, including
mesenchymal stem cells (MSCs), are undifferentiated cells found
in various tissues and organs (25). Nowadays, researchers can
isolate MSCs from bone marrow (bone-marrow mesenchymal
stem cells, BMSCs) (26), fat (adipose-derived stem cells, AdSCs)
(27), peripheral blood (peripheral blood-derived mesenchymal
stem cells, PMSCs) (28), umbilical cord blood (umbilical cord
blood-derived mesenchymal stem cells, CB-MSCs) (29), and
other tissues (30–32) for tissue engineering, immune-regulation,
and anti-inflammation. However, it is also unknown which

source of stem cells is better for promoting tissue regeneration
after transplantation.

Currently, we are focusing on promoting bone regeneration
in the oral and maxillofacial regions using human amniotic
mesenchymal stem cells (hAMSCs). In this study, we reviewed
the source, characteristics, and roles of hAMSCs in bone
regeneration, not only in the reconstruction of bone defects
but also in the treatment of arthritis. Thus, hAMSCs might be
used as an innovative treatment option to promote endogenous
bone regeneration.

SOURCE AND CHARACTERISTICS OF
HAMSCS

MSCs are specialized cells with multi-differentiation potentials,
which can be activated to differentiate into tissue cells under
specific inducing conditions (33, 34). Previous studies have
demonstrated that MSCs have abilities of regeneration and
immunoregulation (35). The hAMSCs, isolated from the
amniotic membrane (AM) of the human term placenta that
plays a key role in maintaining maternal-neonatal tolerance, not
only share phenotypes similar to typical MSCs, including
fibroblast-like morphology, specific surface molecules,
and multi-differentiation potential but also have superior
immunomodulatory (36–39) and paracrine properties (40, 41).
Compared to hAMSCs, mostMSCs have inevitable disadvantages
on clinical use, including invasive access procedure, host immune
response after transplantation, age-related heterogeneity in the
quality of MSCs, and extremely low acquisition rate of
MSCs (33).

The AM is the innermost layer of the placenta consisting
of two sets of cells; one is the amnion epithelial cells that
are in direct contact with the amniotic fluid, and the other is
the amnion MSCs dispersed in the matrix (42, 43). Since AM
is an avascular structure and its epithelial layer can be easily
removed by Dispase II, the hAMSCs can be obtained without
contamination of endothelial cells and hematopoietic cells (42,
44). Each gram of wet amnion tissue can provide 1.7 ± 0.3
× 106 hAMSCs (45), which are positive for CD44 and CD90
(46, 47). Moreover, the placental tissue becomes a medical waste
after childbirth, and hAMSCs can be harvested non-invasively
and without ethical controversy (48). In addition, parturients are
usually young women, and hence, age-related heterogeneity of
hAMSCs might be relatively better than that of stem cells from
other sources. The hAMSCs lack the expression of human major
histocompatibility complex (MHC) antigens (human leukocyte
antigens, HLA), including HLA class I antigens (HLA-DP, HLA-
DA, HLA-DR) and HLA class I antigens (HLA-A, HLA-B, HLA-
C), showing low immunogenicity (49, 50), while they also exhibit
low tumorigenicity due to lack of expression of telomerase (48,
51, 52). Low immunogenicity and low tumorigenicity of hAMSCs
render them conducive for allotransplantation to promote tissue
regeneration. Also, their paracrine properties have multiple
regulatory functions (40). Furthermore, several bioactive factors
could be produced by hAMSCs, including immunomodulatory
factors that are crucial for the resolution of inflammation (44, 53)
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TABLE 1 | The mechanisms of hAMSCs in regulating joint diseases.

References Disease

Model

Method Conclusion

Shu et al. (55) RA Intraperitoneal

injection

hAMSCs inhibited the production of

proinflammatory cytokines and the

response of T-cell, and restored

CD4+/CD8+ T cell ratio in CIA rats.

Parolini et al.

(56)

RA Subcutaneous

injection

hAMSCs decreased the production of

inflammatory cytokines, stimulated the

generation of human

CD4+CD25+FoxP3+ Treg cells, and

suppressed the antigen-specific Th1/Th17

activation in CIA mice.

Huss et al.

(57)

OA Culture in vitro NK cells were a principal infiltrating immune

cells in synovial tissue of patients with

osteoarthritis.

Pianta et.al.

(58)

Inflammation Co-culture hAMSC-CM regulated T-cell polarization

toward Th1, Th2, Th17, and T-regulatory

(Treg) subsets.

Topoluk et al.

(59)

OA Co-culture hAMSCs were better than AdSCs in

shifting OA synovial macrophage M1:M2

ratio.

Cargnoni

et al. (60)

Lung fibrosis Intrathoracic

injection

hAMSC-CM reduced the levels of

pro-inflammatory and pro-fibrotic

cytokines, and reduced lung macrophage

levels.

Borem et al.

(61)

IVDD Co-culture hAMSCs produced more anti-inflammatory

cytokines than AdSCs under identical

inflammatory conditions.

Miceli et al.

(62)

Inflammation Culture in vitro hAMSCs in 3D culture system produced

more angiogenic and immunosuppressive

factors than in 2D cultures.

Banerjee

et al. (63)

Inflammation Culture in vitro hAMSCs changed mitochondrial function

and increased IL-6, and maintained the low

levels of ROS at 20% oxygen.

RA, rheumatoid arthritis; hAMSCs, human amniotic mesenchymal stem cells; CIA,

collagen-induced arthritis; OA, osteoarthritis; hAMSC-CM, hAMSCs conditionedmedium;

AdSCs, human adipose stem cells; IVDD, intervertebral disc degeneration; 3D, three-

dimensional; 2D, two-dimensional; ROS, reactive oxygen species.

and growth and angiogenic factors that are critical for tissue
remodeling (41). These exogenous molecules have been shown
to be important in inducing endogenous regeneration.

EFFICACY OF HAMSCS IN JOINT
DISEASES

Arthritis is a characteristic of rheumatic diseases, which
are chronic, intractable, and musculoskeletal system diseases,
such as RA, OA, AS, and juvenile idiopathic arthritis (JIA)
(54). Although the pathological characteristics of these joint
disorders are different, the joint symptoms are associated with
abnormal autoimmune function, inflammatory cell infiltration,
and joint structural lesions (5). Stem cells, including hAMSCs,
have been introduced to arthritis models, such as rat, to
improve the treatment by inhibiting inflammation, regulating
the status of autoimmunity, and promoting tissue regeneration
(Table 1) (55, 64, 65).

RA is a chronic, autoimmune, inflammatory joint disease
characterized by hyperplasia of the synovial membrane and
infiltration of immune and inflammatory cells. The synovial cell

fibrosis, excessive production of inflammatory cytokines, and
osteoclast appearance led to joint destruction and disability (5).
The immunomodulatory and anti-inflammatory properties of
hAMSCs indicated the therapeutic potential for the treatment of
RA. In the classic rat arthritis model for human RA, hAMSCs
significantly ameliorated the severity of arthritis and decreased
the histopathological changes due to dramatic inhibition of the
production of proinflammatory cytokines, such as interferon-
γ (IFN-γ) and tumor necrosis factor-α (TNF-α) (55). For a
T cell-mediated disease, such as RA, the therapeutic effects
of hAMSCs are crucial because they could remarkably restore
the CD4+/CD8+ T-cell ratio and inhibit the response of
T-cells (55). In addition, hAMSCs suppressed the antigen-
specific Th1/Th17 activation and stimulated the generation of
CD4+CD25+FoxP3+ Treg cells (56). In mice with collagen-
induced arthritis (CIA), systemic infusion of hAMSCs markedly
reduces Th1-driven autoimmunity and inflammation, as shown
by decreased production of TNF-α, IFN-γ, and some interleukins
(IL-2 and IL-17) and increased production of IL-10 and
activation of cyclooxygenase 1/2 (COX1/2) (56).

OA is another chronic joint disease with an incidence as
high as 40% (66). It is a degenerative disease characterized by
progressive cartilage degradation, subchondral bone remodeling,
osteophyte formation, and synovitis (67). Synovial NK cells and
macrophages secrete abnormally large amounts of perforins,
granzymes, and pro-inflammatory cytokines (TNF-α, IL-1β)
to induce and aggravate the synovial inflammation and
bone/cartilage resorption (57), while activation of CD4+Th1
cells contributes to the development of inflammation (68).
The hAMSCs might be beneficial for OA as they inhibit the
proliferation of T-cells in vitro (58), polarize M2 macrophages
in the condition with the hallmarks of RA in vitro (59), and
promote bone/cartilage regeneration in rabbits (69, 70). The
conditioned medium of hAMSCs (hAMSC-CM) was reported
to remedy tissue fibrosis by lowering the levels of T-cells
and macrophages, leading to a decline in pro-inflammatory
cytokines (60). When hAMSCs were introduced to the OA
model established by coculturing the OA patients’ cartilage and
synovium, the M1:M2 percentage ratio of synovial macrophages
was decreased significantly; also, the concentrations of IL-
1β and matrix metalloproteinase-13 (MMP-13) was declined,
and macrophage-mediated cartilage destruction was effectively
abrogated (59).

In addition, hAMSCs not only secreted active factors
with therapeutic effects routinely but also produced
abundant cytokines in specific environments. Under identical
inflammatory conditions, hAMSCs produce more anti-
inflammatory cytokines than AdSCs, such as IL-10 (61).
Under three-dimensional (3D) culture conditions, hAMSCs
spheroids could secrete considerable amounts of angiogenic
and immunosuppressive factors while remaining viable and
multipotent (62). The production of some cytokines by hAMSCs
vary under different conditions of different oxygen tension.
Consequent to exposure to 20% oxygen culture condition,
hAMSCs secrete abundant IL-6 as a response to changes in the
mitochondrial function, but the content of intracellular reactive
oxygen species (ROS) remained unaltered (63). These properties
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of hAMSCs rendered the stem cell-based therapy applicable and
also provided valuable guidance for bone regeneration.

EFFICACY OF HAMSCS IN BONE DEFECTS

The hAMSCs, as a kind of stem cells, can be induced to
osteogenic differentiation to form refracted crystal-like nodules
which could be indicated by alkaline phosphatase staining or/and
alizarin red S staining (71–73). The expression of osteogenesis-
related genes and proteins, such as alkaline phosphatase (ALP),
runt-related transcription factor 2 (Runx2), osteopontin (OPN),
and osteocalcin (OCN), was significantly enhanced in osteo-
induced hAMSCs (74–76); also, their osteogenic differentiation
capacity is superior to other MSCs derived from chorionic
membrane and decidua (77, 78). However, the comparison
of the osteogenic capacity of hAMSCs and BMSCs revealed
that BMSCs are more likely to differentiate into osteoblasts
in vitro and seem to be appropriate for bone regeneration
(79). Nevertheless, the capacity of hAMSCs might not be
inferior to that of BMSCs in improving bone regeneration
in vivo. Several studies have reported that transplanted MSCs
might play therapeutic roles by paracrine signaling rather than
becoming target tissue cells directly (80–82). In recent years,
several studies have focused on hAMSCs promoting tissue
regeneration, based on their functions of anti-inflammation, pro-
angiogenesis, and chemotaxis(Table 2) (38, 83, 96). To the best
of our knowledge, hAMSCs secrete more cytokines than BMSCs,
including interleukins (IL-6 and IL-8), C-X-C motif chemokine
ligand-1/5 (CXCL1 and CXCL5), Angiogenin (ANG), hepatocyte
growth factor (HGF), and fibroblast growth factor-7 (FGF-7)
(83). These paracrine properties of hAMSCs make them suitable
for the restoration of bone defects (40, 83).

Fracture healing is a complex, well-orchestrated, regenerative
process that is coordinated by a variety of cell types, including
inflammatory cells, vascular endothelial cells, MSCs, and
fibroblasts (97). In the various stages of the bone healing
process, inflammation and angiogenesis precede osteogenesis,
thereby indicating that controlling inflammation and promoting
angiogenesis in an early stage might speed up the subsequent
bone formation and ultimately bone remodeling (97).
Therefore, we proposed to introduce hAMSCs to bone
defects’ microenvironment and stimulate and accelerate the
endogenous vascularized bone regeneration. Several studies have
shown that hAMSCs enhance the osteogenic differentiation of
AdSCs, BMSCs, and promote the tube-formation of human
umbilical vein endothelial cells (HUVECs) (84–89). When
hAMSCs are co-cultured with BMSCs in a transwell system, ALP
activity of BMSCs and the expression of osteogenic markers,
including OCN and Runx2, were upregulated (90). Conversely,
in the co-culture, hAMSCs reverse the inhibition of oxidative
stress-induced osteogenic differentiation of caused by hydrogen
peroxide, which in turn, inhibits the inflammatory response in
vivo (91). When hAMSCs are co-cultured with HUVECs, high
levels of Collagen-1 (COL1), ANG, and VEGF were detected in
the co-culture medium, and capillary-like tube structures were
observed in HUVEC tube-formation assay (92). Interestingly,

a correlation was established between the high expression of
lncRNA H19 and the pro-angiogenic functions of hAMSCs (93).

Based on the in vitro data, the researchers applied hAMSCs
to animal bone defect models. Ranzoni et al. injected hAMSCs
intraperitoneally into mice that suffered from osteogenesis
imperfecta (OI). The transplanted mice had improved
bone structural quality, high mineral density, and better
mineralization, while the genes related to osteogenesis were
upregulated and those associated with inflammation, TGF-β,
and osteoclast differentiation were downregulated (94). The
β-tricalcium phosphate (TCP) scaffolds containing xenograft
hAMSCs have been reported to improve regeneration of Wistar
rats’ skull defects. The xenograft cells did not cause obvious
immune response in the transplanted rats (95). In our recent
studies, we comprehensively analyzed the survival of hAMSCs
after transplantation in nude mice and the specific mechanism
of hAMSCs in promoting bone tissue regeneration. It had been
confirmed that hAMSCs could be survival in bone defects for at
least 2 weeks after transplantation. Although hAMSCs survived
in vivo, they did not seem to transform into osteoblasts. In
specimens from early bone defect healing, hAMSCs polarized
macrophages to M2 that could secrete pro-angiogenic and
osteogenic cytokines, such as BMP-2 and VEGF (83). Moreover,
we also found that hAMSCs promote extracellular matrix
remodeling (98). Combined with these functions, we believed
hAMSCs could start endogenous vascularized bone regeneration.
And in terms of the ultimate osteogenic effect, our findings
showed that hAMSCs accelerated new bone formation not only
in bone defects but promoted rapid osseointegration of dental
implants (69, 83).

CLINICAL TRIALS

Stem cell therapies exert their effects on a wide range of diseases
and injuries, including immune disorders (99), various neural
disorders or injuries (100), myocardial injury (101), pulmonary
diseases (102), diabetes (103), cancer treatments (104), and
bone/cartilage degenerative disorders or injuries (105). Several
types of stem cells have been subjected to clinical trials (106).
Stem cells derived from the human placenta have been reported
to be in clinical trials for a variety of therapeutic applications
(107). In a single-center, non-randomized, intravenous dose-
escalation phase Ib trial, patients with idiopathic pulmonary
fibrosis received intravenous administration of placental MSCs
from unrelated donors. Previous data demonstrated that
placental MSC therapy is feasible and has a satisfactory short-
term safety profile in idiopathic pulmonary fibrosis (108).
Clinical trials using placental MSCs to treat OA, Crohn’s disease,
and multiple sclerosis (MS) have shown that the cells were well-
tolerated, and cell therapy was dose-related (109–111). Amnion
is a part of the placenta that has been used in clinical trials
to treat skin and corneal burns (112, 113). These clinical trials
suggested that the amniotic membrane accelerates recovery via
inhibiting inflammation and releasing growth factors. These
therapeutic effects could also be found in hAMSC-CM. In
the subsequent clinical trials using this conditioned media,
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TABLE 2 | The role of hAMSCs in bone regeneration.

References Disease model Method Conclusion

Yin et al. (69) MSFE Intravenous injection hAMSCs accelerated mineralized deposition rates and

enhanced bone regeneration after MSFE.

Topoluk et al. (71) Bone defects Culture in vitro hAMSCs had a greater differentiation potential toward bone and

cartilage compared with AdSCs.

Li et al. (72) Bone defects Implantation with PLGA The BMP9-induced osteogenic differentiation and angiogenesis

of hAMSCs could be inhibited by Schnurri-3.

Li et al. (73) Bone defects Implantation with

scaffolds

The osteogenic differentiation and angiogenesis of hAMSCs

could be enhanced by 3D silk fibroin scaffolds.

Leyva-Leyva et al.

(75)

Bone defects Culture in vitro Different hAMSCs subpopulations had dissimilar osteoblastic

differentiation potential, and CD105– cells were better than

CD105+ cells.

Fan et al. (76) Bone defects culture in vitro <1.0mM sodium butyrate enhanced the expression of

osteogenesis-related genes and proteins of hAMSCs.

Shen et al. (77) Bone defects Culture in vitro hAMSCs and UC-MSC had a higher osteogenic differentiation

potential than the MSCs from chorionic membrane and decidua.

Ma et al. (78) Bone defects Culture in vitro hAMSCs had a greater osteogenic differentiation than the MSCs

from umbilical cord and chorionic plate.

Liu et al. (80) Osteopenia Hypodermic

implantation

MSCs secreted exosomes to regulate the

miR-29b/Dnmt1/Notch epigenetic cascade.

Jiang et al. (83) Bone defects Subcutaneous injection hAMSCs stimulated endogenous regeneration of bone via

paracrine function.

Zhang et al. (84) Osteoporosis Co-culture hAMSCs enhanced the cell proliferation, antioxidant properties,

osteogenic, and angiogenic differentiation of BMSCs and

HUVECs.

Wang et al. (85) Periodontitis Culture in vitro hAMSCs promoted the osteoblastic differentiation of BMSCs

and influenced p38 MAPK signaling to reducing bone loss.

Wang et al. (86) Bone defects Co-culture hAMSCs regulated the differentiation processes in BMSCs by

influencing the differentiation antagonizing non-protein coding

RNA.

Zhang et al. (87) Bone defects Co-culture hAMSCs increased the proliferation and osteoblastic

differentiation of AdSCs and enhanced angiogenic potential of

AdSCs via secretion of VEGF.

Wang et al. (88) Bone defects Culture in vitro hAMSCs enhanced the osteogenesis of AdSCs by promoting

APN excretion through APPL1-ERK1/2 activation.

Ma et al. (89) Bone volume

inadequacy

Hypodermic

implantation

hAMSCs promoted osteogenic differentiation of BMSCs via

H19/miR-675/APC pathway.

Wang et al. (90) Bone defects Co-culture hAMSCs promoted BMSCs proliferation and osteogenic

differentiation in vitro.

Wang et al. (91) Bone deficiency Culture in vitro hAMSCs promoted the proliferation and osteoblastic

differentiation of BMSCs via ERK1/2 MAPK signaling, and

down-regulated ROS level.

Bian et al. (92) Bone deficiency Co-culture hAMSCs/BMSCs cultured in transwell coculture system had

better performance in bone regeneration than those in mixed

coculture systems.

Yuan et al. (93) Bone defects Co-culture hAMSCs promoted angiogenesis regulating by the expression of

lncRNA H19.

Ranzoni et al. (94) OI Intraperitoneal injection hAMSCs accelerated the bone formation via differentiating into

osteoblasts and promoting endogenous osteogenesis and the

maturation of resident osteoblasts.

Tsuno et al. (95) Bone defects Implantation with

scaffolds

hAMSCs promoted bone regeneration via increasing ALP

activity, calcium deposition, and the expression of osteocalcin

mRNA.

MSFE, maxillary sinus floor elevation; hAMSCs, human amniotic mesenchymal stem cells; AdSCs, adipose-derived stem cells; BMP9, bone morphogenetic protein 9; PLGA,

poly(lactic-co-glycolic acid); 3D, three-dimensional; UC-MSC, umbilical cord mesenchymal stem cells; MSCs, mesenchymal stem cells; BMSCs, bone marrow mesenchymal stem

cell; HUVECs, human umbilical vein endothelial cells; MAPK, mitogen-activated protein kinase; VEGF, vascular endothelial growth factor; APN, adiponectin; APPL1, adaptor protein;

PH, phosphotyrosine interaction, domain and leucine zipper containing 1; ERK1/2, extracellular signaling-regulated kinase 1/2; APC, adenomatous polyposis coli; ROS, reactive oxygen

species; OI, osteogenesis imperfecta; ALP, alkaline phosphatase.
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the bioactive cytokines, such as VEGF, FGFs, and keratinocyte
growth factor (KGF) were identified and were found to promote
ulcer healing (114) and improved photoaging (115) when the
medium was locally injected into the lesions. Currently, there
are no reports on the clinical trials using hAMSCs on bone
regeneration; however, BMSCs (116, 117), AdSCs (118), and
dental pulp stem cells (DPSCs) (119) had shown to be safe,
feasible, and effective (120). Based on the data of the clinical trials,
we speculated that hAMSCs could be studied in the clinical trials
of bone regeneration for future applications.

CONCLUSION AND PERSPECTIVES

Although hAMSCs have become an alternative source of stem
cells in regenerative medicine and tissue engineering due to their
advantages such as easy gain, sufficient quantity, and superior
properties, the application from laboratory research to clinical
practice in the future needs further exploration. We still need
to carry out further studies on hAMSCs acquisition, storage,
and transportation to form standardized standards to maintain
and improve the therapeutic potential of hAMSCs, so as to
ensure the clinical application effects. It has been well-known
that autologous MSCs represent the primary sources considered
safe for transplantation and minimization of immunological risk.
Preclinical studies should confirm the safety and immunological
risk of allogenic hAMSCs for transplantation by comparing
with autologous MSCs, and then the mechanisms of hAMSCs
in promoting skeletal system diseases in vivo are also needed

to further elucidate, which are important to determine the
indications, timing, dosage, and accurate administration of
hAMSC-based therapy. For the treatment of bone regeneration
and other bone disorders, more efforts should be made to
optimize the therapeutic effects of hAMSC-based therapy by
combining with other biomaterials and bioactive factors. Despite
these challenges, it is no doubt that MSC-based therapy has a
promising clinical application prospect. Since previous studies
have demonstrated the hAMSCs with excellent MSC properties,
hAMSC-based therapy is worthy to be further studied in depth
and finally put into clinical practice.
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