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In this paper we propose a novel visual method for protein model classification and retrieval. Different from the conventional
methods, the key idea of the proposed method is to extract image features of proteins and measure the visual similarity between
proteins. Firstly, the multiview images are captured by vertices and planes of a given octahedron surrounding the protein. Secondly,
the local features are extracted from each image of the different views by the SURF algorithm and are vector quantized into
visual words using a visual codebook. Finally, KLD is employed to calculate the similarity distance between two feature vectors.
Experimental results show that the proposed method has encouraging performances for protein retrieval and categorization as

shown in the comparison with other methods.

1. Introduction

The classification and retrieval of protein models is widely
applicable in biomedical science. Biologists have a great
demand for protein retrieval and classification tools to iden-
tify the functions of unknown proteins and to discover new
functions of known proteins.

The most widely used protein structure classification
systems are CATH [1] and SCOP [2], both of which are
created by experts based on their experiences. With the rapid
growth of the 3D protein structures, the artificial classifica-
tion has been unable to meet the demand. It is desirable to do
classification and retrieval in a more automated way. So, more
and more researchers are dedicated to studying automatic
classification methods which are based on the biological
function of the protein molecules.

The protein molecules are of some specific shape which
can be described by their biological function, for example,
the amino acid sequences and 3D structures. According to
the different biological functions, there are three kinds of
methods for protein retrieval and classification. They are
respectively based on molecular sequence, protein secondary
structure (SS) elements, and 3D structural coordinates.

The methods based on the molecular sequence aim to
determine the amino acid sequences, since the amino acid
sequences of proteins are easily understandable and simple
to classify. The methods include FASTA [3], BLAST [4], PSI-
BLAST [5], and Hidden Markov Models [6].

In most cases, the protein is represented by a set of SS
elements. So many researchers are devoted to designing dif-
ferent algorithms to represent vector features by SS elements
or to obtain the similar distance between the SS elements.
Milledge et al. [7] created a geometrical hashing using
interatomic distance to identify the triples of atoms. Zotenko
et al. [8] mapped the structure to a high-dimensional vector
and utilized distance between the corresponding vectors to
approximate the structural similarity. Feature vectors are
extracted from contact regions of the secondary structure
elements (SSEs) by Aung and Tan [9]. Camoglu et al.
[10] used R-Tree in indexing the vector features which are
represented by SS. Cantoni et al. [11] proposed a protein struc-
tural motif retrieval approach based on Generalized Hough
Transform, which evaluates the triplet of the Secondary
Structure by midpoints distance. In literature [12], Mavridis
et al. compared the performance of six algorithms including
Contact Maps, 3DZernike, Group Integration, Genocrypt,
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Spherical Trace Transform, and 3DBlast by classifying protein
structures according to the CATH superfamily classification.
The experimental results showed that contact maps and
3DBlast are conceived specifically to compare the structures
of proteins.

The methods based on the 3D structure coordinates
try to describe proteins shape by identifying or comparing
structural alignment. MAMMOTH [13] modeled portion of
the target structure and compared protein structure with
an arbitrary low-resolution protein model. TM-align [14]
identified the best structural alignment by protein pairs and
Dynamic Programming. FAST [15] compared the intramolec-
ular residue-residue relationships of two structures by using
a directionality-based scoring scheme. In order to reduce the
coordinate-independent space of protein structures, Holm
and Sander [16] proposed the optimal pairwise structural
alignment algorithm using Monte Carlo. Shindyalov and
Bourne [17] studied heuristics combinatorial extension and
similarity evaluation of structural alignment path algorithm.

In recent years, there appeared a method based on
image distance matrices. Ankerst et al. [18] introduced 3D
shape histograms algorithm to compare protein models or
molecules. Chi et al. [19] compared protein structures by
using signatures extracted from image-based distance matri-
ces and multidimensional index. Yeh et al. [20] compared
the protein models from multiple 3D projection views. The
image-based retrieval methods exhibited a higher degree of
precision than the three kinds of traditional methods.

In this paper, we propose an image-based protein retrieval
and classification method using SURF algorithm to extract
features and k-means to cluster the features, thus generating
a codebook. We use histogram determined by BOVF (bag-of-
visual-features) vectors to represent the characteristics of the
identified models.

We construct an image-based method to avoid exhaustive
search for the molecular sequence, structure coordinates, and
chain structure alignments. Our major contribution is to
propose an efficient protein models retrieval and classifica-
tion method by using bag-of-visual-feature. The performance
is exciting. Our experimental retrieval precision is 96% on
average.

This paper is organized as follows. Section 2 discusses
the related algorithm for SURF and bag-of-feature and
then details the proposed method. Experimental results are
represented and analyzed in Section 3. In the final section we
conclude this paper.

2. Materials and Methods

2.1. Bag-of-Features. The bag-of-words method was first used
in document retrieval and applied in 3D shape retrieval and
categorization, due to its many advantages such as simplicity,
flexibility, and efficiency. The bag-of-features was first pro-
posed by Liu et al. [21] for both global comparison and partial
matching. It relies on the extraction of spin image signatures
which are later grouped in clusters. Yu etal. [22] built an
effective image retrieval system based on the bag-of-features
model. They, respectively, integrated the SIFT and LBP
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descriptors and the HOG and LBP descriptors and proposed
the patch-based integration and image-based integration
models. The experimental results showed that the image-
based SIFT-LBP integration clustering by weighted k-means
algorithm achieves the best performance. A simple, novel, yet
powerful approach was presented for background subtraction
by bag-of-features [23]. They supposed that encoding the
local color and texture information can effectively attenuate
the texture variations in the background scenes and then
domain-range features were encoded in the soft-assignment
coding procedure which is decided by the appropriate kernel
variances. Nanni and Lumini [24] applied bag-of-features
and heterogeneous set of texture descriptors for object
recognition. The proposed method is based on a simple
exhaustive extraction of subwindows and classification of
random subspace by support vector machine (SVM) and
can reduce dimensions by the principal component analysis.
Moreover, Zhou et al. [25] proposed a method for scene
classification using a multiresolution bag-of-features model.
The bag-of-features approach can be also applied in music
classification [26], distinction text between handwritten and
machine-printed [27], and noise filter [28] and so forth.

The bag-of-features has also been applied to local feature
3D shape retrieval and classification. Ohbuchi et al. [29]
extracted local features from each range image of different
views using the Scale Invariant Feature Transform (SIFT)
algorithm [30] for retrieving rigid models and articulated
models. In [31], a novel framework is employed to combine
spectral clustering with region growing based on fast march-
ing 3D object categorization.

BOF was also used in analyzing medical images and
computer-aided diagnosis (CAD). Shen et al. [32] proposed
a human epithelial type 2 (HEp-2) classification framework
using intensity order pooling based on gradient feature and
bag-of-words. The pooled gradient feature extracted by the
intensity orders of local grid points is rotationally invariant,
which outperformed SIFT feature significantly. Wang et al.
[33] investigated two issues of bag-of-feature strategy for
tissue classification and developed a novel algorithm named
Joint-ViVo to learn the vocabulary and visual word weights
jointly. The test results showed that the algorithm is better
than the state-of-art methods on classifying breast tissue
density in mammograms and lung tissue in high-resolution
computed tomography (HRCT) images and identifying brain
tissue type in magnetic resonance imaging (MRI).

2.2. Speed-Up Robust Features (SURF). SURF was proposed
by Bay et al. [34]. It is based on sums of 2D Haar wavelet
responses and Hessian matrix based interest point’s detector
and it makes an efficient use of integral images, which are
a robust local feature detector and descriptor that can be
used in computer vision tasks like object recognition for 3D
reconstruction. Though SURF is partly inspired by the SIFT
descriptor, it is several times faster and more robust than
SIFT.

Gui et al. [35] proposed a novel point-pattern matching
method based on the SURF and Shape Context. They applied
the SURF bidirectional matching to match the feature points
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FIGURE 1: An illustration of our method (PDB code “1hdd”).

in two images preliminarily and then calculated Shape Con-
text descriptors of the feature points. Experimental results
show that the method can eliminate the incorrect matching
point pairs and improve the accuracy of point-pattern match-
ing. A fully affine invariant SURF algorithm was proposed
by Pang et al. [36], which has the affine invariant advantage
of ASIFT and the efficient merit of SURE Alcantarilla et
al. [37] proposed a descriptor named Gauge-SURF which
is evaluated relative to the gradient direction at every pixel.
Because of the use of integral images, the descriptors are fast
and robust.

Recently, SURF was used in iris retrieval and recognition.
A hierarchical approach was proposed to retrieve an iris
image from a large iris database [38]. The approach is a
combination of both iris color and texture and the iris texture
features are obtained by SURF algorithm. Mehrotra et al.
[39] proposed a robust segmentation and an adaptive SURF
descriptor for iris recognition. In their method, the adaptive
strip transformed from the annular region between the iris
and pupil boundaries is enhanced using a gamma correction
approach. Then, features are extracted from the adaptive
strip using SURE Feulner et al. [40] presented a method for
automatically estimating the body region of a CT volume
image. The method is based on 1D registration of histograms
of visual words, which serves as a description of a CT slice.
The SURF descriptor was extended to N dimensions named
N-SURE. Because of its simpler and efficient functioning,

they used 2D upright SURF descriptors for estimating the
body region.

2.3. The Proposed Method. The key idea of our method is
to extract the features of proteins and measure the visual
similarity between proteins. Our algorithm is implemented
subsequently in four steps, as shown in Figure 1.

(1) Multiview Rendering. Render multiview images of the
protein from different perspectives. The viewing angle is
determined using the vertices and planes of a given octahe-
dron structure surrounding the protein, as shown in Figure 2.

(2) Local Feature Extraction. Extract the local visual features
of the multiview images by using SURF algorithm. Then, for
each view, we calculate the SURF descriptors.

(3) Visual Words Generation and Word Histogram Construc-
tion. Generate visual words from feature vectors using a
visual dictionary (i.e., the codebook). A visual dictionary
can be got by k-means clustering and so each local feature
shall be represented as a discrete form. The frequencies of
visual words are counted and stored into a histogram, which
becomes the feature vector of the corresponding protein
model.
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FIGURE 2: The multiviews are captured from the vertices and the planes on a given regular octahedron.

(4) Distance Computation. The dissimilarity among a pair of
feature vectors (the histogram) is computed by the Kullback-
Leibler divergence (KLD).

2.3.1. Multiview Rendering. The multiview shapes are cap-
tured from the six vertices and the eight planes on a given
regular octahedron. Figure 2 shows the six vertices and the
eight planes on the octahedron. Along the x+, x—, y+, y-,
z+, and z— axes, we capture the protein’s right view, left view,
top view, bottom view, front view, and rear view. Along the
normal direction of each plane, we get the protein’s eight
oblique views. The size of the captured image is set as 100 x
100 pixels.

As we mentioned above, 14 different views still exist
for a protein. Figure 3 illustrates all the 14 views of protein
structure encoded as “Thdd” with PDB code after adjusting
the viewing perspective.

To reduce the interference in operating and standardizing
the rendering process, we write a program for view capturing
from CATH and SCOP in the PDB. The program can
automatically load protein models, rotate models, capture
images, and save images following a certain naming rule. Of
course, the protein models are also selected automatically by
the program in advance.

2.3.2. Local Feature Extraction. After the range images are
rendered, the SURF algorithm is applied to each of the
range images to detect interest points and then to extract
SUREF descriptors, as presented in [30]. The SURF algorithm
detects interest points and then computes features at these
interest points. The SURF firstly finds positions of features
that are salient. The saliency detection is based on a multiscale
and multiorientation Fast-Hessian detector and distribution-
based descriptor for gray-level change so that each SURF

feature can encode this information. The SURF descriptor is
calculated using the OpenSURF C++ source code by Evans
[41].

Figure 4 shows examples of an interest point generated
and its images that are rotated, affined, and scaled. The
numbers of interest points of SURF algorithm are 113, 112,
102, and 93, as shown in the second row. The interest points
appear at similar locations in these four images in spite
of the geometrical transformations. This robustness against
geometric transformations contributes to the protein model
retrieval performance.

Figure 5 shows the examples of SURF interest points
match of images in Figure 4. The numbers of interest points
matching are 59, 52, 54, 35, 45, and 40. Every image is
successfully matched to a certain feature point. Because of
the different interest feature points (in number, size, and
position) extracted by SURE the numbers of the feature
points that match are different.

2.3.3. Visual Words Generation and Word Histogram Con-
struction. It is time consuming to compare model’s local
SUREF feature directly, especially for the large number of
views. Therefore it is necessary to quantize the SURF descrip-
tors extracted from a multiview image into visual words.
Firstly, a visual codebook is generated by using oft-line k-
means clustering of the features of every view. Then, the
codebook is searched linearly to find a visual word closest
for the feature. As a result, the feature vectors of visual
words are selected through the centers of the clusters (called
barycenter), and the number of the clusters determines the
codebook size.

After generating the codebook, we should construct a
word histogram over the codebook, which is also an off-line
process. The word histogram is constructed by counting the
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FIGURE 3: Fourteen views of protein “lhdd” (PDB code).
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FIGURE 4: Interest points of the SURF algorithm are robust.

frequencies of visual words. Each view is represented as a
word histogram which is the features extracted by bag-of-
visual-features. So the protein model’s histogram is produced
by combining every view image’s histogram of the protein
model.

2.3.4. Distance Computation and Range Models Matching.
The last step of our method is the distance computation (also
called models matching) between two models. A distance

among a pair of feature vectors (the histogram) is computed
by using the Kullback-Leibler divergence (KLD). The KLD is
not a distance metric, for it is not symmetric. Consider

D(xy) =) (- x)n 2, o
i=1 i

where, x = (x;) and y = (y;) are the feature vectors and 7 is
the dimension of the vectors.
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3. Results and Discussion

In order to evaluate the efficacy and generalization capacity
of the proposed method, we tested it with several different
retrieval and categorization tasks. The first experiment com-
pares the performance of our method and the compared
method in terms of their capability for classification. The
second experiment tests the impact of the numbers of
the clusters on the methods’ retrieval capability. The last
experiment tests the influence of the size of the training data
on the method.

We implement the experiments in Matlab R2010a, while
the SURF and the k-means code is written in C++. All
algorithms are run under windows 7 32bit on a personal
computer with a Core 2 Quad 2.66 GHz CPU, 3.00 GB DDR2
memory, and a 512 MB ATT Radeon HD4600 graphics card.

To evaluate the method’s efficiency, we measured the
feature extracting time. We experimented on the compu-
tation time in a 2,000 protein models database which has
images of 28,000 views. The computation time for SURF
feature extracted algorithm is about 219.48 seconds (an off-
line process). For clustering the features by k-means and
generating the histograms by bag-of-visual-features, it takes
42.49 seconds and 0.66 seconds by an off-line process for the
same 2,000 protein models database.

3.1. Classification. In the first experiment, we evaluate the
classification performance of our approach by using protein
models database of SHREC 2010 [12], which includes 1000
protein structures chosen from 100 CATH 3.3 superfamilies.
In the dataset each superfamily consists of at least 10 struc-
tures, and each structure contains at least 50 amino acids. We
use two different ways (nearest neighbor, ROC plot) to test
the performance of our method by comparing with 3DBlast,
3DZernike, GENOCRIPT, Contact Maps, Group Integration,
and Spherical Trace Transform methods.

TABLE 1: Nearest neighbour results.

Method Correct predictions
3DBlast 68%
3DZernike 8%
Genocrypt 56%
Contact maps 80%
Group integration 52%
Spherical trace transform 0%
Proposed method 89%

Nearest neighbor was counted as a correct prediction
when the first protein of each ranked list was found to be a
member of the same superfamily as the query.

ROC plot (receiver operating characteristic) is a graphical
plot which illustrates the true positives rate against the false
positives rate. The area under the curve (AUC) is a single
numerical performance measure of each ROC plot. The
perfect value of AUC is 1.0 [12].

Table 1 summarizes the retrieval rate for all the methods.
The value of the comparison algorithm is from literature [12].
According to Table 1, the correct prediction of the proposed
method is better than the comparison algorithm.

Figure 6 shows in a bar graph the query results with
each algorithm on 50 protein structures. As Figure 6 shows,
the proposed method can easily and successfully identify
each query protein, including those that the comparison
algorithms failed to identify. Compared with the compar-
ison algorithms, the proposed method may identify some
superfamilies more easily. It has a very encouraging and
satisfactory result that the comparison algorithms cannot
reach. It is worth noting that the classification correctness of
the proposed method is almost the same as that that has been
done by human experts.



Computational and Mathematical Methods in Medicine

3DBLAST

3DZernike

X N O O
— = = AN N N N

Contact maps

10
14
18
22
26
30
34
38
42
46
50

0.10 3DBLAST

0.08
0.06
0.04
0.02

0.00

Contact maps
0.10

0.08
0.06
0.04
0.02

0.00

0.8

0.4

0.0

AN O O F 0NNV O F oA O O
— = = AN AN NN N

Group integration

~

Genocrypt

N O O FH oW OoO F oA YO
o = AN NN NN N

Spherical trace transform

0.8

0.4

0.0

0.8

0.4

0.0

AN O O F AN OO F oA O
o = AN AN 0 N TN

Proposed method
[] H (ITHTT HTTI

0.8

0.4

0.0

(a)

0.10 3DZernike

0.8

0.4

0.0

AN O O F 0N VOV O F oA o O
— = = AN AN O N F N

0.10 Genocrypt

0.08
0.06
0.04
0.02

0.00

— N

(o)}

TFNONOVAANL X —F DO
H AN N

Group integration

0.10

0.10 Spherical trace transform

0.08
0.06
0.04
0.02

il

0.00

17
20
23
26
29
32
35
38
41
44
47
50

0.10 roposd metho 7
0.08
0.06
0.04

0.02

0.00

— n T
——

(=]
N

(b)

N0 NN O~ F IO
NN N

FIGURE 6: Bar chart for each method. The upper charts show the total AUC, whereas the lower charts show the AUCs calculated for the top
10% of the database. The comparison algorithm is come from literature [12].



8
1.005
1l
g 0.995
S
Z 099t
1
£ 0985
=9
ggb 0.98 |
3;, 0.975
< 097t
0.965
0.96 _/n L L L L L L L
0 01 02 03 04 05 06 07 08 09 1
Average recall
—_e- 1K -+- 6K
—— 2K -¢- 7K
—=— 3K -»- 8K
-4- 4K -+- 9K
--- 5K -»- 11K

FIGURE 7: The precision-recall curves of influence of the codebook
size.

3.2. Influence of the Size of the Codebook. In the second ex-
periment, the influence of the vocabulary size (codebook
size) upon retrieval performance is studied. The test dataset
includes 800 protein structures chosen from SCOP protein
database.

The number of visual words in the codebook (the code-
book size) is a very important parameter in our algorithm.
Because the codebook size not only determines the spa-
tial requirement but also significantly affects the retrieval
performance. Figure 7 demonstrates that the precision-recall
curves of our methods increase steadily with the codebook
size. We observe that with the number of codebook size
enlarging from 1,000 to 11,000, the precision-recall values are
comparatively stable and the precision rate is between 0.96
and 1 for all codebook sizes. Meanwhile, the difference of
precision is 0.02 between the best case and the worst case.
So the influence of the number of the codebook on retrieval
precision is small. According to the experimental result, we
set the number of visual words in the codebook as 3,000 in
this paper.

3.3. Influence of the Size of the Training Data. In the third
experiment, we investigate the influence of the training data
size on the retrieval efficiency. The test dataset different
from the training data is selected from different structural
classifications of SCOP protein database. Figure 8 shows the
precision-recall curves when the number of training data
is 400, 800, 1,200, 1,600, and 2,000 respectively. As the test
results show, the precision rates are all between 0.96 and 1
regardless of the number of training data size.

4. Conclusion

In this paper, we proposed a novel feature extracting algo-
rithm for protein retrieval and classification. The proposed
method employs a powerful local image feature called SURF
and bag-of-visual-feature. The key idea is to describe a
view as a word histogram, which is obtained by the vector
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quantization of the view’s local features and to apply KLD to
calculate the distance between two models.

A set of experiments were carried out to investigate
several critical issues of our method in the CATH and SCOP
protein models database from PDB. The experimental results
indicate that our method has satistying performances for
protein retrieval and protein categorization that cannot be
reached by other comparison methods.
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