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Aims European and American clinical guidelines for implantable cardioverter defibrillators are insufficiently accurate for 
ventricular arrhythmia (VA) risk stratification, leading to significant morbidity and mortality. Artificial intelligence offers a 
novel risk stratification lens through which VA capability can be determined from the electrocardiogram (ECG) in normal 
cardiac rhythm. The aim of this study was to develop and test a deep neural network for VA risk stratification using routinely 
collected ambulatory ECGs.

Methods 
and results

A multicentre case–control study was undertaken to assess VA-ResNet-50, our open source ResNet-50-based deep neural 
network. VA-ResNet-50 was designed to read pyramid samples of three-lead 24 h ambulatory ECGs to decide whether a 
heart is capable of VA based on the ECG alone. Consecutive adults with VA from East Midlands, UK, who had ambulatory 
ECGs as part of their NHS care between 2014 and 2022 were recruited and compared with all comer ambulatory electro-
grams without VA. Of 270 patients, 159 heterogeneous patients had a composite VA outcome. The mean time difference 
between the ECG and VA was 1.6 years (⅓ ambulatory ECG before VA). The deep neural network was able to classify ECGs 
for VA capability with an accuracy of 0.76 (95% confidence interval 0.66–0.87), F1 score of 0.79 (0.67–0.90), area under the 
receiver operator curve of 0.8 (0.67–0.91), and relative risk of 2.87 (1.41–5.81).

Conclusion Ambulatory ECGs confer risk signals for VA risk stratification when analysed using VA-ResNet-50. Pyramid sampling from the 
ambulatory ECGs is hypothesized to capture autonomic activity. We encourage groups to build on this open-source model.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Question Can artificial intelligence (AI) be used to predict whether a person is at risk of a lethal heart rhythm, based solely on an elec-
trocardiogram (an electrical heart tracing)?

Findings In a study of 270 adults (of which 159 had lethal arrhythmias), the AI was correct in 4 out of every 5 cases. If the AI said a 
person was at risk, the risk of lethal event was three times higher than normal adults.
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Meaning In this study, the AI performed better than current medical guidelines. The AI was able to accurately determine the risk of 
lethal arrhythmia from standard heart tracings for 80% of cases over a year away—a conceptual shift in what an AI model can 
see and predict. This method shows promise in better allocating implantable shock box pacemakers (implantable cardiover-
ter defibrillators) that save lives.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Keywords Ventricular arrhythmia • Deep learning • Risk stratification • Artificial intelligence • Implantable cardioverter 

defibrillator • Neural network

Introduction
Ventricular arrhythmias (VAs) can be lethal, with survival determined by 
access to effective defibrillation. Delays in defibrillation are associated 
with functional disability, care dependency, and death.1 External defi-
brillators are not accessed in 90% of cases and current implantable car-
dioverter defibrillators (ICDs) guidelines are insufficiently accurate, 
including fewer than 20% of all VAs.2,3 Novel artificial intelligence (AI) 
prediction methodologies may improve current guidelines to deter-
mine VA capability and therefore assign ICDs more accurately.4 The 
aim of this study is to develop a deep neural network for VA risk strati-
fication using routinely collected ambulatory electrocardiograms 
(ECGs) in order to predict VA capability from a patient’s normal cardiac 
rhythm.

Methods
A multicentre retrospective deep-learning-based case–control study was 
undertaken at University Hospitals of Leicester (UHL: Leicester General 
Hospital, Glenfield Hospital & Leicester Royal Infirmary) and University 
Hospitals of Northamptonshire NHS Group (UHN: Kettering Hospital), 
UK. The eligibility criterion for the VA cohort was consecutive adults with 
International Classification of Diseases 10 (ICD10) diagnoses of I47.2 ven-
tricular tachycardia (VT) and I49.0 ventricular fibrillation/flutter (VF) with am-
bulatory ECGs during the period between 2014 and 2022. For patients with 
multiple ambulatory ECGs, only the earliest recorded one was taken. There is 
no established power factor for AI studies, and therefore, the largest possible 
cohort was sought. The eligibility criterion for the comparator cohort 
was consecutive adults with ambulatory ECGs over a 5-day period in 
November 2022.

Signal processing
Three-lead ambulatory 24 h ECGs (Spacelabs Lifecard CF Holter monitors 
128 Hz) were exported from Spacelabs in ISHNE (.ecg) format. 
Electrocardiograms were pre-processed using a second-order Bessel filter, 
passband between 0.1 and 50 Hz, and a notch filter at 50 Hz. R peaks in the 
ECG data were detected using the Pan–Tompkins algorithm. Smoothed RR 
intervals on the ECG were obtained by a moving average filter with a factor 
of 40 samples before converting to heart rate. Pyramid sampling was under-
taken by categorizing computed heart rates into 100 distinct levels ranging 
from slow to fast rates; these levels were defined by uniformly distributed 
percentiles regardless of the time of the day. One 10 s segment was se-
lected randomly from each level and formed one input sample. This selec-
tion process was repeated 100 times for each patient and for each of the 
three ECG leads. As a result, for each patient, 100 × 3D tensors were gen-
erated in the format of 100X1280X3 (Figure 1).

Data flow
A patient-wise partitioning strategy was employed, allocating 80% for train-
ing and 20% for testing. Within the training data, we instituted a five-fold 
cross-validation procedure partitioned by patients. Consequently, this 
yielded five distinct models from which an ensemble approach converged 
the predictions to deliver the final prediction model on the unseen test 
data (Figure 1).

Deep learning architecture
A transfer-learned, customized ResNet-50-based convolutional neural 
network was employed with a modified input layer that we name 
VA-ResNet-50. The architecture was organized into blocks of convolution-
al and identity layers with 53 convolutional layers using various filter sizes, 
53 batch normalization layers, 49 ReLU layers, and 5 pooling layers. In add-
ition to these, we incorporated three fully connected layers, two dropout 
layers, L2 regularization (a regularization factor of 0.01), a softmax layer, 
and a classification layer (Figure 1). We employed a learning rate of 1e−4, 
a decay factor of 0.1 every 5 epochs, for 20 epochs max with early stopping 
at 2 consecutive epochs, and adam optimization. The batch size was 64, and 
the dropout layer rate was 0.6. The open-source model is available on 
GitHub.5 The model served to take 100 × 3D ECG tensors per patient 
that are individually classified by the model to generate the averaged class 
probability score for the per-patient prediction, with a threshold arbitrarily 
set to 0.5.

Statistical analysis
The performance of the neural network was evaluated in the test set using 
metrics such as overall accuracy, F1 score, sensitivity, specificity, area under 
the receiver operator curve (AUC), and area under the precision-recall 
curve. Confidence intervals for performance metrics were calculated using 
bootstrapping with 1000 iterations. All analyses were completed in 
MATLAB (Mathworks, USA).

Permissions and reporting
Study permissions were granted from the respective institutional review 
committees; registration numbers; UHN: REF8882 and UHL: REF11434. 
This paper was reported according to STARD2015 reporting guidelines.

Results
The study comprised 270 patients—178 UHN and 92 UHL patients. 
Ventricular arrhythmia occurred in 159 patients [mean (95% confi-
dence interval, CI) age 61 years (57–65); 78 females (49%)] compared 
with 111 patients without VA [age 58 years (54–62); 56 females (51%)]. 
The VA-positive and -negative cohorts differed in terms of proportions 
of cardiovascular risk factors, electrocardiographically distinct diagno-
ses, and cardiomyopathies, but all diagnoses were represented within 
both cohorts. For the composite outcome of VA, VT was 88% 
(n = 140), while 24% (n = 39) represented VF and 6% represented 
both VT and VF diagnoses (Table 1). The mean time difference between 
the ECG and VA was 1.6 years, with 27% of the cohort having an am-
bulatory ECG before VA.

Deep learning performance
For the testing dataset, from a normal cardiac rhythm, the model was 
able to classify by VA capability with an F1 score of 0.79 (0.67–0.90). 
Figure 1 displays the confusion matrix. The accuracy was 0.76 (95% 
CI 0.66–0.87). Figure 1 shows the receiver operator characteristic curve 
for the test dataset; the AUC was 0.8 (0.67–0.91). The RR was 2.87 
(1.41–5.81) (Table 1).
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Figure 1 (A) A pyramid sampling schematic demonstrating 100 samples at various heart rates over a 24 h period. (B) VA-ResNet-50 architecture. 
(C ) Patient flow. (D) Confusion matrix including participants before and after electrocardiogram. (E) Receiver operator characteristic curve. ROC, re-
ceiver operator characteristic; VA, ventricular arrhythmia; ECG, electrocardiogram; avg pool, average pooling; batch norm, batch normalization; ID 
block, identity block; conv block, convolutional block; FC, fully connected; ReLu, Rectified Linear Unit.
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Table 1 Patient characteristics and performance metrics

Patient characteristics Ventricular arrhythmia (N = 159) No ventricular arrhythmia (N = 111)

Demographics
Age in years, n (95% CI) 61 (57–65) 58 (54–62)
Female, n (%) 78 (49%) 56 (51%)

Cardiomyopathies
Ischaemic heart disease, n (%) 92 (59%) 19 (17%)
Inherited cardiomyopathy, n (%) 24 (15%) 3 (3%)

Hypertrophic cardiomyopathy, n (%) 7 (4%) 1 (1%)

Heart failure (any), n (%) 47 (30%) 13 (12%)
Dilated cardiomyopathy, n (%) 10 (6%) 1 (<1%)

Myocarditis, n (%) 2 (1%) 0 (0%)

Valvular heart disease, n (%) 69 (43%) 11 (10%)
Cardiovascular risk factors
Hypertension, n (%) 98 (61%) 34 (31%)
Type 2 diabetes, n (%) 16 (10%) 5 (5%)

Chronic obstructive pulmonary disease, n (%) 22 (14%) 6 (5%)

Chronic kidney disease, n (%) 1 (<1%) 1 (<1%)
Dyslipidaemia, n (%) 51 (32%) 16 (14%)

Syncope, n (%) 22 (14%) 7 (6%)

Continued 
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Discussion
VA-ResNet-50, a deep neural network classifier for ambulatory ECGs, 
demonstrates that signals exist for VA capability from the normal intrinsic 
cardiac rhythm. This re-look at ubiquitously available, non-invasive, cheap 
cardiovascular patient data holds promise to assign ICDs with greater pre-
cision and more economically than current practice.6 The AUC of 0.8 is 
consistent with a growing body of evidence for VA prediction with AI.4,7

Specifically for ambulatory ECGs, we report a lower AUC than the un-
published results of Fiorina et al.8 (AUC = 0.91) to predict incident sus-
tained VT. This difference is likely because of time disparities between 
the ECG and VA between cohorts, 2 weeks vs. 1.6 years. This work im-
proves on work published by Sammani et al.9 who describe an AUC of 
0.67, although with an explainable auto-encoder model within a cohort 
of dilated cardiomyopathy. This difference might be explained by their re-
fined ‘life-threatening’ VA outcome—granularity of outcome not available 
to ICD10. Our newly termed pyramid sampling could explain our good 
performance, as autonomic nervous activity is a prognostic marker for 
VAs that manifests over a range of heart rates.10

Limitations
A retrospective recruitment of VA meant that ambulatory ECGs 
were frequently available after VA, which introduces survivor bias. 

The traumatic nature of VA may induce electrophysiological changes 
to be detected. The heterogeneity of the cohort is representative of 
real-world VA but precludes the convention of mechanistic under-
standing required of evidence-based medicine. The comparator co-
hort is similarly comorbid but healthier than the original intended 
comparator cohort, meaning that the model is at risk of classifying 
the heart health index as opposed to a VA risk specifically. The in-
tended comparator cohort - those with ICDs and no VA - were not 
available because they do not undergo ambulatory ECGs due device 
electrogram (EGM) availability. The outcomes were derived only 
from secondary care billing data, which can result in misclassification. 
This ad hoc data collection strategy likely confounds external validity, 
although this recruitment strategy is consistent with the field due to 
the suddenness and unexpected nature of VA.4 Our current analysis 
does not include a systematic assessment of model stability to ran-
dom and adversarial perturbations to data and model structure.7

This, however, will be the topic of our future work.

Conclusions
Ambulatory ECGs recorded during a patient’s normal activities of daily 
living contain signals for VA risk stratification when analysed using our 
open-source VA-ResNet-50 deep neural network. Pyramid sampling 
from the ambulatory ECGs is hypothesized to capture autonomic 
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Table 1 Continued  

Patient characteristics Ventricular arrhythmia (N = 159) No ventricular arrhythmia (N = 111)

Electrocardiographically distinct diagnoses
Atrial fibrillation or flutter, n (%) 56 (35%) 14 (13%)

Left bundle branch block, n (%) 18 (11%) 3 (3%)

Complete heart block, n (%) 3 (2%) 0 (0%)
Ventricular arrhythmia outcomes
Ventricular tachycardia, n (%) 131 (82%) 0 (0%)

Ventricular fibrillation/flutter, n (%) 36 (23%) 0 (0%)
Both ventricular tachycardia and fibrillation/ 

flutter

8 (5%) 0 (0%)

Presence of implantable cardioverter 
defibrillator

23 (15%) 0 (0%)

Time between ambulatory electrocardiogram and ventricular arrhythmia
Mean time difference 1.6 years (n = 159) NA
ECG collected before VA 0.4 years (n = 43, 27%) NA

ECG collected after VA 2.1 years (N = 117, 73%) NA

VA-ResNet-50 performance
Performance metric Train set—80%—five-fold cross-validation 

results
Test set—20%—ensemble per patient 

results
Accuracy (95% CI) 0.71 (0.6–0.82) 0.76 (0.66–0.87)
AUC (95% CI) 0.76 (0.64–0.88) 0.80 (0.67–0.91)

AUCPR (95% CI) 0.77 (0.65–0.89) 0.81 (0.64–0.91)

F1 score (95% CI) 0.76 (0.66–0.86) 0.79 (0.67–0.90)
Balanced accuracy (95% CI) 0.70 (0.53–0.83) 0.76 (0.64–0.87)

PPV (95% CI) 0.75 (0.65–0.85) 0.81 (0.67–0.95)

NPV (95% CI) 0.67 (0.53–0.81) 0.70 (0.51–0.89)
RR (95% CI) 2.32 (1.36–3.28) 2.87 (1.41–5.81)

Sensitivity (95% CI) 0.62 (0.48–0.76) 0.78 (0.64–0.92)

Specificity (95% CI) 0.78 (0.67–0.89) 0.73 (0.52–0.91)

PPV, positive predictive value; NPV, negative predictive value; RR, relative risk.
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activity. Importantly VA-ResNet-50 is agnostic of cardiomyopathy. The 
retrospective, ad hoc recruitment strategy limits generalizability. 
Prospective validation within other cohorts is planned, and we encour-
age other groups to build on this open-source model.
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