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A B S T R A C T

Objective: In rheumatoid arthritis, the enzyme 11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is
highly expressed at sites of inflammation, where it converts inactive glucocorticoids (GC) to their active
counterparts. In conditions of GC excess it has been shown to be a critical regulator of muscle wasting and bone
loss. Here we examine the contribution of 11β-HSD1 to the pathology of persistent chronic inflammatory dis-
ease.
Methods: To determine the contribution of 11β-HSD1 to joint inflammation, destruction and systemic bone loss
associated with persistent inflammatory arthritis, we generated mice with global and mesenchymal specific 11β-
HSD1 deletions in the TNF-transgenic (TNF-tg) model of chronic polyarthritis. Disease severity was determined
by clinical scoring. Histology was assessed in formalin fixed sections and fluorescence-activated cell sorting
(FACS) analysis of synovial tissue was performed. Local and systemic bone loss were measured by micro com-
puted tomography (micro-CT). Measures of inflammation and bone metabolism were assessed in serum and in
tibia mRNA.
Results: Global deletion of 11β-HSD1 drove an enhanced inflammatory phenotype, characterised by florid sy-
novitis, joint destruction and systemic bone loss. This was associated with increased pannus invasion into
subchondral bone, a marked polarisation towards pro-inflammatory M1 macrophages at sites of inflammation
and increased osteoclast numbers. Targeted mesenchymal deletion of 11β-HSD1 failed to recapitulate this
phenotype suggesting that 11β-HSD1 within leukocytes mediate its protective actions in vivo.
Conclusions: We demonstrate a fundamental role for 11β-HSD1 in the suppression of synovitis, joint destruction,
and systemic bone loss. Whilst a role for 11β-HSD1 inhibitors has been proposed for metabolic complications in
inflammatory diseases, our study suggests that this approach would greatly exacerbate disease severity.

1. Introduction

The 11 beta-hydroxysteroid dehydrogenase (11β-HSD) type 1 en-
zyme determines tissue specific exposure to endogenous and ther-
apeutic glucocorticoids (GCs). It is a bidirectional enzyme that converts
inactive GCs to their active counterparts, conferring tissue-specific
amplification and exposure to active endogenous and therapeutic GCs
[1]. 11β-HSD1 was shown to be critical in mediating adverse metabolic
complications of elevated GCs in vivo [2].

11β-HSD1 is highly expressed and active at sites of inflammation in

diseases such as rheumatoid arthritis (RA), increasing local exposure to
GCs [3–6]. Resident mesenchymal derived populations such as fibro-
blast like synoviocytes (FLS) are important sites of 11β-HSD1 mediated
GC activation in response to inflammation, which feeds back to sup-
press pro-inflammatory signalling in vitro [3–9]. 11β-HSD1 is also ex-
pressed in synovial leukocyte populations, including macrophages,
lymphocytes and dendritic cells where it dampens pro-inflammatory
signalling and promotes resolution [5,6,10–14].

The Tg197 (TNF-tg) mouse is a murine model of chronic poly-
arthritis with strong parallels with chronic inflammatory disease in
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humans [15] and is widely used to assess therapeutic interventions
[15–17]. Consequently, this model has been invaluable in delineating
the pathophysiology of RA, demonstrating the prominence of tumour
necrosis factor alpha (TNFα) in the inflammatory cytokine cascade
[18].To date, no study has examined the impact of global 11β-HSD1
deletion in models of chronic inflammatory arthritis. Therefore, we
investigated the consequences of global and mesenchymal specific 11β-
HSD1 deletion in the Tg197 (TNF-tg) murine model of chronic poly-
arthritis.

2. Materials and methods

2.1. Human TNFα transgenic mouse model and clinical scoring

Experiments were performed in compliance with guidelines gov-
erned by the UK Animal (Scientific Procedures) Act 1986 (project li-
cence number 70/8582 or 70/8003) and approved by Birmingham
Ethical Review Subcommittee. Tg197 mice (TNF-tg) that express sta-
bilised human TNFα mRNA on a C57BL/6J strain background were
obtained from Dr George Kollias (BSRC Fleming, Athens, Greece) [15].
Animals were scored for joint inflammation using a 16 point system
9,19: Clinical scores were calculated from measures of weight loss, be-
haviour, mobility, duration of joint swelling, mouse grimace and evi-
dence of joint inflammation as previously reported [9,19]. At nine
weeks, animals were culled and front paws, hind limbs and tibias col-
lected.

2.2. Global and mesenchymal targeted deletion of 11β-HSD1 in the TNFα
transgenic mouse

11β-HSD1 knock out (KO) animals with global 11β-HSD1 deletion
were crossed with TNF-tg animals to generate TNF‐tg11βKO animals as
previously described [9]. Breeding animals were maintained on anti-
human TNFαmonoclonal antibody (infliximab), as previously reported,
to control inflammation and facilitate breeding [19]. Mesenchymal
targeted 11β-HSD1 KO animals were created by crossing floxed
HSD11B1 mice with Twist2-cre animals (where cre recombinase ac-
tivity is reported to target mesenchymal derived cell populations such
as osteoblasts, chondrocytes and FLS), to generate 11βHSD1flx/flx/
Twist2cre animals [20–22]. These were crossed with TNF-tg animals to
produce TNF-tg11βHSD1flx/flx/Twist2cre (TNF-tg11βflx/tw2cre) animals.

2.3. Analysis of mRNA abundance

Expression of mRNAs was determined using TaqMan® Gene
Expression Assays (Thermo Fisher Scientific, Loughborough, UK). RNA
was extracted from homogenised tibia following flushing of the bone
marrow or from the bone marrow aspirate. Briefly, tibias were removed

from the hind limbs and soft tissues removed. Tibias were powdered in
liquid nitrogen. mRNA isolation was performed using an innuPREP
RNA Mini Kit (Analytikjena, Cambridge). RNA was reverse transcribed
using random hexamers (4311235, Multiscribe™, ThermoFisher
Scientific) to generate cDNA. Gene expression was determined using
species-specific probe sets for real time polymerase chain reaction
(PCR) on an ABI7500 system (Applied Biosystems, Warrington, UK).
mRNAs expression was normalised to that of 18S RNA. Data were ob-
tained as cycle threshold (Ct) values to determine ΔCt values (Ct target
– Ct 18S). Gene expression in arbitrary units (AU) was calculated from
ΔCt values using the equation 1000x−2ΔCt.

2.4. Histological analysis of inflamed joints

Histochemistry was performed on paraffin-embedded 10 μm sec-
tions following decalcification in 0.5M ethylenediaminetetraacetic acid
(EDTA). Pannus size at the metatarsal-phalangeal joint interface was
determined using Image J software as previously reported [19]. Sec-
tions were stained with safranin O and fast green to quantify cartilage
thickness and proteoglycan loss across cartilage of the humerus/ulna
interface using Image J software. Loss of safranin O staining across
cartilage was quantified relative to total cartilage of the humerus/ulna
interface. For all quantifications, the mean of data from three adjacent
10 μm sections cut from the centre of the joint were utilised to de-
termine pannus size, cartilage thickness and proteoglycan loss.

2.5. Tissue digestion and flow cytometric analysis of synoviocytes

One Hind leg and one front paw per mouse was dissected and
cleaned of tissue, separating the leg bones and keeping the surface of
the knee joint intact. Joints were digested in 1.5ml of RPMI containing
2% foetal calf serum (FCS), 2.5 mg/ml collagenase D (Roche) and
20 μg/ml DNase (Sigma‐Aldrich) for 45min at 37 °C with agitation.
Digests were filtered through a 100 μm strainer and cells kept on ice.
Cells were centrifuged, red cells lysed for 5mins in ACK lysis buffer
(Gibco) and cells counted. Cells were washed, filtered through 40 μm
cell strainer, incubated with anti-CD16/CD32 blocking antibody
(1:200; eBioscience) for 10min at RT, followed by staining with anti-
body cocktail at 4 °C. Antibodies for membrane staining are outlined in
Table 1. Data were acquired using a BD LSR Fortessa X20 and analysed
using FlowJo software (FlowJo LLC). The following gating strategy was
used for myeloid cells: Live cells were gated on CD45 +CD11b+ cells.
Neutrophils were identified as CD45 + CD11b + SiglecF- Ly6ghi,
macrophages were CD45 + CD11b+ SiglecF- Ly6g- CD64 + F4/
80 + and M1 macrophages were CD45 + CD11b+ SiglecF- Ly6g-
CD64 + F4/80 + MHC Class II+. T cells were identified as live
CD45 +CD3+. CD3+ cells were then stratified as CD4+ or CD8+ T
cells. B cells were identified as CD45 + CD3-and CD19+.

Table 1
Antibodies for FACS analysis of synovial leukocyte populations.

Target Label Dilution Manufacturer Reference Concentration

anti-CD45 APC-CY7 1:400 eBioscience 47-0451-82 0.2mg/ml
anti- CD11b PerCP CY5.5 1:200 BioLegend 45-0112-82 0.2mg/ml
anti-CD11c FITC 1:100 eBioscience 11-0114-82 0.5mg/ml
anti-SiglecF eFlour660 1:100 eBioscience 50-1702-80 0.2mg/ml
anti-CD64 PE-Cy7 1:100 BioLegend 139314 0.2mg/ml
anti-Ly6g PE Dazzle 1:800 BioLegend 127648 0.2mg/ml
anti-Ly6c BV510 1:600 BioLegend 128033 0.2mg/ml
anti-MHC Class II BV711 1:800 Biolegend 107643 0.2mg/ml
anti-F4/80 PE labelled 1:400 BioLegend 123110 0.2mg/ml
anti-CD45 APC-Cy7 1:400 eBioscience 47-0451-82 0.2mg/ml
anti-CD3 PE-Cy7 1:400 eBioscience 25-0031-82 0.2mg/ml
anti-CD4 Pacific blue 1:600 eBioscience 116008 0.5mg/ml
anti-CD19 PE labelled 1:400 eBioscience 12-0193-82 0.2mg/ml
anti-CD8 Texas red 1:800 eBioscience MCD0817 0.2mg/ml
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2.6. 11β-HSD1 activity

Steroid metabolism was determined by scanning thin layer chro-
matography following incubation with 3H–dehydrocorticosterone
(Perkin Elmer, Beaconsfield, Buckinghamshire, UK for 6-h as previously
described [5]. Thin-layer chromatography plates were analysed by
Bioscan imager (Bioscan, Washington, DC, USA) to detect the formation
of 3H –corticosterone. The fractional conversion of steroids was calcu-
lated as pmol product/per mg protein/hr.

2.7. Analysis of serum corticosterone, PINP and TRACP 5b by ELISA

Corticosterone levels in serum were measured using a commercially
available sandwich enzyme linked immunoassay (ELISA) (R&D systems,
Abingdon, UK) in accordance with manufacturer's instructions and data
expressed as ng/ml. Serum PINP was determined using a commercially
available sandwich ELISA (Immunodiagnostic Systems, Tyne & Wear,
UK) in accordance with manufacturer's instructions and data expressed
as ng/ml. Serum TRACP 5b was determined using a commercially
available sandwich ELISA (Immunodiagnostic Systems, Tyne & Wear,
UK) and data expressed as U/L.

2.8. Micro-CT (qualitative analysis)

Samples were imaged using a Skyscan 1172 micro-CT scanner
(Bruker) using X-ray beam settings of 60 kV source voltage, 167 μA
source current. Projections were taken every 0.45° at 600ms exposure,
with an image pixel size of 13.59 μm. Image volumes were re-
constructed using the Feldkamp algorithm (NRecon 1.6.1.5, Bruker)
applying beam hardening correction. A radiodensity range of −300 to
3000HU was chosen to isolate the bony structures from the imaging
medium, CTAnalyser 1.12 software (SkyScan) was used to extract an
isosurface mesh representation of reconstructed micro-CT slices.
MeshLab 1.3.2 (open source software) was used to modify the raw
meshes and samples were shaded in MeshLab using ambient occlusion.
Meshes were scored as previously reported [19].

2.9. MicroCT morphometry analysis

Formalin-fixed tibias were scanned using a Skyscan 1172 x-ray
microtomograph at 60 kV/167 μA with a 0.5 mm aluminium filter.
Images were obtained at a 5 μm resolution with a rotation step of 0.45°.
NRecon software was used to reconstruct the images. Trabecular bone

Fig. 1. (a) Representative images of front paws from WT, TNF-tg, 11βKO, and TNF-tg11βKO mice at 9 weeks. (b) Corticosterone generation in front paw biopsies
determined by scanning thin layer chromatography isolated from WT, TNF-tg, 11βKO, and TNF-tg11βKO mice at 9 weeks. (c) Serum corticosterone levels determined
by ELISA; (d) scoring of joint inflammation, (e) front paw swelling (mm); (f) clinical scoring (weight, inflammation, grimace, behaviour, mobility, inflammation
severity and duration) and (g) weight in WT, TNF-tg, 11βKO, and TNF-tg11βKO mice. AU (Arbitrary units). Values are expressed as mean ± standard error of six
animals per group. Statistical significance was determined using one way ANOVA with a Tukey post hoc analysis. *p < 0.05, **p < 0.005, ***p < 0.001.
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parameters were analysed using CTAn Skyscan software. Regions of
interest (ROI) were selected by highlighting trabecular bone regions for
cross sectional slices of tibia (Fig. 2.1C) and bone architecture de-
termined by quantifying trabecular bone parameters (bone volume to
total volume (BV/TV), trabecular thickness (TT) and trabecular number
(TN)) using CTAn software. 1.35mm of trabecular bone (200 sections)
was selected for trabecular bone analysis at the metaphyseal region
near the growth plate. Extent was determined by the length of trabe-
cular bone growth in each sample, which was calculated by multiplying
slice number by pixel size of scanned image (13.5 μm). Meshlab soft-
ware was used to process 3D meshes of tibiae.

2.10. Statistical analysis

Statistical significance was defined as P < 0.05 (*P < 0.05;
**P < 0.005; ***P < 0.001) using either an unpaired Student's t-test
or one way ANOVA with a Tukey post hoc analysis where a Gaussian
distribution is identified, or a non-parametric Kruskal-Wallis test with a
Dunn's Multiple Comparison absent.

3. Results

3.1. Global deletion of 11β-HSD1 greatly exacerbates polyarthritis

We crossed the TNF-tg mouse onto the 11β-HSD1 global KO mouse
to generate TNF-tg animals with deletion of 11β-HSD1 (TNF‐tg11βKO).
TNF‐tg11βKO animals developed marked increases in swelling and de-
formity of front paws relative to wild type, 11β-KO and TNF-tg coun-
terparts (Fig. 1). GC activation was analysed in paw biopsies after
dissection of skin, following dis-articulation of joints as previously re-
ported [23]. Significant corticosterone generation was observed in wild
type (WT) and TNF-tg animals but not 11β-KO and TNF‐tg11βKO mice
(Fig. 1b). Serum measures of corticosterone remained consistent across
WT, 11β-KO, TNF-tg and TNF‐tg11βKO mice (Fig. 1c). Human TNF
transgene expression was assessed in tibia mRNA from all groups (Sup.
1a). TNF transgene was detected in both TNF-tg and TNF-tg11βKO mice
and showed no difference between groups. This was consistent with
serum levels of human TNFα in all groups (Sup. 1b).

TNF‐tg11βKO mice developed inflammation from 34 days old com-
pared to approximately 48 days in the TNF-tg animal with severity of
inflammation significantly greater in the TNF-tg11βKO mouse at 62 days
(Fig. 1d). This was supported by greater paw swelling in TNF-tg11βKO

mice relative to TNF-tg mice (Fig. 1e). These data were reflected in
clinical scores, where onset of disease activity was apparent from day
34 and significantly greater at day 62 (Fig. 1f). Whilst TNF-tg mice
developed a significant reduction in body weight relative to wild type
counterparts, TNF‐tg11βKO mice developed a more marked weight loss
(Fig. 1g). Together these data confirm an important role for 11β-HSD1
in limiting the severity of paw swelling, local joint inflammation and
measures of systemic inflammation in a model of chronic persistent
arthritis.

3.2. Greater joint destruction in the TNF‐tg11βKO mouse

Histological analysis of tissue from TNF‐tg11βKO animals confirmed a
marked increase in front paw joint synovitis relative to TNF-tg animals,
with greater evidence of joint destruction and bone erosion determined
by histology and micro-CT (Fig. 2a–c). Degradation of articular carti-
lage was also more marked in TNF‐tg11βKO (Sup. 2a-g). Together these
data confirm an important role for 11β-HSD1 in protecting against local
synovitis, joint destruction and juxta articular bone loss.

3.3. Synovitis is characterised by M1 polarisation in the TNF‐tg11βKO mouse

TNF‐tg11βKO animals showed greater pannus invasion into under-
lying bone compared with TNF-tg animals (Fig. 3a–h). FACS analysis of

synovial leukocytes revealed a significant increase in CD3+, CD4+ and
CD8+ T cells, macrophages and neutrophils in TNF‐tg11βKO mice re-
lative to TNF-tg animals, whilst B cells numbers remained unchanged
(Sup. 2a-e). To examine macrophage polarisation within the inflamed
synovium, M1 and M2 were characterised within the F40/80 + popu-
lation based on high and low MHCII expression as previously reported
(Fig. 3j–l) [24,25]. This revealed a marked increase in M1 macrophages
in the TNF‐tg11βKO mice relative to TNF-tg mice with a marked skewing
of the M1/M2 ratio favouring M1 polarisation (Fig. 3j–l). These data
confirm increased leukocyte infiltration and M1 polarisation in
TNF‐tg11βKO mice.

3.4. Systemic bone loss is exacerbated in the TNF‐tg11βKO mouse

We examined the effects of global 11β-HSD1 deletion on systemic
bone loss in the TNF-tg mouse by micro-CT analysis of trabecular bone.
At five weeks, measures of bone density were reduced to a similar de-
gree in both TNF-tg and TNF‐tg11βKO mice compared with WT (Sup.
Fig. 4a–c). However, after five weeks, TNF‐tg11βKO animals developed
marked reductions in all parameters relative to TNF-tg counterparts
(Fig. 4a–d). mRNA analysis of tibia revealed a significant suppression of
mature osteoblast markers runt-related transcription factor 2 (Runx2)
and osteoprotegerin (Tnfrsf11b) in TNF‐tg11βKO animals (Fig. 4e,f). The
pro-osteoclastogenic marker receptor activator of nuclear factor kappa-
Β ligand (Tnfsf11) and the negative regulator of osteoblast differ-
entiation dikkopf-1 (Dkk1) both remained stable (Fig. 4g,h). Analysis of
serum procollagen type 1 N-terminal propeptide (P1NP) as a marker of
systemic bone formation confirmed a significant reduction in osteoblast
activity in the TNF‐tg11βKO mouse compared to TNF-tg animals
(Fig. 4n).

Analysis of the pro-inflammatory murine cytokine TNFα identified
greater expression in the TNF‐tg11βKO mouse (8.7 fold increase,
P < 0.001). In addition the pro-inflammatory, pro-osteoclastogenic
cytokines interleukin-1 (Il1), macrophage colony-stimulating factor
(Csf1) and interleukin-6 (Il6) all confirmed upregulation in TNF‐tg11βKO

mice (Fig. 4i–l). Osteoclast numbers relative to bone surface area were
significantly increased in TNF‐tg11βKO animals at the joint interface of
the wrist, as well as in the elbow and metacarpophalangeal joints
(Fig. 4m, Sup. 1e-k). Serum levels of the secreted, osteoclast-specific
protein, tartrate-resistant acid phosphatase 5b (TRAcP5B), were sig-
nificantly increased in TNF‐tg11βKO mice relative to TNF-tg and 11β-KO
counterparts (Fig. 4o). Together, these data support a fundamental role
for 11β-HSD1 in the protection of bone from inflammation-associated
bone loss.

3.5. Inflammation, joint destruction and bone loss are not regulated by
mesenchymal 11β-HSD1

11β-HSD1 is potently upregulated in response to inflammation in
mesenchymal derived cell populations, where it negatively regulates
pro-inflammatory signalling in vitro [3,7,8]. We hypothesised that
worsening inflammation in the TNF‐tg11βKO mouse was due to loss of
GC production by FLS and other mesenchymal populations. Therefore,
we generated a triple transgenic animal, crossing the TNF-tg mouse
onto the HSD11B1 floxed/Twist2-cre to generate a TNF-tg11βflx/tw2cre

mouse with mesenchymal cell-specific targeted deletion of 11β-HSD1.
Ex vivo analysis of enzyme activity in tissues in WT11βflx/tw2cre and TNF-
tg11βflx/tw2cre animals demonstrated that, whilst 11β-HSD1 activity was
maintained within spleen and liver (Fig. 5a, Sup. Fig. 3a), activity was
significantly suppressed within muscle, adipose and front paw
(Fig. 5a–c, Sup Fig. 3b). Primary haematopoietic cells and leukocytes
maintained normal 11β-HSD1 activity in WT11βflx/tw2cre and TNF-
tg11βflx/tw2cre animals (Fig. 5d). However, 11β-HSD1 activity was totally
abrogated in primary FLS (Fig. 5e), myocytes and osteoblasts (data not
shown), indicating its deletion in mesenchymal derived cells from
WT11βflx/tw2cre and TNF-tg11βflx/tw2cre animals. Clinical scores and body
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weights were similar in TNF-tg11βflx/tw2cre and TNF-tg mice, whilst a
significant reduction in joint inflammation and paw swelling was
identified in TNF-tg11βflx/tw2cre mice (Fig. 5f–i). Histological analysis of
joint destruction in the elbows and phalanges of TNF-tg11βflx/tw2cre

animals revealed similar patterns of bone erosion and synovitis com-
pared with TNF-tg mice (Fig. 5j,l). Scoring of local bone erosions re-
vealed significant reductions in scores in TNF-tg11βflx/tw2cre animals
relative to TNF-tg (Fig. 5k,m). Analysis of BV/TV, TT and TN in tra-
beculae from tibia identified comparable systemic bone loss in both
TNF-tg11βflx/tw2cre and TNF-tg animals (Fig. 5n–p). These data indicate
that the exacerbated inflammatory phenotype reported in the TNF-
tg11βKO mouse is not dependant on 11β-HSD1activity in mesenchymal
derived cell populations such as FLS and osteoblasts.

4. Discussion

Studies examining the deletion of 11β-HSD1 in resolving models of
inflammation have identified modest changes in peak inflammation
with reduced leukocyte clearance, delayed resolution of inflammation
and evidence of abnormal tissue repair [14,26]. We show that in
chronic polyarthritis, 11β-HSD1 is a critical regulator of inflammation,
with its absence greatly increasing synovitis, joint destruction and
systemic bone loss.

During inflammatory arthritis, 11β-HSD1 is increased within syno-
vial leukocytes and FLS [4–6,27,28]. Its role in this context is complex,
with some studies suggesting it possesses an important anti-in-
flammatory role [3,29]. Other groups have reported pro-inflammatory
properties of 11β-HSD1 with selective inhibitors suppressing disease
activity in models of LPS induced septic shock and collagen induced
arthritis (CIA) [30,31].

Our study strongly supports a potent anti-inflammatory role for

11β-HSD1 in the context of chronic persistent arthritis, where its global
deletion resulted in a marked increase in local inflammation, joint de-
struction and osteoporosis. This did not appear to be mediated by a
direct increase in TNFα transgene expression in the TNF-tg11βKO mice,
but rather, by an increase in downstream pro-inflammatory pathway
activity with increased mRNA expression of cytokines such as IL-1β and
IL-6. This would suggest that deletion of 11β-HSD1 has attenuated the
well-established inhibitory role that GCs elicit on pro-inflammatory
signalling pathways such as p38-MAPK and NF-κB, downstream of the
TNFα receptor.

11β-HSD1 has been suggested to play an important role in reg-
ulating macrophage polarisation and function driving an anti-in-
flammatory, pro-resolution phenotype during macrophage maturation
[26,32–34]. When we examined the synovial leukocyte infiltrate in
TNF-tg11βKO mice we observed a marked increase in all leukocyte po-
pulations, with a shift in macrophages from M2 to M1 polarisation.
These findings suggest that 11β-HSD1 supports M2 polarisation and
thus phagocytic clearance of apoptotic and damaged cells in chronic
inflammation. In future studies it will be of significant interest to ex-
amine the inflammatory phenotype in additional inflammatory models
of polyarthritis, such as CIA and K/BxN serum induction model in
conjunction with both global deletion of 11β-HSD1 as well as with
targeted therapeutic inhibitors of this enzyme to further validate these
findings.

Osteoporosis and increased fracture risk are prevalent in patients
with chronic inflammatory arthritis [35,36]. The contribution of 11β-
HSD1 to this process is of significant interest given the duality of
therapeutic GC actions in vivo, where they suppress inflammation, but
drive systemic osteoporosis. We observed a marked increase in systemic
inflammatory bone loss in the TNF-tg11βKO mouse with reduced trabe-
cular bone volume, trabecular number and thickness. Analysis of TNF-

Fig. 2. (a) Representative paraffin-embedded sections from the wrist below the ulna, stained with haematoxylin and eosin (scale bars 200 μm, arrows indicate regions
of synovitis), (b) representative images of 3D reconstructions of hind paws using micro-CT, (c) quantification of cortical erosion in the bones of the ankle, metatarsals
and phalanges in WT, TNF-tg, 11βKO, and TNF-tg11βKO mice. AU (Arbitrary units). Values are expressed as mean ± standard error of six animals per group.
Statistical significance was determined using one way ANOVA with a Tukey post hoc analysis. *p < 0.05, **p < 0.005, ***p < 0.001.
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tg11βKO mice at five weeks confirmed that this was not a developmental
phenotype. At nine weeks, bone loss in the TNF-tg11βKO mouse ap-
peared to be driven by a decrease in bone formation and an increase in
bone resorption. mRNA analysis of tibia confirmed a decrease in the
osteoblast marker RUNX2 and Tnfrsf11b (osteoprotegerin) in

conjunction with a marked increase in expression of the pro-osteo-
clastogenic cytokines TNFα, IL-1β, IL-6 and MCSF. Local GC activation
by 11β-HSD1 thus plays a critical role in protecting against systemic
bone loss in the context of persistent inflammation.

We have previously shown that mesenchymal derived cell

Fig. 3. (a–d) Representative images of paraffin-embedded ulna/humerus joint interface (20X) stained with haematoxylin and eosin (scale bars 200 μm, yellow region
indicates synovial pannus formation), and (e–h) (40X) magnification of pannus invasion into subchondral bone (scale bars 200 μm), from WT, TNF-tg, 11βKO, and
TNF-tg11βKO mice at 9 weeks. (i) Quantification of degree of synovitis in the ulna/humerus joint interface determined by image J and (j–l) FACS quantification of M1
and M2 polarisation in CD45 + CD11b+ SiglecF- Ly6g- CD64 + F4/80 + murine macrophages determined by MHCIIhi and MHCIIlow respectively in WT, TNF-tg,
11βKO, and TNF-tg11βKO mice at 9 weeks. Values are expressed as mean ± standard error of six animals per group. AU (Arbitrary units). Statistical significance was
determined using one way ANOVA with a Tukey post hoc analysis. *p < 0.05, **p < 0.005, ***p < 0.001. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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Fig. 4. (a) Representative images of 3D reconstructions of tibia trabecular bone using micro-CT from WT, TNF-tg, 11βKO, and TNF-tg11βKO mice at 9 weeks. (b) Bone
volume to tissue volume (BV/TV), (c) trabecular thickness (TT) and (d) trabecular number (TN) determined by Meshlab software analysis of micro CT at 5 and 9
weeks in WT, TNF-tg, 11βKO, and TNF-tg11βKO mice. (e–l) Gene expression (AU) of Runx2, Tnfrsf11b, Tnfsf11, Dkk1, Tnf, Il1b, Csf1 and Il6 in homogenates of tibia
determined by quantitative RT-PCR from TNF-tg and TNF-tg11βKO mice at 9 weeks. (m) Osteoclast numbers at the scaphoid/trapezoid interface normalised to bone
surface area determined by image J analysis of TRAP stained paraffin-embedded sections of the wrist, (n) serum P1NP (ng/ml) and (o) serum TRAcP5B (U/μl)
determined by ELISA in WT, TNF-tg, 11βKO, and TNF-tg11βKO mice at 9 weeks. AU (Arbitrary units). Values are expressed as mean ± standard error of six animals
per group. Statistical significance was determined using one way ANOVA with a Tukey post hoc analysis. *p < 0.05, **p < 0.005, ***p < 0.001.

Fig. 5. (a–c) Corticosterone generation in ex vivo biopsies of spleen, front paw and tibialis anterior and in (d–e) primary cultures of bone marrow cells and fibroblast
like synoviocytes (FLS) determined by scanning thin layer chromatography isolated from WT, TNF-tg, WTCre+ and TNF-tgCre+ at 9 weeks. (f) Scoring of joint
inflammation, (g) front paw swelling (mm), (h) clinical scoring (weight, inflammation, grimace, behaviour, mobility, inflammation severity and duration), (i) body
weights in WT, TNF-tg, WTCre+ and TNF-tgCre+ at 9 weeks. (j) Representative images of paraffin-embedded ulna/humerus joint interface (20X) stained with
haematoxylin and eosin (scale bars 200 μm) (k) representative images of 3D reconstructions of hind paws using micro-CT, (l) quantification of degree of synovitis in
the ulna/humerus joint interface determined by image J, (m) quantification of cortical erosion in the bones of the ankle, metatarsals and phalanges in WT, TNF-tg,
WTCre+ and TNF-tgCre+ at 9 weeks. (n) Bone volume to tissue volume (BV/TV), (o) trabecular thickness (TT) and (p) trabecular number (TN) determined by Meshlab
software analysis of micro CT at 5 and 9 weeks in WT, TNF-tg, WT11βflx/tw2cre and TNF-tg11βflx/tw2cre at 9 weeks. AU (Arbitrary units). Values are expressed as
mean ± standard error of six animals per group. Statistical significance was determined using one way ANOVA with a Tukey post hoc analysis. *p < 0.05,
**p < 0.005, ***p < 0.001.
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populations including FLS, myocytes, osteoblasts and adipocytes all
potently upregulate the expression of 11β-HSD1 in response to in-
flammation [7]. In this study we examined the contribution of this
mesenchymal GC activation to synovitis, joint destruction and bone loss
using a mesenchymal targeted 11β-HSD1 null mouse.

TNF-tg11βflx/tw2cre animals had a similar phenotype to TNF-tg mice,
with comparable joint inflammation, joint destruction and systemic
bone loss. Interestingly, these mice possessed a modest protection from
local joint destruction that would support a catabolic role for 11β-HSD1
within the mesenchyme. Previous studies have reported that inhibition
of GC signalling in mesenchymal derived osteoblasts and chondrocytes
improves inflammation and joint destruction in acute models of poly-
arthritis, where GC signalling in osteoblasts and chondrocytes can
possess pro-inflammatory actions, and act in an immune-stimulatory
manner [37–39]. However, our data indicate that the marked increase
in synovitis, joint destruction and bone loss reported in the global 11β-
HSD1 null model of chronic polyarthritis are instead dependant on
deletion of GC activation in non-mesenchymal cell populations such as
macrophages and T cells.

5. Conclusion

We have demonstrated a fundamental role for GC activation via
11β-HSD1 in regulating joint inflammation, joint destruction and sys-
temic bone loss in chronic inflammatory arthritis. Whilst a role for 11β-
HSD1 inhibitors has been proposed in the treatment of metabolic
complications of chronic inflammatory diseases this approach may se-
verely exacerbate local and systemic features of disease.
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