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Abstract

Pattern genes are a group of genes that have a modularized expression behavior under serial physiological conditions. The
identification of pattern genes will provide a path toward a global and dynamic understanding of gene functions and their
roles in particular biological processes or events, such as development and pathogenesis. In this study, we present
PaGenBase, a novel repository for the collection of tissue- and time-specific pattern genes, including specific genes,
selective genes, housekeeping genes and repressed genes. The PaGenBase database is now freely accessible at http://bioinf.
xmu.edu.cn/PaGenBase/. In the current version (PaGenBase 1.0), the database contains 906,599 pattern genes derived from
the literature or from data mining of more than 1,145,277 gene expression profiles in 1,062 distinct samples collected from
11 model organisms. Four statistical parameters were used to quantitatively evaluate the pattern genes. Moreover, three
methods (quick search, advanced search and browse) were designed for rapid and customized data retrieval. The potential
applications of PaGenBase are also briefly described. In summary, PaGenBase will serve as a resource for the global and
dynamic understanding of gene function and will facilitate high-level investigations in a variety of fields, including the study
of development, pathogenesis and novel drug discovery.
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Introduction

Gene expression is dependent on physiological conditions,

which vary based on cell type, tissue type and developmental stage.

The emergence of high-throughput technologies, such as micro-

arrays, tiling arrays and next-generation sequencing (NGS), has

enabled thousands of genes to be monitored simultaneously under

multiple conditions. From these data, genes with particular

expression patterns can be identified. Specific gene patterns may

suggest an association with a particular biological event or

function. Therefore, the identification of pattern genes holds

promise for the dynamic and global investigation of gene function.

Moreover, gene pattern studies may help to uncover the molecular

mechanisms underlying certain physiological events.

Pattern genes are defined as a group of genes that exhibit

modularized expression behavior under serial physiological

conditions [1]. Three types of pattern genes are presently

attracting significant attention: housekeeping genes, specific/

selective genes and repressed genes [1–4]. Housekeeping genes,

which are expressed ubiquitously across tissues under all physio-

logical conditions and developmental stages, are generally believed

to maintain basal cellular functions [2]. Deficiencies or non-

synonymous mutations in housekeeping genes will likely lead to

disease [5]. Housekeeping genes are typically adopted as

molecular controls in qualitative or semi-quantitative measure-

ments of gene expression. Specific/selective genes are genes that

are preferentially expressed under one or more conditions [3].

Their enriched expression levels are typically considered markers

of the initiation or existence of some biological phenomena, such

as development, proliferation, differentiation or pathogenesis [6–

9]. For example, a systematic analysis demonstrated that many

diseases are associated with tissue-specific genes [10], suggesting

that these genes may serve as potential biomarkers and targets for

disease diagnosis and treatment [11]. In contrast to specific/

selective genes, repressed genes are expressed under almost all

conditions, except for one or more conditions. The undesired

expression of repressed genes may lead to disease, which provides

an alternative route for the exploration of the molecular

mechanisms underlying pathogenesis [4].

The spatiotemporal pattern of gene expression provides

important information for comprehensively understanding the

function of genes and also provides useful clues for the systematic

investigation of the molecular mechanisms underlying physiology

and pathogenesis [12]. Therefore, numerous efforts have been

made in recent years to determine gene expression profiles under

pre-designed conditions using high-throughput technologies.

Accompanying this rapid growth of data, bioinformatics tools

have been developed for mining patterns or trends hidden within

the data. Many of these studies utilize statistical methods or

sophisticated algorithms to ‘align’ or ‘cluster’ gene expression

profiles to extract non-trivial patterns, such as correlated

expression, differential expression, specific expression and ubiqui-

tous expression [1,13–17]. While other databases have been
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constructed to collect pattern gene information (such as FlyExpress

[18], ZFIN [19], TiSGeD [20], TiGER [21], BioGPS [22] and

TissueDistributionDBs [23]), many of these databases rely on a

relatively small number of tissue-specific/selective genes or

housekeeping genes. Poor or even absent quantitative evaluation

limits the ability of these databases to identify pattern genes. We

designed four statistical parameters in a previous study that enable

the quantitative identification and evaluation of pattern genes [1].

Based on this method, we now introduce a novel subject-

specialized database called the Pattern Gene database (PaGen-

Base) for the integration of pattern genes identified from the

literature and from data mining of gene expression profiles.

Materials and Methods

The Data
The original microarray, NGS and tiling array datasets along

their latest gene annotation files were primarily derived from the

public microarray repositories NCBI GEO [13], GNF BioGPS

[22] and EBI ArrayExpress [14]. The current version of

PaGenBase includes datasets that were selected based on the

following criteria: the dataset (i) consists of time or space series

samples, (ii) contains at least 5 different samples (excluding

duplicates), (iii) contains a relatively large number of genes and (iv)

was collected under normal physiological conditions. A total of

143 qualified datasets, which were selected from more than 3,400

datasets, underwent further manual verification. The datasets were

cleaned by removing profiles with incomplete or unreliable

information. Microarray datasets with Absent/Marginal/Present

(A/M/P) calls were normalized by setting the expression value to 0

if the A/M/P call was marked as ‘absent’ or ‘marginal’. The

average value was used for duplicate samples. For genes with

multiple probesets, the probeset (profile) with the largest standard

deviation was selected. After data pre-processing, the datasets were

analyzed to identify pattern genes via the method described in our

previous work [1], which is also briefly described in the following

section. Additional pattern genes were manually collected by

keyword searches of the biomedical literature database PubMed.

Both the computed results and the literature-extracted information

were appropriately formatted before they were uploaded to the

database.

Quantitative Identification of Pattern Genes
To aid in the identification and quantitative evaluation of

pattern genes from high-throughput datasets, four statistical

parameters, the Specificity Measure (SPM), the Dispersion

Measure (DPM), the Contribution Measure (CTM), and the

Repression Measure (RPM), were used and are described briefly

below. More detailed information on these parameters can be

found in our previous work [1].

First, each gene expression profile is transformed into a vector

X:

X~(x1,x2,:::,xi,:::,xn{1,xn) ð1Þ

where n is the number of samples in the profile. Similarly, a vector

Xi can be generated to represent the gene expression in sample

(condition) i:

Xi~(0,0,:::,xi,:::,0,0) ð2Þ

SPM. SPM is a parameter that measures the specificity of a

gene’s expression in a designated sample. SPM is the cosine value

of the intersection angle h between vectors Xi and X in high

dimensional feature space. It is calculated by the following

expression:

SPM~ cos h~
Xi:X

Xij j: Xj j ð3Þ

where |Xi| and |X| are the length of vectors Xi and X,

respectively. SPM values range from 0 to 1.0, with values close

to 1.0 indicating a major contribution to gene expression in a

designated sample (vector Xi) relative to all samples (vector X ). A

gene expression profile (X ) can be converted to a corresponding

SPM profile (XSPM):

XSPM~(SPM1,SPM2,:::,SPMi,:::,SPMn{1,SPMn) ð4Þ

DPM. DPM is the standard deviation in unitary form based

on the transformed SPM profile. DPM enables the comparison of

variances between two profiles regardless of their absolute

expression values. It is calculated by the following expression:

DPM~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i~1

(SPMi{SPM)2

n{1

vuuut
: ffiffiffinp ð5Þ

where SPM is the mean value of SPMs in a gene expression

profile. DPM values close to 0 suggest nearly equal gene

expression levels across all samples.

CTM. CTM, which is complementary to SPM, is a parameter

that measures the enrichment of gene expression levels in several

samples. It is calculated by the following expression:

CTMk~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk

i~1

SPM2
i

vuut ð6Þ

where k is the number of selected samples. Typically, k ranges from

2 to 6. CTM values range from 0 to 1.0, with values close to 1.0

indicating enriched expression levels in select samples.

RPM. RPM is a parameter designed to evaluate the

significance of repressed gene expression levels. First, the gene

expression profile is divided into two groups: (i) the user-defined k

samples (typically ranging from 1 to 6) containing the expected

repressed expression level (normally, k is taken from the lowest

expressions in the profile) and (ii) the remaining samples. Then,

RPM is calculated by the following expression:

RPMk~
SPMrep max

SPMexp min
ð7Þ

where SPMrep_max is the maximum SPM value in the putative

repressed expression group and SPMexp_min is the minimum SPM

value in the expression group. RPM values range from 0 to 1.0,

with values close to 0 indicating a significantly lower expression of

a given gene in the user-defined k samples compared to the other

samples.

Pattern genes can be defined and evaluated using the four

statistical parameters defined above (SPM, DPM, CTM and

RPM) alone or in combination. Examples of how these parameters

PaGenBase: A Pattern Gene Database
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can be applied are provided for reference. A housekeeping gene is

ubiquitously and nearly equally expressed in all selective samples

(e.g., DPM,0.3). A specific gene is specifically expressed in one

sample (e.g., SPM.0.9). A selective gene has an enriched

expression in limited k samples (e.g., 2#k#6, SPMi (1 to k).0.3,

and CTMk.0.9). In contrast, a repressed gene has no or very low

expression in limited k samples (e.g., 1#k#6, SPMi (1 to k),0.1,

and RPMk,0.2).

In addition to the SPM method, the conventional proportion (ri)

method is also used in PaGenBase to measure the fractional gene

expression in a defined sample i against the entire gene expression

profile:

ri~
xi
Pn
i~1

xi

ð8Þ

where n is the number of samples in a profile. Accordingly, an

additional parameter called SUM is used to measure the

enrichment of gene expression in several samples (gene selectivity)

by calculating the sum of fractional expression levels in selective

samples. SUM is calculated by the following expression:

SUM~
Xk

i~1

ri ð9Þ

Compared to the proportion method ri/SUM, SPM/CTM is

more sensitive for identifying specific/selective genes.

Results

Retrieval of Pattern Genes from PaGenBase
The PaGenBase database can be accessed at http://bioinf.xmu.

edu.cn/PaGenBase/. The database runs on RDBMS Oracle 10 g

and the Red Hat Linux release 9 operating system. User-friendly

interfaces and search engines were implemented using JSP

technology. The three data retrieval methods that were developed

for accessing PaGenBase are briefly described below.

The quick search and advanced search methods. For the

rapid retrieval of pattern genes, PaGenBase provides a quick

search method on the homepage. Via the quick search form, the

user can retrieve pattern genes in the selected organism and data

group by providing a keyword. The selection of an organism and a

subsequent data group is required for a database search, after

which a complete or partial keyword for a gene or sample is

requested to initiate the search. Wildcard characters such as ‘* & ?’

are not supported. Due to the lack of available of data, some

organisms currently have only one or two datasets and data

groups. The quick search method will automatically adopt the

default query criteria for pattern genes: SPM.0.9 for specific

genes; DPM,0.3 for housekeeping genes; sample number = 2,6,

SPMsample.0.3 and CTM.0.9 for selective genes; and sample

number = 1,6, SPMsample,0.1 and RPM,0.2 for repressed

genes. Genes or samples that meet the query criteria will be

presented in ascending alphabetical order. However, if no

keyword was input, the database will list all pattern genes or

samples in alphabetical order. The number of pattern genes or

samples is provided in the left corner of the page. Clicking on a

gene symbol or sample name will redirect the user to the Pattern

Gene Table Page (Figure 1), where the selected pattern gene(s)

will be listed along with information on the dataset, DPM value,

the PubMed ID (PMID) (if the pattern gene was derived from the

literature) and the pattern type. This table can be downloaded via

the ‘Download’ hyperlink in the left corner of the page. Clicking

on the gene symbol will lead to the Detailed Information Page

(Figure 2), where two sections of information are provided: (1) the

‘Gene information’ section, which provides basic information on

the gene, such as the gene symbol, chromosomal location and gene

ontology as well as external links to some well-known databases,

such as the NCBI Entrez Gene database [24] and Ensembl [25],

when available; and (2) the ‘Evidence’ section, which provides

experimental evidence on pattern genes, including the dataset

description, profile information, pattern genes, and their quanti-

tative measure. To enable user tracking, the dataset processing

history and the data curation record is provided in the ‘Evidence’

section, which includes the original data publication date and the

data processing date. The visualization of gene profiles (both raw

data and SPM transformed data) is also provided. Literature

evidence is also presented in this section when available, which

includes the experimental method used and the associated PMID.

In addition, PaGenBase offers an advanced search method for

the customized retrieval of pattern genes (Figure 3). The

advanced search method works in almost the same manner as

the quick search method except that the user is allowed to

customize the query criteria by pattern gene types rather than

default values. It should be noted that a customized query criteria

will sometimes require more computational time to retrieve results.

The browse method. Alternatively, PaGenBase offers the

browse method for the direct retrieval of information from the

database (Figure 4). All pattern genes are non-redundantly

arranged into a tree. The tree is expandable up to a maximum of

three levels. The first level includes 11 organisms, such as Homo

sapiens. The second level includes one or more data groups, such as

tissue and development. The third level includes four pattern

classes: specific genes, selective genes, housekeeping genes and

repressed genes. Selecting a pattern class will redirect the user to

the Pattern Gene Table Page. In this table, all pattern genes of the

selected pattern class are listed. Clicking on the gene symbol will

lead to the Detailed Information Page. Similar to the quick search

method, the browse method adopts the default query criteria for

all four pattern gene classes.

Global understanding of gene expression patterns. In

PaGenBase, the majority of pattern genes have been identified by

comparing their expression patterns under serial conditions, such

as in different tissues or developmental stages. All differential

expression patterns were considered as a whole. However, only the

most obvious changes are indicated, which will save the user the

time required to manually compare gene expression changes

between conditions or genes. The user can then rapidly focus on

the most important gene changes across the conditions. Moreover,

PaGenBase offers a platform for the global understanding of a

gene by integrating information from multiple high-throughput

datasets. For example, the protamine 1 (PRM1) gene encodes a

small, arginine-rich, nuclear protein that replaces histones in the

chromatin of sperm during the haploid phase of spermatogenesis

[26]. This gene was found to be specifically expressed in the testis

(SPMtestis = 1.0) based on microarray datasets GDS3113 [11] and

RNASEQ (Figure 2) [27]. The specific expression of PRM1 can

be further specified by analyzing the dataset BioGPS U133A

GNF1HA (GDS596), where the gene was actually determined to

be highly expressed in the sub-tissues of the testis interstitium, testis

seminiferous tubules, and testis (SPMTestis Interstitium = 0.66,

SPMTestis Seminiferous Tubule = 0.47, SPMTestis = 0.59, and

CTM = 1.0) [28]. In human cell lines (dataset BioGPS U133A

GNF1HB), PRM1 is selectively expressed in testis leydig cells and

testis germ cells (SPMTestis Leydig Cell = 0.78, SPMTestis Germ

PaGenBase: A Pattern Gene Database
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Cell = 0.62, and CTM = 1.0) [28]. These tissue/cell distribution

data support the previous findings that PRM1 is likely associated

with postmeiotic germ cells [29]. Furthermore, through mining the

GDS605 dataset, which was collected under a mouse spermato-

genesis and testis development time course, PRM1 was found to be

selectively expressed during testis development at days 30, 35, and

56 (SPMday30 = 0.50, SPMday35 = 0.52, SPMday65 = 0.69, and

CTM = 1.0), corresponding to the spermatogenesis stages of

spermatids and spermatozoa [30]. As a direct consequence of

aggregating all these data, it can be proposed that PRM1 plays a

role in the postmeiotic stage of spermatogenesis.

The Statistics of PaGenBase
Currently, PaGenBase release 1.0 contains 143 distinct datasets,

1,145,277 valid gene expression profiles and 119,538 annotated

genes collected from the following 11 model organisms: Arabidopsis

thaliana, Bos taurus, Caenorhabditis elegans, Danio rerio, Drosophila

melanogaster, Escherichia coli, Glycine max, Homo sapiens, Mus musculus,

Rattus norvegicus and Saccharomyces cerevisiae. Based on the exper-

imental conditions used, each dataset was pre-assigned into one of

nine data groups, including cell line, cell cycle, condition,

development, differentiation, proliferation, strain, tissue type and

others. A total of 906,599 pattern genes (and 111,897 distinct

genes) were identified in 1,062 distinct tissue and time specific

conditions, which includes 145,270 specific genes, 468,207

housekeeping genes, 156,974 selective genes and 136,148

repressed genes. An additional 323 pattern genes were derived

from the literature. The detailed statistics of the database are

provided in Table 1 and on the ‘STATISTICS’ page.

Database Comparison and Updating
PaGenBase is a novel database that integrates pattern genes

quantitatively identified under various tissue and time specific

conditions. After surveying the internet, we determined that no

other public database currently provides a similar service.

However, some existing databases contain useful information on

pattern genes. For example, TiGER [21], FlyExpress [18], the

Human Protein Atlas [31] and ZFIN [19] provide comprehensive

genome/proteome, transcriptome, in situ hybridization and other

information for generating a systematic understanding of a model

organism. While some bioinformatics tools exist for the visualiza-

tion and comparison of gene expression patterns across tissues and

developmental stages, none of these tools provide quantitative

identification of modular expression genes. TiSGeD, a database

developed by our research group two years ago, provides

information on tissue-specific genes. This database, which served

as the prototype for PaGenBase, contains a smaller number of

data types (only tissue-specific genes) and contains only 7

microarray datasets. TiGER is another database containing

tissue-selective genes that uses a fractional method to evaluate

genes that are preferentially expressed in a designated tissue. A

similar approach was adopted by TissueDistributionDBs [23].

Compared to previously developed pattern gene-related databases,

PaGenBase has several advantages: (i) in addition to specific/

selective genes and housekeeping genes, PaGenBase also provides

information on repressed genes; (ii) PaGenBase collects pattern

genes identified on a large scale from gene expression profiles

under serial experimental conditions in not only different tissues

but also under various conditions, such as different developmental

stages; (iii) unlike previous databases, such as TiGER, which use

limited EST and microarray data for the assessment of tissue-

specific expression, the current release of PaGenBase contains 143

quality microarray, NGS and tiling array datasets from the

literature; and (iv) PaGenBase is currently the only database that

provides statistical measurements for all pattern gene classes.

Moreover, some general repositories, such as GEO [13],

ArrayExpress [14], and BioGPS [22], contain a large number of

expression profiles and serve as a major data sources for

PaGenBase. Although these repositories also implement powerful

statistical tools, none provide direct information on pattern genes

like PaGenBase does.

PaGenBase is scheduled to be updated continually and

regularly. Importantly, more quality datasets, especially new

high-throughput datasets, will be incorporated into the database

as they are available. The planned expansion of the database will

not only incorporate more datasets from various data sources but

Figure 1. The Pattern Gene Table Page.
doi:10.1371/journal.pone.0080747.g001

PaGenBase: A Pattern Gene Database

PLOS ONE | www.plosone.org 4 December 2013 | Volume 8 | Issue 12 | e80747



PaGenBase: A Pattern Gene Database

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e80747



will also cover more experimental conditions, such as pathogenic

samples. In the current version of the database, a discrepancy in

pattern gene assignments exists. Information about the discrepan-

cy can be found on the Pattern Gene Table Page, where all

expression patterns for a gene are listed. The discrepancy can

largely be attributed to the inclusion of heterogeneous datasets that

differ in important aspects of sample preparation, experimental

design, and analysis platform. For example, PRM1 was identified

as a testis-specific gene in several datasets, including GDS3113

[11] and RNASEQ [27] (Figure 1&2); however, PRM1 was also

identified as a selective gene in testis interstitium and testis

seminiferous tubules based on the BioGPS U133A GNF1HA

(GDS596) dataset [28] (Figure 1). In this case, key differences in

sample preparation contributed to the PRM1 discrepancy. To

solve the discrepancy problem, a scoring system is planned for the

next major update to PaGenBase, which will enable better

integration of results derived from heterogeneous datasets. Gene

expression patterns will be suggested according to the consistency

of different assignments. This improvement will provide more

reliable information by reducing the possible false assignment of

pattern genes due to imperfect experimental design or erratic

expression. Moreover, understanding how genes interact with

other genes in different conditions carries great promise. Better

user interfaces and analytical tools that will enable better gene

comparison are also planned for a future release. For instance,

similarity and correlation analyses between two gene expression

profiles will be implemented [32].

Discussion

Genes are not static information carriers but instead exhibit

varied expression levels in response to internal or external

environmental changes, the process by which genes exert control

over molecular function. For a better understanding of gene

function, it has been suggested that gene expression changes

should be monitored under serial tissue and time specific

conditions. Differential analyses can be efficiently applied to

detect significantly changed genes compared to a control

condition. However, differential analysis is inadequate to address

some fundamental questions. For example, is gene expression

status consistent with a certain condition or is it a common

phenomenon? How does a gene perform during the course of a

condition change, such as in different developmental stages? Is

there any connection between variably expressed genes? What

could the regulatory mechanism underlying the different physio-

logical conditions be? Therefore, a global and dynamic investiga-

tive tool built from a large number of gene expression profiles is

desired. PaGenBase is just one resource that is capable of

providing this type of information.

Selection of Reference Genes
Housekeeping genes, such as peptidyl-prolyl cis-transisomerase

A (PPIA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

and beta-actin (ACTB), are widely employed as molecular controls

for qualitatively or semi-quantitatively measuring gene expression.

Figure 2. The Detailed Information Page.
doi:10.1371/journal.pone.0080747.g002

Figure 3. The Advanced Search Method.
doi:10.1371/journal.pone.0080747.g003
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This approach is based on the assumption that housekeeping genes

are expressed at a constant level under different physiological

conditions. For a relatively long time, few doubts were raised

about whether the expression of these genes is actually constant. In

a recent genome-wide study, it was determined that many

housekeeping genes, such as PPIA, GAPDH and ACTB, are not

consistently expressed across tissues under a normal physiological

state or experimental conditions [33]. Our analysis on dataset

GDS3113 supports the finding that PPIA, ACTB, and GAPDH are

not consistently expressed in human tissues (their DPM values were

0.31, 0.35 and 0.50, respectively) [11]. In particular, GAPDH is

selectively expressed in skeletal muscle (SPMskeletal muscle = 0.47).

This result is consistent with the finding of Barber’s group, who

measured GAPDH mRNA expressions in 72 human tissues via

quantitative real-time RT-PCR [34]. They found a 15-fold

difference in GAPDH mRNA copy number between the highest

and lowest expressing tissue types, which were skeletal muscle and

breast, respectively. Therefore, it may not be appropriate to use

traditional housekeeping genes as a quantitative reference for

comparing gene expression profiles across tissues. The question then

becomes how to choose a good reference gene. First, a reference

gene should be ubiquitously expressed under all studied conditions.

Second, it should have relatively high expression levels so that it can

be easily and stably detected [35]. Low gene expression levels are

often obscured by background noise or erratic signals. Third, its

expression should be insensitive to condition changes. The

consistent expression of a gene guarantees it as a good reference

control without bias among different experimental conditions. The

consistency of a gene’s expression is usually measured by algorithms,

such as geometric mean, standard deviation or linear regression

[36,37]. In this study, the transformed standard deviation method,

DPM, was adopted, which is useful regardless of the absolute gene

expression level. A typical example of a housekeeping gene is

the golgin A1 gene (GOLGA1), which was found to be

consistently expressed in 26 human tissues (Dataset GDS3113:

DPMGOLGA1 = 0.28, Raw average valueRPL37 = 6,675) in this study.

This result is supported by Soyoun’s work on the identification of

universal housekeeping genes from human microarray (HG-U133;

Affymetrix) data using several approaches, including the geometric

mean [37]. It should be noted that determining a good reference

housekeeping gene is subject to experimental conditions. For

example, GAPDH may not be a good reference across multiple

Figure 4. The Browse Method.
doi:10.1371/journal.pone.0080747.g004

Table 1. Statistics of the PaGenBase database.

Organisms Genes Samples Datasets Profiles
Specific
Genes*

Housekeeping
Genes*

Selective
Genes*

Repressed
Genes*

Pattern
Genes*

Arabidopsis thaliana 14,312 6 1 14,312 694 (694) 9,614 (9,614) 998 (998) 1,052 (1,052) 12,358 (11,996)

Bos taurus 1,092 17 2 1,123 14 (14) 913 (893) 2 (2) 10 (10) 939 (918)

Caenorhabditis elegans 15,861 7 1 15,861 784 (784) 6,512 (6,512) 946 (946) 4,620 (4,620) 12,862 (12,581)

Danio rerio 9,984 11 2 19,962 97 (97) 13,820 (9,955) 634 (634) 266 (266) 14,817 (9,964)

Drosophila
melanogaster

12,643 54 9 75,307 11,318 (7,724) 25,060 (10,673) 9,271 (6,332) 10,786 (6,939) 56,435 (12,554)

Escherichia coli 4,117 22 6 23,671 276 (228) 15,529 (4,023) 573 (455) 2,101 (1500) 18,479 (4070)

Glycine max 2,102 26 3 5,981 1,599 (989) 378 (239) 1,455 (961) 909 (624) 4,341 (1,792)

Homo sapiens 26,014 305 26 278,754 36,351 (16,176) 113,719 (21,490) 34,186 (15,276) 25,987 (14,165) 210,243 (25,162)

Mus musculus 23,453 425 78 643,694 91,663 (18,503) 249,286 (22,872) 104,323 (19,169) 84,305 (16,730) 529,577 (23,214)

Rattus norvegicus 4,020 43 3 9,967 1,970 (1,546) 2,003 (1,230) 2,402 (1,730) 1,594 (1,344) 7,969 (3,790)

Saccharomyces
cerevisiae

5,940 146 12 56,645 504 (455) 31,373 (5,834) 2,184 (1,495) 4,518 (3,326) 38,579 (5,856)

Total 119,538 1,062 143 1,145,277 145,270 (47,210) 468,207 (93,335) 156,974 (47,998) 136,148 (50,576) 906,599
(111,897)

*Numbers in parentheses indicate the number of non-redundant genes.
doi:10.1371/journal.pone.0080747.t001
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human tissues because it is selectively expressed in skeletal muscle.

However, GAPDH expression is nearly unchanged in some cell

types as well as during distinct phases of the menstrual cycle, which

could make it a good reference gene in some studies.

Identification of Biomarkers
Gene biomarkers are routinely used in many areas of modern

biomedical research and in a variety of clinical applications. It is

generally acknowledged that a typical gene biomarker is an

indicator of a specific biological state [38]. For example, PRM1 is

a potential biomarker for spermatogenesis and the diagnosis of

male infertility [39]. A recent study successfully used our specificity

measure method (SPM) to aid in the identification of pancreatic

cancer biomarkers [40]. Therefore, PaGenBase can serve as a

good resource for the identification of candidate gene biomarkers

because it can collect thousands of specific genes under a variety of

physiological conditions.

Conclusions

In this study, we introduced a novel database that contains

pattern genes identified from serial transcriptomes under multiple

physiological conditions. This database is the most comprehensive

public repository presently available for identifying modularized

gene expression patterns. PaGenBase will serve as a useful

resource for global and dynamic understanding of gene behavior

under a variety of tissue and time specific conditions, especially the

developmental stages of tissues and cells. Moreover, the database

can be used to build connections between gene and tissue function,

organ development, cell proliferation and differentiation. Finally,

additional investigations into pattern genes and their protein

products may suggest potential applications for disease diagnosis

and the discovery of novel drug targets.

Author Contributions

Conceived and designed the experiments: ZLJ. Performed the experiments:

JBP SCH DS QZ. Analyzed the data: JBP MCC YBL. Contributed

reagents/materials/analysis tools: JBP SCH QZ. Wrote the paper: JBP

ZLJ.

References

1. Pan JB, Hu SC, Wang H, Zou Q, Ji ZL (2012) PaGeFinder: quantitative

identification of spatiotemporal pattern genes. Bioinformatics 28: 1544–1545.

2. Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M (2000) Comparison

of human adult and fetal expression and identification of 535 housekeeping/

maintenance genes. Physiol Genomics 2: 143–147.

3. Liang S, Li Y, Be X, Howes S, Liu W (2006) Detecting and profiling tissue-

selective genes. Physiol Genomics 26: 158–162.

4. Thorrez L, Laudadio I, Van Deun K, Quintens R, Hendrickx N, et al. (2011)

Tissue-specific disallowance of housekeeping genes: the other face of cell

differentiation. Genome Res 21: 95–105.

5. Guibinga GH, Hsu S, Friedmann T (2010) Deficiency of the housekeeping gene

hypoxanthine-guanine phosphoribosyltransferase (HPRT) dysregulates neuro-

genesis. Mol Ther 18: 54–62.

6. Bedell VM, Person AD, Larson JD, McLoon A, Balciunas D, et al. (2012) The

lineage-specific gene ponzr1 is essential for zebrafish pronephric and pharyngeal

arch development. Development 139: 793–804.

7. Kumar RN, Radhika V, Audige V, Rane SG, Dhanasekaran N (2004)

Proliferation-specific genes activated by Galpha(12): a role for PDGFRalpha and

JAK3 in Galpha(12)-mediated cell proliferation. Cell Biochem Biophys 41: 63–

73.

8. Cheguru P, Chapalamadugu KC, Doumit ME, Murdoch GK, Hill RA (2012)

Adipocyte differentiation-specific gene transcriptional response to C18 unsatu-

rated fatty acids plus insulin. Pflugers Arch 463: 429–447.

9. Zhang YE, Landback P, Vibranovski MD, Long M (2011) Accelerated

recruitment of new brain development genes into the human genome. PLoS

Biol 9: e1001179.

10. Lage K, Hansen NT, Karlberg EO, Eklund AC, Roque FS, et al. (2008) A large-

scale analysis of tissue-specific pathology and gene expression of human disease

genes and complexes. Proc Natl Acad Sci USA 105: 20870–20875.

11. Dezso Z, Nikolsky Y, Sviridov E, Shi W, Serebriyskaya T, et al. (2008) A

comprehensive functional analysis of tissue specificity of human gene expression.

BMC Biol 6: 49.

12. Richards CL, Rosas U, Banta J, Bhambhra N, Purugganan MD (2012)

Genome-wide patterns of Arabidopsis gene expression in nature. PLoS Genet 8:

e1002662.

13. Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, et al. (2011) NCBI

GEO: archive for functional genomics data sets—10 years on. Nucleic Acids Res

39: D1005–1010.

14. Parkinson H, Sarkans U, Kolesnikov N, Abeygunawardena N, Burdett T, et al.

(2011) ArrayExpress update—an archive of microarray and high-throughput

sequencing-based functional genomics experiments. Nucleic Acids Res 39:

D1002–1004.

15. Tarraga J, Medina I, Carbonell J, Huerta-Cepas J, Minguez P, et al. (2008)

GEPAS, a web-based tool for microarray data analysis and interpretation.

Nucleic Acids Res 36: W308–314.

16. De Ferrari L, Aitken S (2006) Mining housekeeping genes with a Naive Bayes

classifier. BMC Genomics 7: 277.

17. Dong B, Zhang P, Chen X, Liu L, Wang Y, et al. (2011) Predicting

housekeeping genes based on Fourier analysis. PLoS One 6: e21012.

18. Kumar S, Konikoff C, Van Emden B, Busick C, Davis KT, et al. (2011)

FlyExpress: visual mining of spatiotemporal patterns for genes and publications

in Drosophila embryogenesis. Bioinformatics 27: 3319–3320.

19. Bradford Y, Conlin T, Dunn N, Fashena D, Frazer K, et al. (2011) ZFIN:

enhancements and updates to the Zebrafish Model Organism Database. Nucleic

Acids Res 39: D822–829.

20. Xiao SJ, Zhang C, Zou Q, Ji ZL (2010) TiSGeD: a database for tissue-specific
genes. Bioinformatics 26: 1273–1275.

21. Liu X, Yu X, Zack DJ, Zhu H, Qian J (2008) TiGER: a database for tissue-

specific gene expression and regulation. BMC Bioinformatics 9: 271.

22. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, et al. (2009) BioGPS: an
extensible and customizable portal for querying and organizing gene annotation

resources. Genome Biol 10: R130.

23. Kogenaru S, del Val C, Hotz-Wagenblatt A, Glatting KH (2010) TissueDis-
tributionDBs: a repository of organism-specific tissue-distribution profiles.

Theoretical Chemistry Accounts 125: 651–658.

24. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, et al. (2012) Database

resources of the National Center for Biotechnology Information. Nucleic Acids
Res 40: D13–25.

25. Flicek P, Amode MR, Barrell D, Beal K, Brent S, et al. (2012) Ensembl 2012.

Nucleic Acids Res 40: D84–90.

26. Viguie F, Domenjoud L, Rousseau-Merck MF, Dadoune JP, Chevaillier P
(1990) Chromosomal localization of the human protamine genes, PRM1 and

PRM2, to 16p13.3 by in situ hybridization. Hum Genet 85: 171–174.

27. Krupp M, Marquardt JU, Sahin U, Galle PR, Castle J, et al. (2012) RNA-Seq

Atlas—a reference database for gene expression profiling in normal tissue by
next-generation sequencing. Bioinformatics 28: 1184–1185.

28. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, et al. (2004) A gene atlas of

the mouse and human protein-encoding transcriptomes. Proc Natl Acad
Sci U S A 101: 6062–6067.

29. Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, et al. (2001)

Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet 28:
82–86.

30. Shima JE, McLean DJ, McCarrey JR, Griswold MD (2004) The murine

testicular transcriptome: characterizing gene expression in the testis during the

progression of spermatogenesis. Biol Reprod 71: 319–330.

31. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, et al. (2010)
Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28: 1248–

1250.

32. Wang YP, Liang L, Han BC, Quan Y, Wang X, et al. (2006) GEPS: the Gene
Expression Pattern Scanner. Nucleic Acids Res 34: W492–497.

33. Kouadjo KE, Nishida Y, Cadrin-Girard JF, Yoshioka M, St-Amand J (2007)

Housekeeping and tissue-specific genes in mouse tissues. BMC Genomics 8: 127.

34. Barber RD, Harmer DW, Coleman RA, Clark BJ (2005) GAPDH as a
housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72

human tissues. Physiol Genomics 21: 389–395.

35. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR

normalisation; strategies and considerations. Genes Immun 6: 279–284.

36. de Jonge HJ, Fehrmann RS, de Bont ES, Hofstra RM, Gerbens F, et al. (2007)
Evidence based selection of housekeeping genes. PLoS One 2: e898.

37. Lee S, Jo M, Lee J, Koh SS, Kim S (2007) Identification of novel universal

housekeeping genes by statistical analysis of microarray data. J Biochem Mol
Biol 40: 226–231.

38. Bjorling E, Lindskog C, Oksvold P, Linne J, Kampf C, et al. (2008) A web-based

tool for in silico biomarker discovery based on tissue-specific protein profiles in
normal and cancer tissues. Mol Cell Proteomics 7: 825–844.

PaGenBase: A Pattern Gene Database

PLOS ONE | www.plosone.org 8 December 2013 | Volume 8 | Issue 12 | e80747



39. Steger K, Cavalcanti MC, Schuppe HC (2011) Prognostic markers for

competent human spermatozoa: fertilizing capacity and contribution to the

embryo. Int J Androl 34: 513–527.

40. Makawita S, Smith C, Batruch I, Zheng Y, Ruckert F, et al. (2011) Integrated

proteomic profiling of cell line conditioned media and pancreatic juice for the
identification of pancreatic cancer biomarkers. Mol Cell Proteomics 10: M111

008599.

PaGenBase: A Pattern Gene Database

PLOS ONE | www.plosone.org 9 December 2013 | Volume 8 | Issue 12 | e80747


