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Abstract: Due to the discontinuity of ocean waves and mountains, there are often multipath propaga-
tion effects and obvious pulse characteristics in low-altitude detection. If the conventional direction
of arrival (DOA) estimation method is directly used for direction finding, it will lead to a large error.
In view of serious misalignment in the DOA estimation of multipath signals under the background
of impulse noise, a DOA estimation method based on spatial difference and a modified projection
subspace algorithm is proposed in this paper. Firstly, the covariance matrix of the received data
vector is used for spatial difference to eliminate the multipath effects of low-altitude targets. Secondly,
the modified projection matrix is constructed using the signal source estimated with the least squares
criterion and then used for modifying the covariance matrix, thus eliminating the cross-covariance
matrices that affect the estimation accuracy. Finally, the modified covariance matrix is used for the
DOA estimation of targets. Simulations show that the proposed algorithm achieves a higher accuracy
in the DOA estimation of low-altitude targets than conventional algorithms under two common
impulse noise models, without requiring prior knowledge of impulse noise.

Keywords: impulse noise; low-altitude targets; multipath effects; array signal processing; direction
of arrival estimation

1. Introduction

As an important part of array signal processing, DOA estimation is a characteristic
parameter commonly used in radar detection and localization. So far, a series of related
studies have been carried out on DOA estimation. At the earliest, Schmidt [1] proposed
the multiple signal classification (MUSIC) algorithm based on feature subspace. Later,
scholars made improvements, most of which were based on the assumption of Gaussian
noise. With the increasingly complex battlefield electromagnetic environment, there is more
and more interference in radar detection, making it more difficult to detect targets [2–4].
Especially in the low-altitude environment, the diverse terrain environment will greatly
weaken the energy of electromagnetic waves, always making the detection and tracking of
low-altitude targets poor [5–8]. Recent studies have shown that due to the discontinuity
of ocean waves and mountains, the output signal of the array exhibits obvious impulse
characteristics, and the alpha-stable distribution with heavy smearing characteristics and
the compound Gaussian model can effectively describe impulse noise [9,10]. Therefore, it
is of great significance to develop a DOA estimation method for low-altitude targets under
the background of impulse noise.

In order to solve the problem of low-altitude multipath effects, scholars have conducted
in-depth research, and they have achieved many results. Li et al. [11] first proposed the use
of spatial smoothing technology to deal with coherent signals in multipath effects, but in
addition to aperture loss, it was only suitable for uniform arrays. In the literature [12–14],
the spatial differencing algorithm was used for decoherence, where the accuracy was

Sensors 2022, 22, 4853. https://doi.org/10.3390/s22134853 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22134853
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5284-7321
https://doi.org/10.3390/s22134853
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22134853?type=check_update&version=2


Sensors 2022, 22, 4853 2 of 13

improved to some extent but the DOA estimation effect was not satisfactory under the
condition of low signal-to-noise ratio (SNR). In the literature [15–19], a new method with a
combination of time reversal technology and a generalized MUSIC was proposed for the
DOA estimation of low-altitude targets, which improved the estimation accuracy of the
algorithm to some extent.

Due to the absence of finite second-order moments in impulse noise, conventional
higher-order cumulant algorithms cannot be used. For the purpose of direction finding
under impulse noise, in the literature [20], a theory based on fractional lower-order statis-
tics (FLOS) was first proposed. Based on this theory, Mendel et al. [21–23] proposed the
robust covariation-based MUSIC (ROC-MUSIC) algorithm in combination with the idea
of co-variation. In the literature [24–26], the FLOM-MUSIC algorithm based on the frac-
tional lower-order moment (FLOM) was proposed. In the literature [27–29], a fractional
lower-order cyclic MUSIC (FLOC-MUSIC) algorithm using a fractional lower-order cyclic
covariance matrix was proposed. However, these FLOS-based algorithms require prior
knowledge of the characteristic exponent of stable distribution. To this end, the infinite
MUSIC (IN-MUSIC) algorithm for received data was proposed in the literature [30], which
was robust for outliers, but it required large samples to obtain a satisfactory performance.
In order to solve the problem of direction finding of coherent signals in the background of
impulse noise, the literature [31] proposed an algorithm based on infinite norm normal-
ization preprocessing and sparse representation. The algorithm does not need to predict
the number of signal sources, and it can be well adapted to coherent sources. In the litera-
ture [32], suppression of impulse noise is achieved by using an infinite norm exponential
kernel covariance matrix. In order to obtain the global optimal solution of the method, a
quantum electromagnetic field optimization algorithm is designed, and the Monte Carlo
experiment verifies the effectiveness of the method.

In order to improve the direction-finding accuracy of low-altitude targets under the
background of impulse noise, a DOA estimation method based on a spatial difference
algorithm and a modified projection subspace algorithm is proposed in this paper. This
method restores the covariance matrix of the received signal to full rank through a spatial
difference algorithm. The signal source vector is estimated according to the least squares
criterion, whereby the modified projection matrix is constructed and the cross-covariance
matrix of the signal and the noise is then calculated. The sample covariance matrix is
modified to remove interference terms. Next, the best correction coefficient is obtained with
the maximum likelihood criterion, followed by re-adjustment of the covariance matrix. Fi-
nally, DOA estimation is conducted using the subspace classification algorithm. Simulation
results verify the effectiveness of the proposed method.

The advantages of the proposed method can be given as follows:

1. Compared with the algorithm based on fractional low-order moments, the algorithm
in this paper does not require prior knowledge of the characteristic exponent of stable
distribution, and it is more adaptable to the environment;

2. Compared with the algorithm in the literature [27–31], the algorithm in this paper
does not require large sample sampling and loop iterations, so the computational
complexity is low;

3. Compared with the conventional low-altitude target DOA estimation method that
only deals with rank deficiencies, the proposed algorithm has better performance in
low-altitude environment.

2. Signal Model in Low-Altitude Multipath Environment

The signal reception model of the array in the low-altitude multipath environment is
shown in the following figure:

Suppose K far-field narrowband signals si(t)(i = 1, 2, . . . , K) are incident on a uniform
linear array with an angle of θi. The spacing d of the array elements is one half of the signal
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wavelength. The array consists of M uniformly distributed array elements, where each
element is omnidirectional. Then, the signal steering vector of the array can be expressed as:

A = [ad1 + ar1, · · · , adK + arK] (1)

where adi(θdi) =
[
1, e−jπ sin θdi , · · · , e−jπ(M−1) sin θdi

]T
and ari(θri) = δiadi(θri). As shown in

Figure 1, θdi and θri are the incident angles after direct incidence and reflection, respectively;
δi is the reflection coefficient; (·)T is the transposition of the matrix.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 14 
 

 

Suppose K far-field narrowband signals ( )( 1,2, , )is t i K=   are incident on a uni-

form linear array with an angle of iθ . The spacing d of the array elements is one half of 
the signal wavelength. The array consists of M uniformly distributed array elements, 
where each element is omnidirectional. Then, the signal steering vector of the array can 
be expressed as: 

[ ]1 1, ,d r dK rK= + +A a a a a  (1) 

where ( ) Tj sin j ( 1)sin1,e , ,edi diM
di di

π θ π θθ − − − =  a   and ( ) ( )ri ri i di riθ δ θ=a a . As shown in Fig-

ure 1, diθ  and riθ  are the incident angles after direct incidence and reflection, respec-
tively; iδ  is the reflection coefficient; (·) T  is the transposition of the matrix. 

diθ

r iθ
Receiver

iS

 
Figure 1. Signal reception model in low-altitude multipath environment. 

Due to the characteristics of low-altitude multipath effects, idi riθ θ θ= − = . Therefore, 
the signal steering vector can be expressed as: 

( ) ( ) ( ) ( )1 1 1 , , K K Kθ δ θ θ δ θ= + − + −  A a a a a
 (2) 

The received signals of array can be expressed as: 
( ) ( ) ( ) ( ) ( )t t t t t= + = +y As n Bx n  (3) 

where [ ]T1 2( ) ( ), ( ), , ( )Kt s t s t s t=s  ; ( ) ( ) ( ) ( )1 1 2
, , , ,K K N K

θ θ θ θ
×

= − −  B a a a a ;

[ ]T1 1 1 2 1
( ) ( ), ( ), , ( ), ( )K K K K
t s t s t s t s tδ δ

×
=x  ; and ( )tn  is the impulse noise vector received 

by the array. 
According to the above equations, it can be concluded that under ideal conditions, 

the covariance matrix of the received signal of array is: 
H H H H H

x x n x n( ) ( ) E ( ) ( )E t t t t = =   = = + + +   R y y BR B n n BR B R BR B R
 (4) 

where xR  is the covariance matrix of ( )tx ; nR  is the covariance matrix of noise ( )tn ; 
and (·) H  is the conjugate transpose of the matrix. 

Equation (4) can be established only when the number of snapshots approaches in-

finity. In actual cases, after ( )ty  is expanded to ( ) ( )t t+Bx n , as shown in Equation (5) 
where the covariance of each term is calculated, it is found that the signal–noise cross-

covariance calculated matrix xnR  and the noise–signal cross-covariance matrix nxR  are 
non-zero matrices: 

Figure 1. Signal reception model in low-altitude multipath environment.

Due to the characteristics of low-altitude multipath effects, θdi = −θri = θi. Therefore,
the signal steering vector can be expressed as:

A = [a(θ1) + δ1a(−θ1), · · · , a(θK) + δKa(−θK)] (2)

The received signals of array can be expressed as:

y(t) = As(t) + n(t) = Bx(t) + n(t) (3)

where s(t) = [s1(t), s2(t), · · · , sK(t)]
T ; B = [a(θ1), a(−θ1), · · · , a(θK), a(−θK)]N×2K;

x(t) = [s1(t), δ1s1(t), · · · , sK(t), δKsK(t)]
T
2K×1; and n(t) is the impulse noise vector received

by the array.
According to the above equations, it can be concluded that under ideal conditions, the

covariance matrix of the received signal of array is:

R = E
[
y(t)yH(t)

]
= BRxBH + E

[
n(t)nH(t)

]
= BRxBH + Rn = BRxBH + Rn (4)

where Rx is the covariance matrix of x(t); Rn is the covariance matrix of noise n(t); and
(·)H is the conjugate transpose of the matrix.

Equation (4) can be established only when the number of snapshots approaches
infinity. In actual cases, after y(t) is expanded to Bx(t) + n(t), as shown in Equation (5)
where the covariance of each term is calculated, it is found that the signal–noise cross-
covariance calculated matrix Rxn and the noise–signal cross-covariance matrix Rnx are
non-zero matrices:

R = 1
N

N
∑

t=1
y(t)yH(t) = 1

N

N
∑

t=1
(Bx(t) + n(t))(Bx(t) + n(t))H

= B
[

1
N

N
∑

t=1
x(t)xH(t)

]
BH + 1

N

N
∑

t=1
n(t)nH(t)+B

[
1
N

N
∑

t=1
x(t)nH(t)

]
+

[
1
N

N
∑

t=1
x(t)nH(t)

]
BH

= Rxx + Rnn + Rxn + Rnx

(5)

where N is the number of snapshots; Rxx is the signal covariance matrix; and Rnn is the
noise covariance matrix.
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3. DOA Estimation of Low-Altitude Targets under Impulse Noise
3.1. Decoherence with Spatial Difference Algorithm

In the low-altitude multipath environment, the direct signal and the reflected signal
contained in received signals of array are correlated, as a result of which there will be angle
loss in case of direct feature decomposition of R. Therefore, we use the spatial difference
algorithm to divide the received signals y(t) of array into L sub-arrays yl(t) that overlap
each other, and each sub-array contains m array elements:

yl(t) = BmVl−1x(t) + nl(t) (6)

where l = 1, 2, · · · , L , M−m + 1; Bm is the first m rows of B; and nl(t) represents the
noise received by the l-th subarray. Furthermore:

V = diag[v(θ1), v(−θ1), · · · , v(θK), v(−θK)] (7)

where v(θi) = e−jπ sin θi ; i = 1, 2, · · · , K.
The covariance matrix of submatrix yl(t) is calculated. With Equation (5), the covari-

ance submatrix is obtained:

^
Rl =

1
N

N
∑

t=1

[
yl(t)y

H
l (t)

]
= 1

N

N
∑

t=1

[
[BmVl−1x(t) + nl(t)][BmVl−1x(t) + nl(t)]

H
]

= Rl
xx + Rl

nn + Rl
xn + Rl

nx

(8)

The spatial difference matrix consists of the difference between the first covariance
submatrix and the backward covariance matrix [13]:

^
R =

1
L

L

∑
l=1

[
^
R1 − J

(
^
Rl

)∗
J
]

(9)

where J is the m×m -dimensional anti-diagonal matrix; the elements on the anti-diagonal
are all 1; the rest of the elements are 0; and (·)∗ is the conjugate of the matrix.

Since it is difficult to estimate all target angles due to the influence of low-altitude multi-
path effects, the spatial difference algorithm is used to eliminate this influence. However, the
impulse noise component in the covariance matrix still greatly affects the estimation accuracy.

3.2. Modified Projective Subspace Algorithm

As the cross-covariance component in the covariance matrix R̂ greatly reduces the
accuracy of DOA estimation, we need to first estimate x(t) to remove the influence of these
disturbance terms:

^
x(t) = argmin

y

∥∥∥∥y(t)−
^
B(θ)x(t)

∥∥∥∥2

2
(10)

where
^
x(t) is the estimated value of x(t) and

^
B(θ) is the estimated value of B(θ). For the

convenience of expression, B(θ) is denoted as B.
According to the least squares rule, formula (10) is minimized to obtain:

^
x(t) = (

^
B

H ^
B)−1 ^

B
H

y(t) (11)

Taking the difference between the observed value of the array signal and the estimated
signal as an estimate of noise, we can get:

^
n(t) = y(t)−

^
B

^
x(t) (12)
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Then, the estimated value of the third term in Equation (8) can be obtained:

^
R

l

xn =
^
Bm

[
1
N

N
∑

t=1

^
x(t)

^
n

H
(t)
]

=
^
Bm

[
1
N

N
∑

t=1
(

^
B

H

m
^
Bm)−1

^
B

H

my(t)
(

yH(t)− yH(t)
^
Bm(

^
B

H

m
^
Bm)−1

^
B

H

m

)]

=
^
Bm(

^
B

H

m
^
Bm)−1

^
B

H

m

[
1
N

N
∑

t=1
y(t)yH(t)

(
IMN −

^
Bm(

^
B

H

m
^
Bm)−1

^
B

H

m

)] (13)

where
^
Bm is the first m row of

^
B.

In order to facilitate subsequent calculation and representation, the following projec-
tion matrix is assumed:

^
PB =

^
Bm

(^
B

H

m
^
Bm

)−1 ^
B

H

m (14)

^
P
⊥

B = IMN −
^
PB (15)

After simplification:
^
R

l

xn =
^
PB

^
R

^
P
⊥

B (16)

Similarly, we can get:
^
R

l

nx =
^
P
⊥

B
^
R

^
PB (17)

^
R

l

nn =
^
P
⊥

B
^
R

^
P
⊥

B (18)

Because the steering vector matrix
^
B is unpredictable,

^
PB and

^
P
⊥

B cannot be calculated.

Therefore, we perform eigen decomposition of the covariance matrix
^
R after spatial differentiation:

^
R =

^
Ux

^
Σx

^
U

H

x +
^
Un

^
Σn

^
U

H

n (19)

where
^
Σx = diag[λ1, . . . , λK],

^
Σn = diag[λK+1, . . . , λM] and λ1 ≥ · · · ≥ λK > λK =

λK+1 = · · · = λM;
^
Ux = [u1, u2, · · · uK],

^
Un = [uK+1, uK+2, · · · uM], ui is the eigenvector

corresponding to the eigenvalue λi.
Upon calculation, it is found that the subspace generated by the signal covariance

matrices
^
Ux and Bm is the same, that is:

span{u1, u2, · · · , uK} = span{b1, b2, · · · , bK} (20)

Hence, by assuming that there is a matrix T that makes
^
UxT = Bm established, we get:

P̂B = B̂m

(
B̂H

mB̂m

)−1
B̂H

m

= ÛxT
[(

ÛxT
)HÛxT

]−1(
ÛxT

)H

= Ûx

(
ÛH

x Ûx

)−1
ÛH

x

(21)

So,
^
P
⊥

B can be represented as:

^
P
⊥

B = IMN −
^
PB (22)
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Formulas (21) and (22) are substituted into Formulas (17) and (18) to get:

^
R

l

xn =
^
P
⊥

B
^
R

^
PB (23)

^
R

l

nx =
^
P
⊥

B
^
R

^
P
⊥

B (24)

R̂l and R̂ after removal of disturbance terms can be expressed as:

R̂′l =
[
R̂l − ε

(
R̂l

xn + R̂l
nx

)][
R̂l − ε

(
R̂l

xn + R̂l
nx

)]H
(25)

^
R
′
=

1
L

L

∑
l=1

[
^
R
′

1 − J

(
^
R
′

l

)∗
J

]
(26)

in Equation (25), ε ∈ [0, 1] is used to correct the estimation error. If R̂l
xn, R̂l

nx are equal to
Rl

xn, Rl
nx, respectively, ε = 1. In practice, since the error of simulation estimation cannot be

accurately predicted, a specific uniform step size is substituted into the following equation
for calculation:

f (ε) = min
ε

ln det

P̂B
′ ^RP̂B

′ +

Tr

{
^
P
⊥′

B
^
R

}
m− K

^
P
⊥′

B

 (27)

according to the maximum likelihood criterion, ε is the best correction coefficient when
f (ε) reaches the minimum value. In this equation, P̂B

′ is the modified projection matrix of
R̂′ obtained by eigenvalue decomposition; P̂⊥B ′ = IMN − P̂B

′ and Tr
{

P̂⊥B ′R̂
}

is the trace of
the matrix.

Finally, the DOA of the target is obtained through eigenvalue decomposition of R̂′

using the MUSIC algorithm.

4. Basic Steps of the Algorithm and Complexity Analysis
4.1. The Basic Steps of the Algorithm

According to the above analysis, the algorithm in this paper is summarized as follows:

1. Calculate the data covariance matrix R of the array element output vector y(t);
2. As shown in Equations (6)–(9), spatial difference operation is performed to obtain R̂;
3. Eigenvalue decomposition of R̂ is performed to get Ûx;

4. Calculate the modified projection matrix P̂B and
^
P
⊥

B with Equations (21) and (22);

5. As shown in Equations (23)–(26), the cross-covariance matrices of
^
R

l

xn and
^
R

l

nx are
constructed to correct the estimated value of R̂l ;

6. As shown in Equation (27), the optimal correction coefficient ε is obtained using the
maximum likelihood criterion, and the estimated value of R̂l is re-adjusted;

7. Finally, DOA estimation is performed for the adjusted R̂′l using MUSIC algorithm.

4.2. Algorithm Complexity Analysis

Let’s assume that the number of array elements is M; the number of signal sources
is K; the number of sampling points is N; the number of angle searches is Nθ , and E is
the number of ε divided by a uniform step size. The computational complexity of steps
1~5 of this algorithm is approximately (E + 2N + 1)(M)3 + (EN + K)(M)2 + K2M + K3.
The complexity of spatial spectrum calculation and search in steps 6~7 is approximately
O((M− K)MNθ(E + 1)). Therefore, the total complexity of the algorithm herein is approx-

imately O
(

(E + 2N + 1)(M)3 + (EN + ENθ + Nθ + K)(M)2

+
(
K2 − KENθ − KNθ

)
M + K3

)
.
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5. Simulation Results and Analysis
5.1. Impulse Noise Model

Compared with Gaussian noise, the probability distribution of impulse noise is char-
acterized by long tailing. Typical impulse noise models include a Gaussian mixture model
(GMM), noise model, and SαS noise model.

The GMM noise model used in the simulation consists of two Gaussian components,
and its probability density function (PDF) is:

pn(x) =
2

∑
i=1

ci

πσ2
i

exp

(
−|x|

2

σ2
i

)
(28)

where i = 1, 2, 0 ≤ ci ≤ 1 is the probability of the i-th term and c1 + c2 = 1; σ2
i is the

variance of the i-th term; it is set in the simulation that σ2
2 = 100σ2

1 . Meanwhile, the
signal-to-noise ratio (SNR) is defined as:

SNR =
σ2

s

σ2
1

(29)

the noise power should have been c1σ2
1 + c2σ2

2 , but since σ2
1 is set to a large noise background

in this simulation, the presence of σ2
2 is considered an outlier.

As the most commonly used impulse noise distribution model, the SαS noise model
PDF cannot usually be given in closed form, but its characteristic function is:

φ(x) = exp
(
−γα|x|α

)
(30)

where α is the characteristic exponent and 0 < α ≤ 2. The larger the α, the weaker the pulse
characteristic. When α = 2, it degenerates into a Gaussian distribution. The dispersion
coefficient is γ, and it is similar to the variance in a Gaussian distribution. Since the common
SNR is nonsense for the SαS distribution with α < 2, the generalized SNR (GSNR) is used:

GSNR =
σ2

s
γα

(31)

A uniform linear array with 35 array elements is used in the simulation. Each subarray
contains 30 array elements, that is, L = 6. The angles of two incoherent narrowband signals
are 2◦ and 6◦. The signal wavelength λ = d

2 ; the array element spacing d = 2; the source
power is equal to σ2

s ; the reflection coefficient δi = 0.9; and the number of snapshots is 200.

5.2. Spatial Spectrum Estimation

Experiment one shows the spatial spectrum estimation effect with the simulation
algorithm under the GMM noise model. Figure 2 shows the spatial spectrum of three
independent experiments with the algorithm, when the probability of outliers is c2 = 0.1,
c2 = 0.3, and SNR = 5 dB.

Figure 2 shows that under the background of GMM noise, when the probability of
outliers is 0.1, the target direction can be accurately estimated with the algorithm. When
the probability of outliers rises to 0.3, although specific spectral peaks are not steep, the
algorithm still maintains a high resolution.

Experiment two shows the spatial spectrum estimation effect with the simulation algo-
rithm under the SαS noise model. Figure 2 shows the spatial spectrum of three independent
experiments with the algorithm, when the characteristic exponent α = 1.6 and α = 1.3,
where GSNR = 5 dB.
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Figure 2. Algorithm space spectrum under the background of GMM noise: (a) c2 = 0.1; (b) c2 = 0.3.

Figure 3 shows that under the background of SαS noise, when the characteristic
exponent α decreases, the impact characteristic of the noise is enhanced and the position of
the spectral peak deviates from the target direction to a certain extent. It can be learned
from the spectral peak search that the algorithm can still maintain a high accuracy and a
strong robustness.
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Figure 3. Spatial spectrum under noise background with the algorithm: (a) α = 1.6; (b) α = 1.3.

5.3. Comparative Analysis of DOA Estimation Performance

In this section, simulation experiments are carried out to study the performance of this
algorithm. Since the MUSIC algorithm fails to effectively identify coherent signal sources,
the spatial smoothing method [11] is used in the following comparison algorithms. The
comparison algorithms being compared include ROC-SSMUSIC [22], FLOM-SSMUSIC [24],
FLOC-SSMUSIC [27], and IN-SSMUSIC [31].

The root mean square error (RMSE) of DOA estimation is defined as:

RMSE =

√√√√1/2Nmont

Nmont

∑
i=1

K

∑
k=1

(
|θi − θik|2

)
(32)

where Nmont is the number of Monte Carlo experiments; K is the number of signals; and
θi and θik are the actual value and the estimated value of the i-th signal azimuth in each
experiment.
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A successful estimation of each angle is defined as:

|θi − θik| ≤ 2◦, k = 1, 2, · · ·K (33)

namely, the difference between the estimated value of the angle and the actual value is
less than 2◦. The probability of success is the ratio of the number of successes to the total
number of estimations.

In experiment three, the number of Monte Carlo experiments was 500, and other
settings were the same as above. Different SNRs were set to compare the estimation
performance under the background of GMM noise. Figure 4a shows the curve of the
changes of RMSE with five different algorithms, when the SNR changes from −5 dB to
20 dB at a step of 5 dB. Figure 4b shows the curves of the success rate of the five algorithms
with changes of SNR.
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As can be seen from Figure 4, the theoretical method of edge asymptotic fitting of
the covariant matrix adopted in the ROC-SSMUSIC algorithm is not very effective. Due
to the difference between the impulse noise model and the selection of noise parameters,
the estimation performance of the FLOM-SSMUSIC algorithm and the FLOC-SSMUSIC
algorithm is significantly improved when the SNR is greater than−5 dB. With pre-treatment
of infinite norm normalization to reduce the influence of impulse noise, the success rate
of the IN-SSMUSIC algorithm is closest to the algorithm in this paper when the SNR is
high. The proposed algorithm basically achieves the best estimation performance within
the entire SNR simulation range, and especially when the SNR is greater than 0 dB, the
estimation performance herein is significantly better than other algorithms.

In experiment four, while the simulation settings in this section remain unchanged,
different GSNRs were set under the background of SαS noise to compare the algorithm’s
performance, where α = 1.4. Figure 5a shows the curve of changes of RMSE with the
five different algorithms when the GSNR changes from −5 dB to 20 dB at a step of 5 dB.
Figure 5b shows the curves of the success rate of the five algorithms with changes of GSNR.
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It can be seen from Figure 5 that with increased GSNR, the impact of impulse noise
decreases and the success rate of DOA estimation is significantly improved. Low-order
fractional moment algorithms such as FLOM-SSMUSIC and FLOC-SSMUSIC achieve better
performance at low GSNR, but such algorithms depend too much on prior knowledge of
noise. The performance of the proposed algorithm is better than the other algorithms being
compared. However, in the case of a low GSNR, due to the strong impulse noise impact, its
estimation accuracy decreases to a certain extent.

In Experiment five, the influence of the number of snapshots on the performance
of the algorithm was analyzed. The performance of the algorithm was compared by
setting a different number of snapshots under two different noise models. Figure 6a shows
the curve of changes of RMSE with the five different algorithms when the number of
snapshots changes from 50 to 300 at a step of 50 under the background of GMM noise
with SNR = 5 dB. Figure 6b shows the change of RMSE with the five algorithms when the
number of snapshots changes from 50 to 300 at a step of 50 under the background of SαS
noise with GSNR = 5 dB and α = 1.4.
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It can be seen from Figure 6 that with increased snapshots, the estimation performance
of each algorithm is enhanced to a certain extent either under a GMM or an SαS noise model,
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and it gradually becomes stable. Regardless of the number of snapshots, the RMSE of the
proposed algorithm is lower than other algorithms. Under the GMM noise, however, when
the number of snapshots is less than 100, the performance of the proposed algorithm is poor.
This is because when the number of snapshots is small, it is difficult for the sample-based
estimation algorithm to correctly separate the signal and the noise subspaces, resulting in a
larger error.

In Experiment six, the influence of the characteristic exponent α on the performance
of the algorithm under the SαS noise background was analyzed. While the simulation in
this section remains unchanged, different characteristic exponents are set. Figure 7 shows
the curves of the success rate of five different algorithms when the characteristic exponent
changes from 0.6 to 2 at a step of 0.2 when GSNR = 10 dB and GSNR = 20 dB.
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Since the larger the characteristic exponent, the weaker the impulsiveness of the noise,
the success rate of these algorithms is improved with increased characteristic exponent. It
can be seen from the figure that the performance of ROC-SSMUSIC algorithm is the worst
in an SαS noise environment, without a significant effect on the change of the character-
istic exponent. The FLOM-SSMUSIC, FLOC-SSMUSIC, and IN-SSMUSIC algorithms are
sensitive to the change of the impulse noise intensity to some extent, that is, the reduction
of the noise intensity reduces RMSE. When the characteristic exponent of impulse noise
contained in the output signal of the array changes from 1.6 to 2, the above three algorithms
are insensitive to the change of impulse noise intensity, and they show strong robustness.
However, the algorithm herein maintains a strong estimation performance in a 10 dB or a
20 dB SαS noise environment.

6. Conclusions

As to direction finding of low-altitude targets under the background of impulse
noise, a DOA estimation method based on spatial difference and on a modified projection
subspace algorithm is proposed. In this method, the covariance matrix is first constructed
with the received signal vector, and then the spatial difference operation is performed
to eliminate the influence of low-altitude multipath. Next, the array signal vector is
estimated according to the least squares criterion, after which the modified projection
matrix is constructed to calculate the cross-covariance matrix of the signal noise. Then,
the covariance matrix of the samples is modified to remove the disturbance terms, thus
completing the DOA estimation of the targets. The experimental results show that the
proposed algorithm achieves satisfactory DOA estimation of low-altitude targets under
different impulse noise backgrounds, with higher accuracy and more practical application
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compared with conventional algorithms. In the next step, on the basis of guaranteeing
the performance of the algorithm, the extended study of the spatial difference method
for coherent and incoherent mixed signals in the background of impulse noise will be
carefully considered.
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