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ABSTRACT
NKp46 is a major determinant of natural killer (NK) cell function and it is implicated in tumor immune
surveillance in acute myeloid leukemia (AML). The purpose of this study was to investigate the prognostic
significance of NKp46 expression in an independent cohort of patients with AML, and to investigate the
impact of NKp46 on clinical outcome after allogeneic stem cell transplantation (allo-SCT).

NKp46 expression was assessed at diagnosis on NK cells by flow cytometry (N D 180 patients). Clinical
outcome was evaluated with regard to NKp46 expression. Patients with NKp46high phenotype at diagnosis
had better progression-free survival (PFS) and overall survival (OS) than patients with NKp46low phenotype
(74.3% vs. 46.6%, p D 0.014; 82.6% vs. 57.1%, p D 0.010, respectively). In multivariate analysis, high NKp46
was an independent factor for improved OS (HR D 0.409, p D 0.010) and PFS (HR D 0.335, p D 0.011).
Subgroup analysis revealed that allo-SCT had a favorable impact on PFS in patients with NKp46high

phenotype (p D 0.025). By contrast, allo-SCT did not impact PFS in patients with low NKp46 expression
(p D 0.303).

In conclusion, we validate the prognostic value of NKp46 expression at diagnosis in AML. However, the
prognostic value of NKp46 expression is limited to patients treated with allo-SCT, thus suggesting that
NKp46 status may be predictive for allo-SCT responsiveness.
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Introduction

Acute myeloid leukemia (AML) is a hematologic disorder char-
acterized by variable responsiveness to treatment. Induction
chemotherapy based on cytarabine and anthracyclines induces
complete remission (CR) in most patients; however, relapse
concerns most patients.1 In this context, precise and accurate
patient stratification criteria are mandatory to enable identifica-
tion of patients likely to benefit from allogeneic stem cell trans-
plantation (allo-SCT). Therefore, discovery and validation of
novel prognostic biomarkers is crucial for outcome prediction.
However, most biomarkers lack formal validation on indepen-
dent multicenter cohorts of patients, which is a challenging but
mandatory step before clinical applications.2,3

Actual prognostic groups are based on cytogenetics,4,5

and European LeukemiaNet (ELN) genetic classification.6

These classifications define three groups of patients, i.e.,
favorable, adverse and intermediate prognosis; the benefits
of post-remission therapy (PRT) with allo-SCT in patients
with intermediate prognosis remain controversial,7-9 and
additional prognostic parameters are necessary to refine this
classification. New molecular markers have been shown to
impact prognosis and may be included in future revisions
of ELN classification.6,10,11 However, molecular markers do
not account for the entire prognostic heterogeneity of AML
and new markers are warranted.

CONTACT Pr. Daniel Olive daniel.olive@inserm.fr Immunomonitoring Platform, Paoli Calmettes Institute, Team Immunity and Cancer, CRCM Inserm U1068, 27
Boulevard Lei Roure CS 30059, 13273 Marseille Cedex 09.

Supplemental data for this article can be accessed on the publisher’s website.
yThese authors contributed equally to this work.
© 2017 Anne-Sophie Chretien, Raynier Devillier, Cyril Fauriat, Florence Orlanducci, Samia Harbi, Aude Le Roy, J�erôme Rey, Gaelle Bouvier Borg, Emmanuel Gautherot, Jean-François
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Beside genetic alterations, accumulating evidence highlights
the microenvironment and, in particular, deficient immunity as
factors strongly implicated in tumor progression and resistance
to chemotherapy.12 Thus, immune parameters are currently
being extensively developed as prediction tools in solid
tumors.13-16 Natural killer (NK) cells are key components of the
innate immunity and substantially contribute to antitumor
immune responses.17-19 In AML patients, NK cells play a major
role in maintaining prolonged remission, especially in the context
of allo-SCT.20 Among crucial parameters linked to NK antitumor
activity, NK-activating receptors expression such as natural cyto-
toxic receptors (NCR), notably NKp46 play a crucial role.21-23 In
line with this, our group previously reported that low NKp46
expression on NK cells was significantly associated with reduced
overall survival (OS) in AML.21 However, formal validation of
this finding is an absolute prerequisite before considering any
clinical application. Therefore, the aim of this study was to vali-
date the prognostic value of NKp46 expression on clinical out-
come in an independent multicenter cohort of patients with
AML. A subgroup analysis in patients treated with allo-SCT in
first complete remission (CR1) revealed that NKp46 expression
impacts clinical response to allo-SCT.

Results

NKp46 expression at diagnosis

Baseline NKp46 expression on NK cells was assessed by flow
cytometry. Patients were classified according to NKp46 rMFI.
The threshold used to discriminate patients with NKp46low and
NKp46high phenotype was based on dispersion criteria (Fig. S1),
and defined as the intersection between the two Gaussian distri-
butions among patients (rMFI D 43.5; see Patients and Methods
for further details). Among 180 patients, 35 (19.4%) had high
NKp46 expression on NK cells (NKp46high phenotype), and 145
(80.6%) had low NKp46 expression on NK cells (NKp46low phe-
notype) (Table 1). Frequency of patients with NKp46 high and
low phenotype did not differ between age groups, cytogenetics or

number of inductions (Table 1). Median follow-up after docu-
mentation of CR was 55.3 mo.

Prognostic value of NKp46 expression at diagnosis

In univariate analysis, 4-y progression-free survival (PFS) after
CR was better in the NKp46high group, with 74.3% (95%CI,
61.1% to 90.3%) versus 46.6% (95%CI, 38.8% to 55.9%) in the
NKp46low group (p D 0.014; Fig. 1A). Four-year OS after CR
was better in the NKp46high group, with 82.6% (95%CI, 70.8%
to 96.3%) versus 57.1% (95%CI, 49.3% to 66.1%) in the
NKp46low group (p D 0.010; Fig. 1B).

High NKp46 expression at diagnosis was inversely corre-
lated with cumulative incidence of relapse (CIR), with 20.0%
(95%CI, 5.6% to 32.2%) versus 42.1% (95%CI, 33.1% to 49.9%)
in the NKp46low group (p D 0.039; Fig. 1C). There was no sig-
nificant difference in non-relapse mortality between patients
with high and low NKp46 expression (p D 0.334; Fig. 1D).

Multivariate Cox regression analysis was performed to assess
the predictive value of NKp46 expression while adjusting for
the prognostic factors in the population (age at transplantation,
cytogenetics, white blood cells and number of inductions). In
multivariate analysis, high NKp46 expression was significantly
associated with improved PFS (HR D 0.409; 95%CI D
[0.20–0.81]; p D 0.010) and OS (HR D 0.335; 95%CI D
[0.14–0.78]; p D 0.011) (Table 2). Notably, in multivariate anal-
ysis, NKp46 status was more significantly associated with clini-
cal outcome than cytogenetic risk group for both OS and PFS.

Prognostic value of NKp46 expression is restricted
to patients treated with allogeneic haematopoietic
stem cell transplantation (allo-SCT)

We then assessed the impact of NKp46 expression at diagnosis
on clinical outcome after allo-SCT. Of 180 patients, 66 (36.7%)
received allo-SCT in CR1. Four-year clinical outcome was
assessed using Cox regression models after controlling for allo-

Table 1. Baseline patient characteristics.

All patients N D 180 High NKp46 N D 35 (19.4%) Low NKp46 N D 145 (80.6%)
Characteristic Median Median Median p

Median Follow-up (months) 55.3 59.1 53.2
Age (years) 47 47 48 0.328
WBC (109/L) 16 18 12 0.945
Time to allograft (months) 4.9 4.9 4.8 0.755

Nb. (%) Nb. (%) Nb. (%) p

Sex
Male 92 (51.1) 16 (45.7) 76 (52.4) 0.477
Female 88 (48.9) 19 (54.3) 69 (47.6)

Cytogenetics
Favorable 22 (12.2) 5 (14.3) 17 (11.7) 0.308
Intermediate 139 (77.2) 24 (68.6) 115 (79.3)
Unfavorable 19 (10.6) 6 (17.1) 13 (9.0)

Consolidation
Allograft in CR1 66 (36.7) 14 (40.0) 52 (35.9) 0.648
No allograft in CR1 114 (63.3) 21 (60.0) 93 (64.1)

Nb inductions
1 139 (77.7) 29 (82.9) 110 (76.4) 0.410
2 41 (22.3) 6 (17.1) 35 (23.6)

Abbreviations: CR1, first complete remission; Nb, number; WBC, white blood cells.
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SCT as a time-dependent covariate. Patients were stratified by
NKp46 expression and post-remission treatment.

In the group of patients with high NKp46 expression, allo-
SCT significantly improved PFS, with PFS rates of 100%
(95%CI, 100% to 100%) versus 60.4% (95%CI, 42.9% to 85.1%)
in the conventional PRT group (p D 0.025; Fig. 2A).

Consistently, allo-SCT was associated with improved OS with
100% (95%CI, 100% to 100%) versus 71.2% (95%CI, 54.0% to
93.8%) in the conventional PRT group (Fig. 2B). The signifi-
cance for OS could not be tested due to the absence of death in
the group of patients with high NKp46 expression, which pre-
cludes multivariate analyses (Fig. 2B).

Figure 1. Kaplan–Meier estimates of progression-free survival (A) and overall survival (B) by NKp46 expression at diagnosis. Cumulative incidence of relapse (C) and non-
relapse mortality (D) by NKp46 expression at diagnosis. The numbers at the bottom of each plot represent the number at risk at the beginning of each 12-mo period for
each group of patients. CR: complete remission. Statistical analyses were performed using a log Rank tests. p < 0.05 was considered significant.

Table 2. Multivariate analysis of PFS and OS.

Multivariate HR for PFS Multivariate HR for OS

Variable HR 95% CI p HR 95% CI p

Cytogenetics
Favorable Reference Reference
Intermediate 1.552 0.69 to 3.45 0.280 2.432 0.86 to 6.82 0.091
Adverse 2.711 1.04 to 7.03 0.040 2.746 0.81 to 9.27 0.104

WBC (109/L) 1.002 0.99 to 1.01 0.292 1.001 0.99 to 1.01 0.740
Age 1.006 0.98 to 1.03 0.551 1.010 0.98 to 1.03 0.411
Nb inductions 1.297 0.78 to 2.14 0.306 1.575 0.92 to 2.69 0.096
NKp46 expression

Low Reference Reference
High 0.409 0.20 to 0.81 0.010 0.335 0.14 to 0.78 0.011

Abbreviations: CI: confidence interval; HR: hazard ratio; OS: overall survival; PFS: progression-free survival; WBC: white blood cells.
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By contrast, in the group of patients with low NKp46
expression, the impact of allo-SCT on PFS was not significant,
with PFS rates of 50.8% (95%CI, 38.4% to 67.1%) versus 46.6%
(95%CI, 37.0% to 58.6%) in the conventional PRT group (p D
0.303; Fig. 2C). Consistently, allo-SCT did not impact OS in
the group of patients with low NKp46 expression, with OS rates
of 62.3% (95%CI, 50.3% to 77.3%) versus 55.0% (95%CI, 45.2%
to 66.8%) in the conventional PRT group (p D 0.312; Fig. 2D).

These results clearly suggest that the prognostic effect of
NKp46 expression on survival observed in the total popula-
tion is limited to the subgroup of patients with high NKp46
expression treated with allo-SCT. In addition, since allo-SCT
selectively impacts survival in patients with high NKp46
expression, our data strongly suggest that NKp46 expression
at diagnosis can be considered as a predictive biomarker of
response to allo-SCT.

Discussion

NK cells are potent immune effectors that mediate graft-versus-
leukemia effects.24,25 Among NK activating receptors, NCR
such as NKp46 are among the most important, acting by trig-
gering cytolytic responses to tumor target cells.21,25-28 The
prognostic value of NKp46 expression at diagnosis in AML
patients described in the present multicenter study is a formal
validation of previous results published by our team.21 Patients’
distribution histograms confirmed the existence of two distinct
populations of patients based on NKp46 intensity of expression
(Fig. S1). In the present study, the threshold validation for
NKp46 expression was based on objective dispersion criteria.
The first group of patients characterized by a low expression of
NKp46 was statistically associated with poor prognosis com-
pared with the second group, which had a higher NKp46

Figure 2. Kaplan–Meier estimates of progression-free survival (A, C) and overall survival (B,D) according to post-remission therapy in patients with low (A, B) or high (C, D)
NKp46 expression at diagnosis. The numbers at the bottom of each plot represent the number at risk at the beginning of each 12-mo period for each group of patients.
CR: complete remission. Statistical analyses were performed using a log Rank tests. p < 0.05 was considered significant.
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expression. In addition, our study confirms that NKp46 is an
independent prognostic biomarker at diagnosis. In contrast to
our previous study with an exploratory cohort, we have
included in our multivariate analyses all the currently admitted
confounding variables (leukocytosis, age, cytogenetics, number
of inductions), and NKp46 appeared as the most important
risk factor compared with other variables in multivariate
models.

We then assessed the impact of NKp46 expression at diag-
nosis on clinical outcome after allo-SCT. Our data suggest that
the clinical outcome after allo-SCT is strongly dependent on
NKp46 status at the time of diagnosis. Indeed, the clinical bene-
fit of allo-SCT is exclusively observed in the subgroup of
patients with high NKp46 expression, whereas in the subgroup
of patients with low NKp46 expression, there was no significant
effect of allo-SCT on survival and relapse. These results support
the idea that NKp46 can be considered as a predictive bio-
marker for clinical outcome after allogeneic transplantation,
since the observed benefit only occurs in case of treatment by
allo-SCT. Interestingly, this biomarker is assessable at diagno-
sis, which is a great advantage compared with most surrogate
biomarkers in allo-SCT assessed after transplantation.29-32

The impact of NKp46 expression on patients’ NK cells at
diagnosis on clinical outcome after transplantation is puzzling.
Indeed, it is difficult to understand how the phenotype of NK
cells at the diagnosis of AML can impact of clinical events tak-
ing place several months later and in an allogeneic context,
where NK cells come from the donor.

NKp46 is a triggering receptor implicated in malignant cell
recognition and destruction. Low NKp46 expression on NK
cells is responsible for poor blast recognition,21 and has been
correlated with high minimal residual disease (MRD) after
induction therapy in acute lymphoid leukemia.33 In our study,
the impact of NKp46 expression on NK cells at diagnosis on
clinical outcome after transplantation may be explained, at
least, by a higher MRD in patients with low NKp46 expression,
favoring emergence of clones leading to relapse.

Beside relapse, failure of allo-SCT is mainly due to severe
graft-versus-host disease (GvHD). Importantly, we noticed the
absence of death by GvHD in the group of NKp46high patients.
In a recent study in a NKp46 knockout mouse model, it was
evidenced an exacerbated GvHD in an experimental transplan-
tation setting.34 Although not directly transferrable to human
setting, questions raise from this study concerning the potential
of NKp46high expression to prepare the immune cells to control
GvH reaction. The number of patients with NKp46high pheno-
type in our cohort did not enable us to analyze the impact of
NKp46 expression on GvHD but should prompt further study
in a larger cohort. If confirmed, this observation could provide
additional arguments to stimulate NKp46 expression to
enhance NK-mediated graft-versus-leukemia effect without
inducing GvHD.

Mechanistically, the mechanisms of subversion of NK cells
by leukemic cells remain challenging. This immune subversion
has been observed in other cancer settings.23,35

Interestingly, in the group of NKp46high patients, NKp46
expression was higher than that of healthy volunteers (HV)
(median § SD D 60.2 § 16.0 vs. 29.2 § 10.6, p < 0.0001,
Fig. 3). This abnormal high expression may reflect some degree

of activation, since activated NK cells display increase in
activating receptor expression. This appeals for further
investigation to test whether activation markers are also
expressed in this group of patients. Additionally, a recent
study have shown that NK cell gene expression, which was
altered at diagnosis, was completely restored after in vitro
activation and expansion.36 Therefore, it would be interest-
ing to analyze whether gene expression of these NKp46high

AML-NK corresponds to activated NK cells. Alternatively, a
gene expression comparison between NKp46low and
NKp46high patients may provide cues for membrane-bound
or soluble factors provided by leukemic cells and responsi-
ble for NK cell defects. This strategy has been used by
Khaznadar et al. in a recent study, and reveals that patients
with a “normal” NK phenotype, gene data sets included
pathways related to immune reaction, which is in line with
our findings regarding NKp46high patients.37

On the other hand, further investigations should focus on
the different isoforms of NKp46. Indeed, four isoforms of
NKp46 have been described, with isoform d having the highest
activity,38 and whose relative expression might be modulated
by the microenvironment.39 Moreover, recent studies demon-
strated that NCR isoforms relative expression impact clinical
outcome, as demonstrated for splice variants of NKp30 in gas-
trointestinal stromal tumors35 as well as splice variants of
NKp44 in AML.40

Figure 3. Comparison of NKp46 expression in AML patients and HV. NKp46 expres-
sion on NK cells was assessed by flow cytometry at diagnosis. Patients were strati-
fied by NKp46 expression. NKp46 expression in each subgroup of patients
(NKp46high and NKp46low) was compared with HV. Abbreviations: HV: healthy vol-
unteers. Differences were assessed with a Student’s t test. p < 0.05 was considered
significant. ���p < 0.0001.
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Beside applications for AML patients, a perspective of the
present work is to investigate the generalization of our finding
to other pathologies, such as refractory Hodgkin lymphoma or
high-grade lymphoma. In the case of these pathologies, allo-
SCT is a therapeutic option likely to be balanced with alterna-
tive treatment with anti-PD1 therapy. The possibility of the
prediction of success of allo-SCT in these contexts would be
highly relevant for clinical decision making.

In conclusion, our results formally validate the prognostic
value of NKp46 expression in AML described in our previous
work.21 However, the prognostic value of NKp46 expression is
limited to patients treated with allo-SCT, thus suggesting that
NKp46 status may actually be predictive for allo-SCT respon-
siveness, as opposed to strictly prognostic.41 Although this con-
clusion requires further validation on an independent cohort of
patients, our study provides a strong rationale to develop inter-
ventional therapy to induce NKp46 expression after allo-SCT.

Patients and methods

Patients

All participants gave written informed consent in accordance
with the Declaration of Helsinki. The entire research procedure
was approved by the ethical review boards from the IPC and
the GOELAMS. The patient characteristics, stratified by
NKp46 expression groups, are summarized in Table 1. Baseline
NKp46 expression on NK cells at diagnosis was assessed by
flow cytometry in 180 patients with newly diagnosed AML.
Two cohorts of patients were merged for this study. The Paoli
Calmettes Institute (IPC) prospective cohort included 114
patients with newly diagnosed non-acute promyelocytic leuke-
mia (APL) AML admitted between November 2007 and
November 2012, aged 18 to 65 y and treated with conventional
3C7 induction chemotherapy as described previously.42 The
Groupe Ouest Est d’Etude des Leuc�emies Aigu€es et autres Mal-
adies du Sang (GOELAMS) cohort included 66 patients. The
median age at induction was 48 y (range: 19–59). All patients
were included in the LAM2006IR prospective multicenter ran-
domized trial between November 2007 and April 2012
(NCT00860639). All patients had previously untreated AML
with intermediate cytogenetics, as defined by Slovak et al.43

Patients received conventional 3C7 induction chemotherapy
with or without the addition of Gemtuzumab Ozogamicin.44

Patients with APL AML, patients above 66 y and patients with-
out CR after one or two courses of induction chemotherapy
were not eligible for this study. The median age at induction
was 47 y (range: 18–65). Out of 180 patients, 22 had favorable
cytogenetics (12.2%), 139 had intermediate cytogenetics
(77.2%) and 19 had unfavorable cytogenetics (10.6%). Sixty-six
(36.7%) patients received allo-SCT in their CR1.

Clinical samples

Fresh total peripheral blood samples (IPC cohort) or peripheral
blood mononuclear cells (PBMC) cryopreserved in 90% fetal
calf serum / 10% Dimethyl Sulfoxide (DMSO) (GOELAMS
cohort) were obtained from randomly selected patients at diag-
nosis before induction chemotherapy and analyzed by flow

cytometry. Fresh total peripheral blood from age-matched
(range: 18–65) HV was obtained from the Etablissement
Français du Sang (EFS). Samples were stained and analyzed
according to the procedure used for the IPC cohort (N D 24).
For the GOELAMS validation cohort, handling, conditioning
and storing of patients samples were performed by the FILO-
theque AML (N� BB-0033–00073), tumor bank of the FILO
group, Cochin hospital, Paris.

Flow cytometry

For the IPC cohort, analyses were performed in the Biopathology
department of the Paoli Calmettes Institute. A FACS Canto II
(BD Biosciences), and FACS Diva Software (BD Biosciences)
were used for flow cytometry. For the GOELAMS cohort, analy-
ses were performed in the Immunomonitoring platform of the
Paoli Calmettes Institute. A LSR Fortessa (BD Biosciences) was
used for flow cytometry. Cells were immunostained with Krome
Orange (KOTM)- or allophycocyanin (APC)-conjugated anti-
CD45, fluorescein isothiocyanate (FITC)–conjugated or Phycoer-
ythrin-Cyanine 7 (PC7)- or Phycoerythrin-Texas Red-xTM
(ECD)-conjugated anti-CD3, and PC7-, APC AF700- or APC–
conjugated anti-CD56. Triggering receptor expression NKp46
was measured with Phycoerythrin-Cyanine 5 (PC5)-conjugated
monoclonal antibodies. Isotype controls were mouse immuno-
globulin G conjugated to PC5. All antibodies used in this study
were kindly provided by Beckman-Coulter. For total blood, red
blood cells were lysed with BD FACS Lysing solution (BD Bio-
sciences) before data acquisition. The NKp46 mean fluorescence
intensity (MFI) ratio (NKp46 MFI / isotype control MFI,
referred to as rMFI) was calculated for each patient. Assays were
performed blinded to the study end point.

Threshold determination

Thresholds were calculated based on the results of the IPC cohort.
Patients were classified into two groups, NKp46low and NKp46high,
according to NKp46 rMFI. The dichotomy between NKp46low

and NKp46high patients was based on dispersion criteria of the
population. Inter-individual variability of NKp46 expression in
AML patients (Fig. S1A) was represented on a distribution histo-
gram. The distribution of NKp46 expression was a juxtaposition
of two Gaussian distributions (d’Agostino-Pearson normality test
and Kernel density estimation). The threshold between these two
peaks was NKp46 rMFI D 43.5 (Fig. S1A). Of note, this threshold
was above the 90th percentile of HV (Fig. 3).

All the possible thresholds were tested in the range of
NKp46 expression for OS and PFS (Fig. S1B and S1C, respec-
tively). The threshold based on dispersion criteria was also the
most discriminant threshold for survival analyses. For the rest
of the study, patients were classified into two distinct subgroups
(NKp46high and NKp46low phenotype) for survival analyses
according to this threshold. For samples from the GOELAMS
cohort, analyses were performed on a different cytometer.
A correction factor was applied for NKp46 rMFI so the cohorts
could be merged. The correction factor was the equation of the
regression of paired samples (fresh samples analyzed on a Can-
toII and paired frozen samples analyzed on a LSRII Fortessa).
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Statistical analysis

Statistical analyses were performed using Graph Pad Prism
(Graph Pad Software, San Diego, CA) and R software
(http://www.r-project.org). The limit of significance was set at
p < 0.05. OS from CR was defined by the time between CR
achievement after induction therapy until death from any
cause, and PFS as time between CR achievement and relapse or
death, whatever occurred first. Patients without an event were
censored at the time of their last follow-up. Survival times were
estimated by the Kaplan–Meier method and compared using
the log-rank test. For OS and PFS stratified by post-remission
therapy, hazard ratios for OS and PFS were determined by Cox
regression analysis, while treating allo-SCT as a time-depen-
dent covariate. The cumulative incidences of leukemia relapse
and death in CR1 were calculated using the Prentice estimator,
considering relapse and death in CR1 as mutually competing
events. The impact of NKp46 on these cumulative incidences
was evaluated with the Gray test.45 Cox regression analysis was
performed to adjust the impact of NKp46 using age (continu-
ous variable), white blood cell count at diagnosis (continuous
variable), cytogenetics (low vs. intermediate vs. high) and num-
ber of induction course to obtained CR1 (1 vs. 2). Analyses for
the main end points were performed on an intention-to-treat
basis. The X2 or Fisher’s exact test was used to assess associa-
tion between variables. The subgroup analysis of patients
treated with allo-SCT was defined post hoc, and those results
therefore have to be considered hypothesis generating.

Authors’ disclosures of potential conflicts of interest

Anne-Sophie Chretien: Patents, Royalties, Other Intellectual Property
: Inserm Transfert. Raynier Devilliers: No relationship to disclose.
Cyril Fauriat: Patents, Royalties, Other Intellectual Property : Inserm
Transfert. Florence Orlanducci: No relationship to disclose. Samia
Harbi: No relationship to disclose. Aude Le Roy: No relationship to
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