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ABSTRACT In bacteria, many essential metabolic processes are controlled by ribos-
witches, gene regulatory RNAs that directly bind and detect metabolites. Highly spe-
cific effector binding enables riboswitches to respond to a single biologically relevant
metabolite. Cobalamin riboswitches are a potential exception because over a dozen
chemically similar but functionally distinct cobalamin variants (corrinoid cofactors) exist
in nature. Here, we measured cobalamin riboswitch activity in vivo using a Bacillus sub-
tilis fluorescent reporter system and found, among 38 tested riboswitches, a subset
responded to corrinoids promiscuously, while others were semiselective. Analyses of
chimeric riboswitches and structural models indicate, unlike other riboswitch classes,
cobalamin riboswitches indirectly differentiate among corrinoids by sensing differences
in their structural conformation. This regulatory strategy aligns riboswitch-corrinoid
specificity with cellular corrinoid requirements in a B. subtilis model. Thus, bacteria can
employ broadly sensitive riboswitches to cope with the chemical diversity of essential
metabolites.

IMPORTANCE Some bacterial mRNAs contain a region called a riboswitch which con-
trols gene expression by binding to a metabolite in the cell. Typically, riboswitches
sense and respond to a limited range of cellular metabolites, often just one type. In this
work, we found the cobalamin (vitamin B12) riboswitch class is an exception, capable of
sensing and responding to multiple variants of B12—collectively called corrinoids. We
found cobalamin riboswitches vary in corrinoid specificity with some riboswitches
responding to each of the corrinoids we tested, while others responding only to a sub-
set of corrinoids. Our results suggest the latter class of riboswitches sense intrinsic con-
formational differences among corrinoids in order to support the corrinoid-specific
needs of the cell. These findings provide insight into how bacteria sense and respond
to an exceptionally diverse, often essential set of enzyme cofactors.

KEYWORDS Bacillus subtilis, RNA biology, cobalamin, coenzyme, cofactor, corrinoid,
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Controlling gene expression is an essential task cells accomplish in a variety of ways.
Noncoding RNAs are one such means of gene regulation, acting in parallel or in

concert with historically better-studied protein-based mechanisms (1). In bacteria and
archaea, riboswitches are a widespread type of gene regulatory RNA with the distinct
ability to sense particular intracellular metabolites by direct binding (2). These RNAs
are typically located in the 59-untranslated region of mRNA transcripts and function as
cis-regulators of downstream genes within their transcripts. A riboswitch is composed
of an effector-binding aptamer domain and an expression platform. The aptamer domain
adopts a three-dimensional (3D) structure that can bind its cognate effector molecule. The
expression platform domain is a regulatory switch that interprets the effector-binding state
of the upstream aptamer typically to promote or disrupt the transcription or translation of
downstream genes (3). The diversity of riboswitch effectors and regulatory mechanisms
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has revealed fundamental insights into how bacteria sense and respond to dynamic envi-
ronments and has also driven new approaches for precise control and manipulation of
microbes for human purposes (4–7).

Cobalamin (Cbl) riboswitches (also called “B12 riboswitches” or “adenosylcobalamin
riboswitches”) are among the most widespread and structurally diverse types of ribos-
witch in bacteria (8). They directly bind various forms of the enzyme cofactor Cbl as a
cognate effector (Fig. 1A and C) (9) to regulate genes involved in the biosynthesis,
transport, and usage of Cbl. Cbl-dependent enzymes function in common metabolic
pathways, including methionine synthesis, deoxyribonucleotide synthesis, tRNA modi-
fication, and the degradation of certain amino acids, fatty acids, and biopolymers (10–23).
Cbl is also required for rarer metabolic processes involved in antibiotic synthesis, mercury
methylation, catabolism of steroids, and many others (24–37). Comparative genomic stud-
ies indicate most bacteria perform Cbl-dependent metabolism and Cbl-riboswitches often
regulate these processes (8, 38, 39). However, an overlooked facet among most riboswitch
studies is that Cbl is just one member of a class of enzyme cofactors known as corrinoids
(Fig. 1B) (40). In fact, Cbl-dependent enzymes in bacteria often function with corrinoids
other than Cbl. Yet, it remains unclear whether the dozens of naturally occurring corrinoid
cofactors are also Cbl-riboswitch effectors (41–47).

Corrinoid cofactors contain a highly substituted corrin ring with a central cobalt ion, a
variable “upper ligand” moiety coordinating the b axial face of the cobalt, and a tail
structure extending from the corrin ring and terminating in a variable “lower ligand”
moiety that often coordinates the a axial face of the cobalt (Fig. 1A and B). The molecu-
lar basis of selectivity of Cbl-riboswitches for upper ligand variants of Cbl has been rela-
tively well studied, but selectivity for corrinoid tail variants remains mostly unexplored
(9, 48, 49). To our knowledge, only one study has directly examined corrinoid tail speci-
ficity of a single Cbl-riboswitch. In vitro binding measurements showed the aptamer of
the Escherichia coli btuB Cbl-riboswitch binds the complete corrinoids Cbl and 2-methyla-
deninylcobamide ([2-MeAde]Cba) with a 3.2-fold difference in affinity (KD = 89 and
290 nM, respectively). Furthermore, cobinamide (Cbi), an incomplete corrinoid with a
truncated tail, binds the aptamer with roughly 8,000-fold lower affinity than Cbl (KD =
753 mM), suggesting this aptamer binds corrinoids in a selective manner (50). In light of
these previous studies of corrinoid-specific metabolisms and Cbl-riboswitches, we
hypothesize Cbl-riboswitches harbor a range of distinct corrinoid tail-specific activities.

Here, we examined how a panel of 38 Cbl-riboswitches derived from 12 bacterial
species responds to the distinct tail structures of four corrinoids: Cbl, pCbl, and CreCba,
representatives of the benzimidazolyl, purinyl, and phenolyl cobamides, respectively,
and Cbi, an incomplete corrinoid (Fig. 1B). To compare activities among several dozen
Cbl-riboswitches, we devised a live cell fluorescence-based reporter system in Bacillus
subtilis. In contrast to conventional in vitro biochemical approaches, this riboswitch re-
porter system captures the complete corrinoid-responsive gene regulatory process
and provides rapid functional measurements with multiple effectors in parallel. Our
results obtained from experiments in the reporter system in conjunction with compar-
ative structural analyses of Cbl-riboswitches and corrinoid effectors allowed us to de-
velop a mechanistic model for how corrinoid tail-specific gene regulation is achieved.
Additionally, we examine a gene regulatory strategy for the corrinoid specificity of a
Cbl-riboswitch and discuss the conceptual and practical implications of these findings.

RESULTS
Experimental strategy—development of an in vivo reporter system. In order to

compare corrinoid selectivity among several Cbl-riboswitches and corrinoids, we constructed
an in vivo green fluorescent protein (GFP) reporter system. We initially attempted to use an
E. coli host for the reporter system but found most of the riboswitches we tested did not
function in the E. coli host. We chose B. subtilis as an alternative host organism because of
the robust genome engineering and gene expression toolsets available. Furthermore, the
B. subtilis genome does not contain any annotated corrinoid biosynthesis or remodeling
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FIG 1 Main corrinoids and riboswitches examined in this study. (A) Chemical structure of cobalamin, also called vitamin B12. The gray solid line
delineates the corrinoid tail region, which contains the variable lower ligand group in the gray dashed-line box. The R group is the upper ligand. (B)

(Continued on next page)
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genes that would potentially interfere with a riboswitch reporter assay. We engineered
the strain to overexpress the Cbl uptake and adenosylation operon, btuFCDR, and deleted
queG, which encodes the only Cbl-dependent enzyme in the genome. We found btuFCDR
overexpression increased uptake of not only Cbl, but also pCbl, CreCba, and Cbi (Fig. 2A
to D). Additionally, each corrinoid was transformed from the cyanated to adenosylated
form, suggesting the corrinoids are internalized to the cytoplasm, and not simply accumu-
lating on the outer cell surface. This strain is effective for measuring the response of the B.
subtilis btuF Cbl-riboswitch to a broad range of concentrations of Cbl (Fig. 2E to G).
Notably, deletion of btuR, which encodes the adensosyltransferase that installs the Ado
upper ligand group, rendered the B. subtilis btuF Cbl-riboswitch reporter insensitive to ex-
ogenously supplied CNCbl, MeCbl, and OHCbl, while retaining dose-dependent repression

FIG 2 Characterization of a live cell Cbl-riboswitch reporter system. (A to D) Intracellular accumulation of corrinoids in Bacillus
subtilis strains containing the wild type (diamonds) or constitutively overexpressed (circles) corrinoid uptake genes btuFCDR. (E to G)
Dose responses of B. subtilis btuF GFP riboswitch reporters. “Mutant” riboswitch refers to the M1 mutant version of the B. subtilis
btuF riboswitch (Fig. 1C). Data points in panels A to D represent single measurements from one representative experiment. Data
points and error bars in panels E to G represent mean and standard deviation of four independent replicates, and horizontal dotted
lines demarcate no change in expression.

FIG 1 Legend (Continued)
Names, lower ligand structures, and abbreviations of the corrinoids used throughout this study. Cbl, pCbl, and CreCba are “complete corrinoids”
(cobamides). Cbi is an “incomplete corrinoid” that lacks the phosphoribosyl and lower ligand groups as indicated by the bracket and wavy line in
the corrinoid tail in panel A. (C) Secondary structural model of the Cbl-riboswitch upstream of B. subtilis btuF. Base paired stems (P), loops (L), and
junctions (J) are labeled. The P6 accessory region is highly variable in length and number of stems across Cbl-riboswitch sequences, often
containing up to six paired regions. In this example, P6 accessory consists of only two paired regions. A kissing loop interaction (KL, dashed line)
occurs between L5 of the aptamer and L13 of the expression platform. M1 indicates mutations C107U and C108U, which are examined in Fig. 2F.
(D) Secondary structural alignments of seven representative Cbl-riboswitches examined in this study. Row “2° str” indicates paired bases as
parentheses, loops, and junctions as periods, and kissing loop base pairs by brackets. PDB numbers or abbreviations are given for riboswitches from
the following organisms and genes: 4GMA, Thermoanaerobacter tengcongensis; S. the, Symbiobacterium thermophilum cblS; B. sub, B. subtilis btuF;
P. meg, Priestia megaterium metE; D. haf, Desulfitobacterium hafniense DSY0087; S. ova, Sporomusa ovata btuB2; V. par, Veillonella parvula mutA.
Nonconserved sequences between P13 and the start codon are indicated by nucleotide sequence length (nt), but the actual sequences were
omitted for clarity.

Specificity in Cobalamin Riboswitches mBio

September/October 2022 Volume 13 Issue 5 10.1128/mbio.01121-22 4

https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.01121-22


in response to AdoCbl (Fig. S1). This strongly suggests the B. subtilis btuF Cbl-riboswitch
only responds to Cbl containing the 59-deoxyadenosine upper ligand, in contrast with a
report suggesting this riboswitch aptamer can also bind MeCbl and OHCbl (51).

Comparison of corrinoid specificity among Cbl-riboswitches. In the strain back-
ground described above, we constructed 86 reporter strains to examine riboswitches
from 20 bacterial species, including 10 species known to produce or require specific
corrinoids. Of the 86 reporters, 38 repressed GFP expression 0.5-fold or greater in
response to one or more corrinoids. Thirty-seven of these 38 functional riboswitch
expression platforms contain a predicted intrinsic transcriptional terminator suggest-
ing they are transcriptional riboswitches. We observed extensive variation in sequence
length and nucleotide composition throughout the aptamers and expression platforms
of the 38 riboswitches that were functional in B. subtilis (Fig. 1D). Nine of the functional
riboswitches are from Priestia (formerly Bacillus) megaterium, which produces Cbl (41),
and 12 are from Sporomusa ovata and Veillonella parvula which both produce CreCba
(44, 45, 52, 53). These results show Cbl-riboswitches of diverse sequence composition
and origin can be examined with the in vivo reporter system. To address whether Cbl-
riboswitches are corrinoid selective, and how corrinoid selectivity varies among Cbl-
riboswitches, we measured the dose responses of the 38 functional Cbl-riboswitches to
four corrinoids, Cbl, pCbl, CreCba, and Cbi. Our results show all of the riboswitches
responded to more than one corrinoid, and a subset responded to all four (Fig. 3).
Strikingly, all of the tested riboswitches are either semiselective (responding to more
than one corrinoid) or promiscuous (responding to all four corrinoids) (Fig. 3A and B).
We did not find any highly selective riboswitches that respond to only one corrinoid.
The semiselective and promiscuous riboswitches all respond to Cbl and pCbl (Fig. 3C),
and the promiscuous riboswitches additionally respond to Cbi and CreCba (Fig. 3D and
E, points above the horizontal dashed line). Furthermore, the semiselective ribos-
witches are generally more sensitive to Cbl than to pCbl, while the promiscuous ribos-
witches respond similarly to these two corrinoids. Almost all of the riboswitches
respond weakly to CreCba compared with the other three corrinoids (Fig. S2A to C). In
general, corrinoid selectivity of a riboswitch appears to be associated with its taxo-
nomic origin (Fig. 3C to E). The riboswitches from the Bacilli class are exclusively semi-
selective (Fig. S2A), whereas those from Negativicutes are predominantly promiscuous
(Fig. S2B). The S. ovata cobT riboswitch is a notable exception discussed later. In con-
trast to taxonomy, corrinoid selectivity of a riboswitch is not strongly associated with
the function of its regulatory target genes (Fig. S3).

Next, we attempted to identify the RNA sequence features that underlie corrinoid
selectivity. Chimeric fusions of the semiselective P. megaterium metE riboswitch and
the promiscuous V. parvula mutA riboswitch enabled us to examine the effects of spe-
cific domain and subdomain sequences on corrinoid selectivity (Fig. S4). Fusing the
P. megaterium metE aptamer domain to the expression platform of the V. parvula mutA
riboswitch produced a semiselective riboswitch chimera, while the reciprocal chimera
was promiscuous, suggesting the aptamer domain is a major determinant of corrinoid
selectivity (Fig. S4A). However, results from aptamer subdomain swaps of stem P1,
stem-loop P2-L2, stem-loop P4-L4, and P6 accessory region were less conclusive. In the
context of the P. megaterium metE riboswitch scaffold, swapping stem-loop P2-L2 or
the P6 accessory region with the corresponding structures of the V. parvula mutA ribos-
witch produced chimeras that are less selective by gaining sensitivity to Cbi and
CreCba (Fig. S4B). This suggests that these subdomains confer corrinoid promiscuity.
Yet, within the V. parvula mutA riboswitch scaffold, swapping stem P1 increased corri-
noid selectivity by retaining sensitivity to Cbl and pCbl, but losing sensitivity to CreCba
and Cbi (Fig. S4C). The remaining chimeras partially or completely lost overall activity.
These results demonstrate subdomains distributed throughout the aptamer domain
may impact corrinoid selectivity; no single conserved substructure completely controls
corrinoid selectivity, nor did any single structure fully convert a riboswitch’s corrinoid
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selectivity. Thus, the source of the corrinoid selectivity phenotype appears to be com-
plex and requires inputs from multiple subdomains of the aptamer.

Corrinoid tail structure impacts selectivity of Cbl-riboswitches. We next sought
to identify how structural differences in the corrinoid tail affect the response of semiselec-
tive Cbl-riboswitches to corrinoids. There are no predicted hydrogen bond interactions
between the lower ligand and the RNA in the X-ray crystal structures of Cbl-bound ribos-
witches, making it difficult to surmise how a Cbl-riboswitch might distinguish between
corrinoids (51, 54, 55). Could the overall structural conformation of the corrinoid, rather
than specific interactions between the RNA and the corrinoid tail, influence Cbl-riboswitch
activity?

Corrinoids undergo major conformational changes when spontaneously switching
between two distinct states known as “base-on” and “base-off” (56, 57). In the base-on
state, a nitrogen atom in the lower ligand base is coordinated to the central cobalt
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FIG 3 Corrinoid specificity among 38 Cbl-riboswitches. (A, B) Corrinoid dose responses of two riboswitch
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types. (C to E) Pairwise comparisons of GFP fold repression induced by 100 nM Cbl versus (C) pCbl, (D)
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Data points and error bars in panels A and B represent mean and standard deviation of 10 experiments
for P. megaterium metE and six experiments for V. parvula mutA. Data points and error bars in panels C to
E represent mean and range of at least two independent experiments for each riboswitch.
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atom of the corrin ring (as shown in Fig. 1A). In the base-off state, the lower ligand base
is decoordinated, allowing the tail to move more freely (58, 59). Benzimidazolyl and
purinyl cobamides (e.g., Cbl, pCbl) can switch between base-on and base-off states.
However, the tail moieties of phenolyl cobamides (e.g., CreCba) and Cbi cannot coordi-
nate cobalt; therefore, these corrinoids exist exclusively in a decoordinated state (52).
Interestingly, we noticed the semiselective riboswitches respond strongly to Cbl and
pCbl, but weakly to Cbi and CreCba. We also observe semiselective Cbl-riboswitches are
most sensitive to Cbl, which forms the base-on state more readily than pCbl (Fig. 3C;
Fig. S2) (58, 59). In line with these results, the E. coli btuB riboswitch aptamer was previ-
ously shown to bind Cbl with higher affinity than Cbi and [2-MeAde]Cba (a primarily
base-off corrinoid) (50). Also, all six X-ray crystal structures of Cbl-riboswitches contain
Cbl in the base-on state (51, 54, 55). Based on these observations, we hypothesized that
semiselective riboswitches distinguish between base-on and base-off states of corrinoids.
We therefore used a range of corrinoids with diverse lower ligand structures to test
whether the activity of Cbl-riboswitches quantitatively correlates with the base-on tend-
ency of corrinoids.

We selected a panel of 16 corrinoids for this analysis, including both natural and syn-
thetic benzimidazolyl, purinyl, and azabenzimidazolyl corrinoids. These corrinoids span a
range of base-on tendency between that of Cbl and pCbl, which we measured as the ra-
tio of spectral absorbance at 525 and 458 nm in the adenosylated form (Fig. 4A; Fig. S5).
Base-on/base-off equilibrium constants for AdoCbl, Ado[2-MeAde]Cba, and pCbl in aque-
ous conditions have been reported as 76, 0.48, and 0.30, respectively, and are consistent
with our measurements of corrinoid base-on tendency (58, 59). We observed a strong
association between base-on tendency and riboswitch response in semiselective ribos-
witches (Fig. 4B). Even among promiscuous Cbl-riboswitches, we observe measurable
sensitivity to base-on tendency, albeit to a much smaller degree (Fig. 4C). These results
support the hypothesis that Cbl-riboswitches selectively respond to corrinoids by distin-
guishing between the base-on and base-off states of corrinoids.

Structural comparisons between base-on and base-off tail orientations. The
results presented above led us to speculate about how a Cbl-riboswitch could detect
the base-on and base-off state of a corrinoid. In all published X-ray crystal structures of
Cbl-riboswitches, aptamer-effector binding is achieved mainly through van der Waals
forces and shape complementarity between the binding site and base-on Cbl. Only a
few hydrogen bonds between the RNA and corrinoid are observed, none of which
occur with the lower ligand group of Cbl (51, 54, 55). Thus, it appears unlikely the ribos-
witch is directly detecting the specific chemical differences among corrinoid lower
ligands. Instead, we considered whether the riboswitch discriminates base-on and
base-off forms of a corrinoid by sensing corrinoid conformation. In the base-on state,
the tail is spatially constrained due to the Co-N coordinate bond, whereas in the base-off
form it is able to sample a wider range of spatial positions (60). To develop mechanistic
insight into how the base-on and base-off states a corrinoid could impact Cbl-riboswitch
activity, we leveraged the plethora of publicly accessible X-ray crystal structures of mac-
romolecule-bound Cbl (37, 51, 54, 55, 61–70). We first assessed the range of structural
conformations that are potentially sampled by corrinoids as they dynamically switch
between base-on and base-off states by aligning and visually comparing various struc-
tural models of Cbl. Six base-on Cbl models were obtained from structural studies of Cbl-
riboswitches and synthetic Cbl RNA aptamers, whereas base-off/His-on Cbl models were
obtained from X-ray crystal structures of 10 Cbl-dependent enzymes (Table S2). After
aligning and superimposing these molecular models by their central cobalt and coordinat-
ing nitrogen atoms, we observed the corrin rings and their amide and methyl substituents
occupy similar spatial positions, but the tails of base-on and base-off Cbl structures occupy
distinct positions (Fig. 5A and B). Moreover, the base-on Cbl tails appear in very similar
positions with lower ligands in close proximity to the central cobalt ion, whereas the base-
off Cbl tails appear more scattered with lower ligands more distal to the cobalt ion. These
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structural alignments visually convey the degree to which the conformations of base-on
and base-off corrinoids can vary among biomolecular complexes.

Next, we compared the positions of the aligned base-on and base-off Cbl models in the
context of 3D Cbl-riboswitch models. We analyzed X-ray crystal structures of the two Cbl-
riboswitches that contain resolved kissing loop structures: one from Thermoanaerobacter
tengcongensis (Fig. 5C and D) and one identified from a marine metagenome sequence
(Fig. S6A and B) (54). These structural models show the base-on tails are contained within
the binding site, whereas the tails of the base-off Cbl structures protrude away from the
binding site and clash with the L5-L13 kissing loop. Although the B. subtilis btuF (Fig. S6C
and D) and Symbiobacterium thermophilum cblT (Fig. S6E and F) riboswitch models do not
contain the L13 structure of the kissing loop, some of the modeled base-off tails clash with
L5 of the aptamer in these structures (51, 55). The kissing loop has been shown to play a
key mechanistic role of sensing the corrinoid-binding state of the aptamer domain to influ-
ence downstream regulatory structures in the expression platform (71, 72). If kissing loop
formation in semiselective Cbl-riboswitches is sensitive to the base-on and base-off states of
the corrinoid, then corrinoid selectivity may be mediated by either selective binding by the
aptamer or selective formation of downstream regulatory structures.

To determine whether the expression platform structures can impact corrinoid
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FIG 4 Corrinoid base-on tendency correlates with corrinoid potency. (A) Sixteen adenosylated corrinoids used
to test the relationship between corrinoid base-on tendency and corrinoid potency. (B) Semiselective
riboswitches P. megaterium metE and D. hafniense DSY0087 and (C) promiscuous riboswitches V. parvula mutA
and S. ovata btuB2 were used to measure the response to each corrinoid. Base-on tendency was measured as
the ratio between spectral absorbance at 525 and 458 nm in a pH 7.3 solution. Absorbance spectra are
displayed in Fig. S5. The cumulative corrinoid response was measured as the area under the dose-response
curve of the riboswitch reporter strain for that corrinoid (AUCcorrinoid) relative to its dose response to Cbl
(AUCCbl). Corrinoids with benzimidazole (blue circles), azabenzimidazole (purple circles), and purine (red circles)
lower ligands can adopt the base-on conformation. The corrinoids that are unable to adopt the base-on state
(CreCba, [Phe]Cba and Cbi) are represented by empty circles. Trendlines in B and C were fit to data points of
corrinoids with benzimidazole, azabenzimidazole, and purine lower ligands, with strictly base-off corrinoids
excluded. Each data point represents a single measurement of riboswitch dose-response and corrinoid base-on
tendency.
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selectivity, we examined corrinoid-selective binding separately from subsequent corri-
noid-selective regulation. We tested for promiscuous binding by comparing the Cbl
dose response of the P. megaterium metE Cbl-riboswitch in the presence and absence
of competing 100 nM Cbi and found the response to Cbl is unaffected by Cbi (Fig. S7A
and B). This indicates Cbi does not compete with Cbl for riboswitch binding, support-
ing corrinoid-selective binding as the mechanism of semiselectivity. However, when
the aptamer of this semiselective riboswitch is replaced with the aptamer of the pro-
miscuous S. ovata nikA riboswitch, it retains semiselectivity, suggesting the P. megate-
rium expression platform also plays a role in corrinoid selectivity (Fig. S7A). Interestingly,
the Cbl dose response of the S. ovata nikA/P. megaterium metE chimeric riboswitch does
become sensitized to competing Cbi addition, confirming the S. ovata nikA aptamer
retains sensitivity to base-off corrinoid in the context of this chimera (Fig. S7C). Taken to-
gether, these results show base-off corrinoids may impede both Cbl-riboswitch binding
and formation of regulatory structures, explaining the link between corrinoid base-on
tendency and riboswitch activity observed in Fig. 4.

Gene regulatory strategy of corrinoid selectivity. While the prior experiments
clearly demonstrate Cbl-riboswitches are capable of distinguishing between corrinoids,
we wondered what purpose Cbl-riboswitch corrinoid selectivity might serve in the
organisms containing these regulatory systems. We posit Cbl-riboswitch selectivity
reflects a regulatory strategy that complements the corrinoid-specific requirements of
the cell and avoids gene mis-regulation. As a specific example, we hypothesize only
corrinoids that are functionally compatible with a Cbl-dependent enzyme should cause
riboswitch-mediated repression of the expression of its Cbl-independent counterpart
(Fig. 6A and B). We tested this hypothesis directly in B. subtilis by examining the function
and regulation of methionine synthase isozymes MetE (Cbl-independent) and MetH (Cbl-
dependent). In bacterial genomes with both metE and metH, an S-adenosyl methionine
(SAM) riboswitch fused in tandem with a Cbl-riboswitch is commonly found upstream of

FIG 5 Distinct tail positions among base-on and base-off corrinoids may impact binding of corrinoids to
riboswitches. 3D alignments of Cbl structural models derived from published X-ray crystal structures of (A)
base-on Cbl in complex with RNAs and (B) base-off Cbl in complex with proteins. The Cbl-binding site in the
X-ray crystal structure of the Thermoanaerobacter tengcongensis Cbl-riboswitch (PDB ID 4GMA) is depicted with
(C) base-on and (D) base-off Cbl alignments. Cbl models were aligned by the cobalt and coordinating nitrogen
atoms in the corrin ring. Structures of the corrin ring, cobalt, and tail of Cbl are colored in black, blue, and
green, respectively. Upper ligand structures of Cbl were omitted for clarity. Riboswitch RNA structures are
depicted as space-filled models with the L5-L13 kissing loop in pink and the rest of the RNA in gray.
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the metE gene (73, 74). The B. subtilis genome contains metE but lacks metH, and no Cbl-
riboswitch is located upstream of metE. We, therefore, constructed strains of B. subtilis that
heterologously express the metE or metH locus from the Cbl-producing species P. megate-
rium, in a DmetE background with overexpressed corrinoid uptake genes (Fig. 6C) (75–77).
In each strain, the P. megaterium genes are constitutively transcribed from the promoter
PVeg and also contain a transcriptionally fused gfp to measure expression levels. Growth of
the B. subtilis strain expressing P. megaterium metH in a medium lacking methionine was
supported to various extents by most benzimidazolyl and both phenolyl cobamides, but
not by [5-OHBza]Cba, the purinyl cobamides, or Cbi (Fig. 6D, red squares). This result indi-
cates MetH-dependent growth is influenced by the corrinoid tail structure, as observed
previously in other bacteria (78–82). In the B. subtilis strain containing the P. megaterium
metE locus which includes the repressing SAM-Cbl-riboswitch, growth was suppressed by
benzimidazolyl cobamides to different extents (Fig. 6D, blue circles). This growth pattern
coincides with the GFP repression measured for the metE riboswitch (Fig. 6E), except that

FIG 6 Corrinoid specificities of the P. megaterium metE riboswitch and P. megaterium MetH enzyme are aligned.
Expression of the Cbl-independent methionine synthase MetE and enzymatic activity of the Cbl-dependent
methionine synthase MetH are potentially impacted by the presence of (A) MetH-compatible corrinoids and (B)
MetH-incompatible corrinoids. (C) The metH-expressing strain (red) is a B. subtilis DmetE::loxP DqueG::loxP PVeg-
btuFCDR strain heterologously expressing P. megaterium metH. The metE-expressing strain (blue) is a B. subtilis
DmetE::loxP DqueG::loxP PVeg-btuFCDR strain heterologously expressing P. megaterium metE downstream from a
SAM-Cbl tandem riboswitch (RS). Each methionine synthase gene is constitutively expressed from the PVeg
promoter and is transcriptionally fused to gfp. (D) Growth rates of the metE-expressing strain (blue circles) and
metH-expressing strain (red squares) were measured in methionine-dependent culture conditions containing
20 nM corrinoid. (E) Expression of metE was measured as GFP fluorescence per OD600 in medium lacking
methionine, supplemented with 20 nM corrinoid. Data points are individual measurements and black horizontal
lines represent the mean of the four replicate measurements.
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the repression of metE by purinyl cobamides is apparently insufficient to suppress growth
in this context. Comparison of the two strains in response to a suite of corrinoids reveals a
striking correspondence between riboswitch-mediated suppression of growth in the
metE-containing strain and growth promotion by corrinoids in the metH-containing strain
(Fig. 6C). [5-OHBza]Cba and the phenolyl cobamides are exceptions to the trend, though
in neither case is MetE-dependent growth completely suppressed by a corrinoid incom-
patible with MetH. This result demonstrates riboswitch-based repression and cobalamin-
dependent isozyme function are largely aligned for the P. megaterium metE-metH pair
and suggests that Cbl-riboswitch specificity may generally adhere to a regulatory strategy
reflecting the cell’s corrinoid preference.

DISCUSSION

Riboswitches are key regulators of microbial gene expression. The Cbl-riboswitch
was the first type discovered and is among the most widely distributed riboswitch
classes in bacteria and archaea (9, 83). Previous biochemical and structural studies
have uncovered the major molecular features of the Cbl-riboswitch response to Cbl,
including how upper ligand variants of Cbl impact their function (48, 49, 51, 54, 55, 71,
72, 74, 84). Yet few studies have examined how other naturally occurring corrinoids
containing diverse lower ligand structures impact gene regulation by Cbl-riboswitches
(50). Here, we found Cbl-riboswitches vary in their ability to discriminate between corri-
noids, with some being semiselective on the basis of corrinoid base-on/off state, and
others being promiscuous. These results were enabled by a carefully designed fluores-
cent reporter system capable of measuring the responses of dozens of Cbl-riboswitches
to multiple corrinoids in vivo (Fig. 2; Fig. S1). Because several naturally occurring corri-
noids other than Cbl appear to be potent effectors for Cbl-riboswitches, we propose the
term “corrinoid riboswitch” be adopted to describe this broad class of RNAs more accu-
rately. This may also mitigate the inconsistent and overlapping terminology used in the
literature (i.e., cobalamin riboswitch, adenosylcobalamin riboswitch, B12 riboswitch, vita-
min B12 riboswitch, etc.).

We can roughly estimate the intracellular corrinoid concentrations in our corrinoid
dose-response experiments to assess the physiological relevance the in vivo Cbl-riboswitch
data. Observing most of the corrinoid in the medium is imported by the B. subtilis ribos-
witch reporter cells (Fig. 2A to D), and assuming a cell volume of 10215 L and a culture cell
titer of 1012 cells/L at OD600 = 1, we calculate the cytoplasmic corrinoid concentrations to
range from 0.01 to 100 mM in the corrinoid dose-response experiments—a 1,000-fold
increase from the cell culture medium to the cytoplasm. Reports of binding affinity (KD) for
riboswitch aptamers to AdoCbl range from 0.026 to 90 mM, which is within the range of
our estimated intracellular corrinoid concentrations (48, 50, 54, 72, 85). Additionally, Cbl
uptake has been measured in some bacterial species. In E. coli, the minimum cytoplasmic
Cbl concentration to support MetH-dependent growth is roughly 0.03 mM (86). In studies
of Cbl uptake across several bacterial species, saturating Cbl uptake can result in cytoplas-
mic Cbl concentrations in the low mM to low mM range, depending on the species (87,
88). Taken together, these data and calculations support the physiological relevance of the
Cbl-riboswitch responses measured in this study.

We observed Cbl-riboswitches display different degrees of corrinoid selectivity, with
some that responded to a subset of corrinoids (semiselective) while others responded
to all tested corrinoids (promiscuous) (Fig. 3; Fig. S2). Our chimeric riboswitch results
suggest sequence and structural determinants of corrinoid selectivity are dispersed
throughout the Cbl-riboswitch aptamer scaffold rather than being confined to a single
conserved region (Fig. S4). This finding contrasts with other studies of riboswitch speci-
ficity. For example, in a study of Cbl upper ligand specificity, a few key residues in the
Cbl binding site were sufficient to fully convert a Cbl-riboswitch from MeCbl-specific to
AdoCbl-specific (48). In purine riboswitches, effector specificity is achieved by position-
ing of a critical conserved uracil or cytosine residue in the binding site of the aptamer,
which forms a base-pair with the adenine or guanine effector, respectively. Among the
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various families of SAM riboswitches, highly specific binding of SAM and exclusion of
S-adenosyl homocysteine (SAH) is achieved by RNA structures that discriminate the
charged sulfonium ion of SAM from the uncharged sulfoether of SAH (89). In contrast,
the SAM/SAH riboswitch class attains effector promiscuity for SAM and SAH by a gen-
eral lack of interaction between the RNA and the aminocarboxypropyl side chains of
these effectors (90, 91). This is reminiscent of Cbl-riboswitches which similarly have few
molecular contacts between the RNA and corrinoid tail (50, 54, 55, 84).

Overall, our structural model analyses support a mechanism in which semiselective
Cbl-riboswitches primarily sense the distinct corrinoid tail orientations of the base-on
and base-off forms. In this case, Cbl-riboswitches only indirectly sense the chemical
composition of the variable lower ligand group, with differential binding largely deter-
mined by steric effects and shape complementarity (Fig. 4 and 5). Recent molecular dy-
namics simulations of the T. tengcongensis Cbl-riboswitch suggest that the kissing loop
structure may form prior to effector binding, which would place even greater con-
straints on the corrinoid tail orientation to achieve shape complementarity with its
binding site (92). Additionally, some Cbl-riboswitches may in fact bind base-off corri-
noids but disrupt subsequent formation of downstream regulatory structures of the
expression platform, perhaps by interfering with the kissing loop (Fig. S7). A similar fea-
ture has been observed in tetrahydrofolate (THF) riboswitches where chemical varia-
tions in the para-aminobenzoic acid moiety of THF analogs differentially perturb
expression platform structures without affecting aptamer binding (93). The mecha-
nisms of corrinoid selectivity of Cbl-riboswitches could be directly tested in future
structural or biochemical studies of promiscuous Cbl-riboswitches with base-on and
base-off corrinoids.

In regard to gene regulatory strategies, it seems sensible that Cbl-riboswitches are
not highly effector-specific because bacteria are often flexible in their corrinoid usage.
A variety of corrinoids have been shown to support growth of C. difficile, S. ovata, and
Ensifer meliloti despite each of these organisms displaying highly specific corrinoid pro-
duction (82, 94, 95). Furthermore, because corrinoid auxotrophy is prevalent among
corrinoid-dependent bacteria, many organisms may need to take advantage of the
wide range of corrinoids that may be available in their environment (96). Thus, the
range of effector selectivity we observe among Cbl-riboswitches may reflect a coevolu-
tion between corrinoid-responsive gene regulation and corrinoid-dependent physiology.
Our result demonstrating complementary corrinoid selectivity between P. megaterium
MetH-dependent growth and Cbl-riboswitch-dependent expression of MetE is consistent
with this notion (Fig. 6).

Alternatively, the preference for base-on corrinoids among Cbl-riboswitches may
function as a proxy to discriminate complete corrinoid coenzymes from incomplete
corrinoids such as Cbi, which often function poorly as coenzymes. This idea has been
proposed as an explanation for the remarkably high selectivity of the corrinoid uptake
system in mammals (97). Interestingly, we found all but one of the S. ovata ribos-
witches tested are promiscuous types that can respond to its natively produced
CreCba. The notable exception is a semiselective riboswitch upstream of the gene cobT
(Fig. S2B), which functions in a late step of corrinoid biosynthesis that occurs after syn-
thesis of Cbi (53, 98–103). Thus, this Cbl-riboswitch that discriminates against Cbi may
allow homeostatic regulation of cobT in response to complete corrinoids like Cbl, while
preventing unproductive repression of cobT in the presence of incomplete corrinoids
like Cbi. Future studies examining corrinoid-specific gene regulation of riboswitches in
the context of their native organisms may help clarify which regulatory strategies are
generally at play in corrinoid-related bacterial physiology.

Our findings fit into a broader discussion of how corrinoids impact complex micro-
bial communities (104). In future studies, it will be worth examining how the interplay
between corrinoid-specific gene regulation and corrinoid-specific metabolic pathways
influence microbial interactions. There is also significant interest in the fields of bioen-
gineering and synthetic biology to use riboswitches as gene regulatory devices because
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they act more rapidly and efficiently than protein-based regulatory systems (6, 7, 105,
106). Riboswitches have also become desirable therapeutic drug targets because they of-
ten control essential metabolic pathways in pathogenic microbes (4, 5, 107). Broader
consideration of the conformational dynamics of larger types of effector molecules,
including organic cofactors, antibiotics, and their analogs could aid efforts to engineer
synthetic RNA-based regulatory platforms that function robustly in vivo. This could also
inform future efforts to develop synthetic antimetabolites that, for example, elicit gene
mis-regulation, instead of a more common strategy of creating inhibitors for enzymes
(108, 109).

The chemical diversity of corrinoids is intrinsically linked to a vast array of metabolic
processes and microbial interactions. Yet it remains unclear how microbes have
evolved to cope with and thrive on the assortment of natural corrinoid analogs, espe-
cially compared with other primary metabolites, including organic cofactors, nucleo-
tides, and amino acids which typically require one specific structural form for precise
biological functions. We have gained new appreciation for the impacts of chemical di-
versity on biological function by focusing on the Cbl-riboswitch with its distinctively
complex structure and regulatory mechanism, and by accounting for the often over-
looked biological and ecological roles of corrinoid analogs. Future studies into the evo-
lution of microbial molecular specificity for corrinoids may yield further insight into the
nature of these exceptionally versatile coenzymes.

MATERIALS ANDMETHODS
Cbl-riboswitch sequence analysis. Cbl-riboswitch sequences, chromosomal coordinates, and regu-

lon information were downloaded from the RiboD online database (73) (Table S1). The genome of
Sporomusa ovata was not included in the RiboD database, so we used the RiboswitchScanner webserver
to search for Cbl-riboswitches in this organism (110, 111). Cbl-riboswitch aptamer sequences were man-
ually aligned by conserved secondary structures bounded by the 59 and 39 ends of the P1 stem (8, 85)
(Data Set S1). The P13-L13 stem-loop and potential intrinsic transcriptional termination hairpin struc-
tures of the expression platform were identified using secondary structure prediction tools in
RNAstructure 6.2 (112, 113). Intrinsic terminators were identified as stem loops directly preceding a
sequence of five or more consecutive uracil residues (114, 115). Sequence alignment and annotation
was carried out in JalView 2.11.1.4 (116). Cartoons of riboswitch secondary structures were constructed
using the StructureEditor program of RNAstructure 6.2 (113).

Corrinoid production, extraction, purification, and analysis. Cyanocobalamin, adenosylcobalamin,
methylcobalamin, hydroxocobalamin, and dicyanocobinamide were purchased from MilliporeSigma. All
other corrinoids used in this study were produced in bacterial cultures and purified in cyanated form as
previously described (82, 95, 117, 118). For the experiments in Fig. 4 and Fig. S5, corrinoids other than co-
balamin were chemically adenosylated to obtain the coenzyme (59-deoxyadenosylated) form as previously
described (82, 117).

UV/Vis spectra were collected from corrinoid samples in UV/Vis-transparent 96-well microtiter plates
(greiner bio-one UV-STAR 675801) using a BioTek Synergy 2 or Tecan Infinite M1000 Pro plate reader. To
measure concentrations of corrinoid stock solutions, corrinoid samples were diluted 10-fold in 10 mM
sodium cyanide to obtain the dicyanated base-off form of the corrinoid. The concentration of the dicya-
nated corrinoid was calculated using the extinction coefficient «580 = 10.1 mM21 cm21 (52, 119). For
adenosylated corrinoids used in Fig. 4 and Fig. S5, base-on tendency at neutral pH was measured as the
ratio of spectral absorbance at 525 nm and 458 nm in phosphate-buffered saline solution pH 7.3 at 37°C
(47, 59).

Plasmid and strain construction. Plasmids generated in this study were constructed with one-step
isothermal assembly (120) and introduced into E. coli strain XL1-Blue by heat shock transformation.
Riboswitch reporter plasmids were constructed in the shuttle vector pSG29 for single copy integration
at the amyE locus of the B. subtilis chromosome (121). Riboswitch DNA sequences were inserted
between the transcriptional start site of the constitutive PVeg promoter and the gfp translational start site
of pSG29. For riboswitch sequences that resulted in no detectable GFP signal under any conditions, a
synthetic ribosome binding site (RBS) sequence R0 (59-GATTAACTAATAAGGAGGACAAAC-39) from
pSG29 was placed between the riboswitch sequence and gfp translational start site (Table S1B and C).

Strains used in this study are listed in Table S1A. All B. subtilis riboswitch fluorescent reporter strains
and B. subtilis strains expressing P. megaterium metE and metH used in this study are derived from the
high-efficiency transformation strain SCK6, which has a xylose-inducible competence gene cassette
(122). Preparation of competent cells and transformations of all SCK6-derived strains were performed as
previously described (122). The strain KK642, which constitutively overexpresses the corrinoid uptake
genes, was constructed by deletion of gene queG and replacement of the promoter and 59 untranslated
region of the btuFCDR operon with the PVeg promoter and R0 RBS (121). B. subtilis genes queG, btuR, and
metE were targeted for deletion by recombination with kanamycin resistance cassettes containing flank-
ing sequence homology to each respective locus. Kanamycin resistance cassettes were PCR-amplified
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from genomic DNA of B. subtilis strains BKK08910 (DqueG::kanR), BKK33150 (DbtuR::kanR), and BKK13180
(DmetE::kanR) (123). Kanamycin resistance cassettes were removed by Cre-Lox recombination using plas-
mid pDR244 as previously described (123).

B. subtilis strains heterologously expressing metE and metH from P. megaterium were constructed as
follows. The metE and metH genes were PCR-amplified from genomic DNA of P. megaterium DSM319
and cloned between the transcriptional start site and the gfp translational start site of pSG29. The
P. megaterium metE amplified fragment starts at the SAM-Cbl tandem riboswitch in the 59 UTR and ends
at the metE stop codon, whereas the P. megaterium metH fragment starts at the metH RBS, which is com-
posed of 20 nucleotides preceding the metH translational start site and ends at the metH stop codon.

Riboswitch reporter plasmids and plasmids containing P. megaterium metE and metH were linearized
by restriction enzyme digest with ScaI-HF (New England Biolabs) and selected for integration at the
amyE locus of B. subtilis by plating on lysogeny broth (LB) agar with 100 mg/mL spectinomycin. Colonies
were screened for integration at amyE by colony PCR. All stocks of bacterial strains were stored in 15%
glycerol at 280°C.

Intracellular corrinoid accumulation experiments. B. subtilis strains were inoculated from single
colonies into 50 mL LB and grown with aeration at 37°C in a shaking incubator (Gyromax 737R, Amerex
Instruments, Inc.) for 5 to 6 h until reaching an optical density at 600 nm (OD600) of 1.0 to 1.5. Each cul-
ture was diluted 10-fold in LB and split into 13 25-mL cultures containing 0, 25, 250, or 2500 picomoles
of a cyanated corrinoid (Cbl, pCbl, CreCba, and Cbi). These cultures were incubated at 37°C with aeration
for 3 to 4 h to a final OD600 of 1.5 to 2.0. The cells were pelleted by centrifugation at 4,000 g for 10 min.
Cell pellets were rinsed three times by resuspension in 10 mL phosphate-buffered saline solution pH 7.3
followed by centrifugation. After the final centrifugation, tubes were wrapped in aluminum foil to pro-
tect adenosylated corrinoids from exposure to light.

To extract intracellular corrinoids, cell pellets were resuspended in 5 mL of 100% methanol by vigor-
ous vortexing for 30 s. Samples were stored at 280°C until the next day. Frozen lysates were heated in
an 80°C water bath for 1.5 h, with 15 s of vortexing every 30 min. Methanol concentration of each sam-
ple was diluted to 10% by adding 45 mL of water, and cell debris was pelleted by centrifugation at 4,000
g for 10 min. The supernatants were used for the subsequent steps.

All of the following steps were carried out in darkened rooms illuminated with red light to preserve
light-sensitive adenosylated corrinoid samples. Solid-phase extraction of adenosylated corrinoids with
Sep-Pak C18 cartridges (Waters) was performed as previously described (82). Solvents were evaporated
in a vacuum concentrator centrifuge (Savant SPD1010, Thermo Scientific) at 45°C and the samples were
resuspended in 500 mL deionized water and passed through 0.45 mm pore-size filters (Millex-HV,
MilliporeSigma).

Corrinoids were analyzed on an Agilent 1200 series high-performance liquid chromatography (HPLC)
system equipped with a diode array detector (Agilent Technologies). Samples were injected into an
Agilent Zorbax SB-Aq column (5-mm pore size, 4.6 mm � 150 mm). The following HPLC method was
used: solvent A, 0.1% formic acid–deionized water; solvent B, 0.1% formic acid–methanol; flow rate of
1 mL/minute at 30°C; 25% to 34% solvent B for 11 min, followed by a linear gradient of 34% to 50% sol-
vent B over 2 min, followed by a linear gradient of 50% to 75% solvent B over 8 min.

Riboswitch fluorescent reporter assays. Corrinoid dose-response assays of riboswitch reporter
strains were set up as follows. Saturated cultures of the riboswitch reporter strain in LB were diluted
200-fold in LB and dispensed into 96-well microtiter plates (Corning Costar Assay Plate 3904) containing
a range of concentrations of various corrinoids. The plates were sealed with gas diffusible membranes
(Breathe-Easy, Diversified Biotech) and incubated at 37°C for 4 to 5 h in a benchtop heated plate shaker
(Southwest Science) at 1,200 revolutions per minute (rpm). GFP fluorescence (excitation/emission/band-
width = 485/525/10 nm) and absorbance at 600 nm (A600) were measured on a Tecan Infinite M1000 Pro
plate reader. The A600 measurements of uninoculated medium and fluorescence measurements of the
parental control strains lacking gfp were subtracted from all readings. Data were plotted and analyzed in
GraphPad Prism 9.

3D structural analysis of corrinoids and macromolecular models. Molecular models of cobalamin
in the base-on and base-off/His-on state in complex with various proteins and RNAs were downloaded
from the Protein DataBank (PDB) (Table S2) (124). PDB files were analyzed in UCSF Chimera 1.14 (125).
Corrinoid molecular models were aligned with each other by the central cobalt atom and coordinating
nitrogen atoms of the corrin ring, using the PDB ID 4GMA Cbl model as a reference. Corrinoid models
were aligned within the binding sites of riboswitch structures PDB IDs 4GMA, 4FRN, 4GXY, and 6VMY
(51, 54, 55).

Methionine-dependent growth of B. subtilis strains. B. subtilis strains were streaked from frozen
stocks onto LB agar plates and incubated overnight at 37°C for 14 to 18 h. Single colonies were used to
inoculate 3 mL liquid starter cultures containing Spizizen minimal medium supplemented with 0.02%
d-glucose and 0.2% L-Histidine (SMM) (126). Starter cultures of the metH-expressing strain were supple-
mented with 1 nM CNCbl to support growth, whereas the metE-expressing strains were cultured in SMM
without CNCbl. Starter cultures were incubated overnight shaking (250 rpm, 37°C) for 20 h, reaching cell
density of about OD600 = 1.0. Starter cultures were diluted 500-fold by transferring 50 mL of starter cul-
ture to 25 mL of SMM. Then 75 mL of the diluted culture were dispensed into wells of a 96-well micro-
titer plate containing 75 mL of SMM supplemented with 40 nM various corrinoids. Plates were sealed
with gas diffusible membranes (Breathe-Easy, Diversified Biotech) and incubated at 37°C on the “high
shaking” setting of a BioTek Synergy2 plate reader. Growth kinetics and metE and metH expression were
measured by A600 and GFP fluorescence every 15 min for 72 h. Data were plotted and analyzed in
GraphPad Prism 9.
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