
RESEARCH ARTICLE

Estimating the basic reproduction number at

the beginning of an outbreak

Sawitree BoonpatcharanonID
1☯, Jane M. HeffernanID

2,3☯*, Hanna Jankowski2,3☯

1 Department of Statistics, Chulalongkorn Business School, Chulalongkorn University, Bangkok, Thailand,

2 Mathematics & Statistics, York University, Toronto, Canada, 3 Centre for Disease Modelling, York

University, Toronto, Canada

☯ These authors contributed equally to this work.

* jmheffer@yorku.ca

Abstract

We compare several popular methods of estimating the basic reproduction number, R0,

focusing on the early stages of an epidemic, and assuming weekly reports of new infecteds.

We study the situation when data is generated by one of three standard epidemiological

compartmental models: SIR, SEIR, and SEAIR; and examine the sensitivity of the estima-

tors to the model structure. As some methods are developed assuming specific epidemio-

logical models, our work adds a study of their performance in both a well-specified (data

generating model and method model are the same) and miss-specified (data generating

model and method model differ) settings. We also study R0 estimation using Canadian

COVID-19 case report data. In this study we focus on examples of influenza and COVID-19,

though the general approach is easily extendable to other scenarios. Our simulation study

reveals that some estimation methods tend to work better than others, however, no singular

best method was clearly detected. In the discussion, we provide recommendations for prac-

titioners based on our results.

Introduction

The basic reproduction number, R0, (also called the basic reproductive ratio) is defined as the

expected number of new infections produced by a single (typical/average) infectious individ-

ual, when introduced into a totally susceptible population. R0 is used in epidemiological stud-

ies of infectious diseases to gauge how contagious/transmissible an infectious disease is: if R0 <

1, the disease will die out, and if R0 > 1 infection can increase in the population. It is also used

to determine how effective vaccination or other disease mitigation strategies need to be in

order to protect populations from infection.

At the outset of an infectious disease outbreak, an immediate goal is to determine R0, so

that public health and healthcare decision makers can be informed. For example, at the debut

of the COVID-19 pandemic, reports of R0 estimates were plentiful (see e.g. [1–6]). In the

recent MERS-COV, 2009 H1N1, and 2003 SARS epidemics, there were also numerous studies

of R0 globally (see [7–19] for a small snapshot).
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There are many statistical and mathematical methods that can be used to estimate R0

[20–29]. A main difficulty in R0 estimation is that the methods often depend on data that is

not available, or the methods suffer from collection and/or reporting, or other, bias. Differ-

ent estimators utilize different approaches to deal with these difficulties. Broadly speaking,

estimators can be classified as real-time (requiring little computation time) and non-real-

time (requiring more extensive computation). Real-time estimators typically rely on simple

epidemic models and/or simplifications of models in an attempt to remove dependence on

unobservables (such as the Susceptible-Infectious-Recovered, a.k.a. SIR, compartmental

modelling framework). Non-real time methods generally handle unobservables via Bayesian

or Monte Carlo approaches, at the cost of computing time. Often, real-time methods also

assume some prior knowledge of other parameters, such as the serial interval (SI). It is there-

fore important to study the effects of misspecification of the either the modelling framework

or input parameters on these estimators. For example, suppose an R0 estimator has been

constructed to work within a SIR disease modelling framework. Infectious diseases, how-

ever, can include periods of infection that are not infectious. The infectious period can also

be split into various stages of asymptomatic and symptomatic infection, which ultimately

affect the case reporting rate to public health. Therefore, methods that are based on the

SIR modelling framework can project erroneous estimates of R0, and differences in R0

estimates may simply reflect poor estimator structure or application to data that has been

misspecified.

A recent study by [27] has discussed several nuances of different estimator methods that

can affect R0 estimates. The effect of misspecification is only touched on briefly. In this work,

we compare six different estimators of R0: four real-time estimators and two estimators which

require longer computation times. The four real-time estimators are based on an SIR or similar

framework, while the two other estimators can be tuned to extensions of the SIR model. We

then simulate data generated from one of three compartmental epidemiological models, the

SIR, SEIR, and SEAIR models that track susceptible (S), exposed (E), asymptomatically infec-

tious (A), symptomatically infectious (I), and recovered (R) individuals in their modelling

frameworks. We note that three of the real-time estimators assume that the serial interval is

known, and therefore we also consider the situation when this serial interval is guessed incor-

rectly in these estimators. Our work thus studies the effect of compartmental model and/or

serial interval misspecification on the real-time estimators. Moreover, non-real-time methods

require specification of the epidemiological model by the investigator, and our work studies

the effect of compartmental model misspecification on these.

The report of our findings is organized as follows. We first provide an introduction to

three compartmental infectious disease models that we use to generate case data. Six R0

estimators are then introduced, including a discussion of their underlying compartmental

model structure assumptions. We then apply each estimator to data generated from the

three compartmental models, and Canadian COVID-19 data for the provinces of British

Columbia, Ontario, Quebec, and also for the country as a whole. Early epidemic dynamics

are discussed using the inflection point (or turning point) in the epidemic growth curve, the

point at which the curvature in the epidemic growth curve changes—early timepoints exist

before this point. We employ parameter values representative of respiratory virus epidem-

ics, and in particular, influenza and COVID-19 [30–35]. We note that while daily data may

be sometimes available during an infectious disease outbreak, it may not be complete and

can include a reporting delay. We thus have chosen to use weekly case reports. Weekly case

report data is also typical to outbreaks of influenza, a respiratory virus, and a chosen patho-

gen of study.
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Methods

Epidemiological models

We focus on three compartmental epidemiological models that form the basis of all infectious

diseases models [36–38], the

SIR: Susceptible–Infectious–Recovered

SEIR: Susceptible–Exposed–Infectious–Recovered

SEAIR: Susceptible–Exposed–(Asymptomatic Infectious)–(Symptomatic Infectious)–

Recovered

models. The models are each composed of three to five compartments (with labels matching

the model name). Individuals transition from one compartment to the next based on pre-spec-

ified random dynamics. Here, we assume that these distributions are exponential, and thus

assume systems of ordinary differential equations (ODEs). We use the notation θ = (β, σ, ρ, γ)

to denote the vector of parameters for the models, see Table 1 for details. The ODE systems for

all three are provided in the S1 Appendix, as well as their corresponding flow diagrams. All

models are considered without inclusion of demography, i.e. birth and death. The total popu-

lation is fixed throughout the simulation and denoted by N with initial values of S0 and I0 for S
and I populations, respectively, and all others zero. Therefore, for all three models N is equal to

S0 + I0, and this is approximately equal to S0 since S0 >>I0. For the SIR model, for all t� 0 it

also holds that S(t) + I(t) + R(t) = N. Similarly, S(t) + E(t) + I(t) + R(t) = N for the SEIR model

and for the SEAIR model, S(t) + E(t) + A(t) + I(t) + R(t) = N.

Data is generated using the SIR, SEIR, and SEAIR compartmental model structures using a

stochastic agent-based modelling framework implemented in C++. The simulations progress

at the level of individual hosts in the applicable model disease status compartments. The simu-

lation moves forward using “event times” that are assigned to each infected individual in the

population and are determined by the compartment characteristics of which an individual is

currently a member. Such event times correspond to infection events, when an infected indi-

vidual transmits the infection to a susceptible, and times at which infected individuals progress

Table 1. SIR, SEIR, SEAIR model parameters and values, R0, serial interval.

(a) Model contact rate notation

model parameter

β σ ρ γ

SIR S! I: βI(t)/N I! R: γ

SEIR S! E: βI(t)/N E! I: σ I! R: γ

SEAIR S! E: βI(t)/N E! A: σ A! I: ρ I! R: γ

(b) Model parameters, R0, and serial interval

model θ R0 = R0(θ) serial interval

SIR (β, γ) β/γ 1/γ

SEIR (β, γ, σ) β/γ 1/γ + 1/σ
SEAIR (β, γ, σ, ρ) β/γ + β/ρ 1/γ + 1/σ

(c) Parameter values for simulations

model influenza 1 influenza 2 COVID-19

SIR (1/3, 1/5) (1/3, 1/5) (1/2, 5/26)

SEIR (1/3, 1/3, 1/5) (5/9, 1/2, 1/3) (13/11, 1/3, 5/11)

SEAIR (1/3, 1/3, 1/2, 1/5) (5/12, 1/2, 1, 1/3) (26/57, 1/3, 2/7, 5/11)

https://doi.org/10.1371/journal.pone.0269306.t001
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to the next stage of infection or recover. The C++ model is based on previous work [39, 40].

Again, we note that all event times are assumed to be exponentially distributed with mean 1/ξ
where ξ refers to the model parameter associated with the same transition in the system of

ordinary differential equations. See Table 1.

1000 agent-based model simulations are conducted for each of the SIR, SEIR, and SEAIR

frameworks with parameters as given in Table 1. Model parameters were taken from the litera-

ture, and are representative of pandemic influenza (R0 2 [1.2, 7], serial interval 2[1.5, 9.5])

and COVID-19 (R0 2 [1.6, 3.4], serial interval 2[4.2, 7.5]) [3, 30–32].

• The first influenza (influenza 1 in Table 1) example parameters are such that R0 = 5/3 for SIR

and SEIR and R0 = 7/3 for SEAIR. For this example, the serial interval is 5 days for the SIR

model and 8 days for the SEIR and SEAIR models.

• The second influenza (influenza 2) example parameters are such that R0 = 5/3 and the serial

interval is 5 days for each of the SIR, SEIR, and SEAIR models.

• The COVID-19 parameters are such that R0 = 2.6 and the serial interval is 5.2 days, again,

for all models. The incubation period in the SEAIR COVID-19 model has a mean of 6.5 days

[32].

For each epidemic, the population size N is set to 10, 001 where S(0) = 10, 000 and I(0) = 1.

R0 and the serial distribution

The serial distribution is the distribution from the time that an infected individual (the infec-

tor) becomes symptomatic, to the time when a person infected by the infector, the infectee,

becomes symptomatic. For the SIR model, this is the same as the time spent in the I compart-

ment, and in particular, the serial distribution is exponential with mean 1/γ when exponential

distributions are assumed throughout the model [41]. We summarize the serial intervals for

our models in Table 1 [41]. In the literature, the serial distribution may also be referred to as

the serial interval, although this most often refers to the mean of the serial distribution, or

alternatively, a range indicating highly likely values from the serial distribution. Here, we will

use the convention that the serial interval refers to the mean of the serial distribution. For dis-

eases such as influenza, it may be reasonable to assume that the serial distribution is known

apriori. For other situations, such as new emerging diseases, such assumptions are less valid.

Methods for estimating R0

Many methods exist to estimate R0. We refer to [29] for a recent review. If the transition rates

in the compartmental models are known, then R0 can be easily calculated using the formulas

listed in Table 1. However, full transition rates are generally not known in practice, and hence

statistical estimation methods are required. The main difficulty in estimation is that complete

data is unavailable for the full epidemiological model. Here, we consider six different methods

of estimating R0. For simplicity, we name the methods WP, seqB, ID, IDEA, plug-n-play, and

fullBayes in this work. A summary of the methods and their key properties is given in Table 2

for reference.

The first four (WP, seqB, ID, and IDEA) are real-time methods based on simplifications of

the full ODE epidemiological models. This simplification is necessitated by the fact that the

full data is unobservable. In these methods, estimation of R0 is coupled with either estimation

or prior knowledge of the serial distribution.

The two latter methods (plug-n-play and fullBayes) do not simplify the full epidemic mod-

els, but handle the issue of unobservable data by Monte Carlo simulation (plug-n-play method)
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or Bayesian priors with MCMC used to handle estimation due to model complexity (fullBayes

method). As such, these methods are more computationally intensive. These two methods esti-

mate the unknown transition rate parameter vector θ in the epidemic model. They do not

require any prior knowledge, including prior knowledge of the serial distribution. Indeed,

since the methods result in estimates of θ, these can then in turn be used to derive an estimate

of the serial distribution. Furthermore, the methods assume prior knowledge of the epidemic

model, in the sense that the user can decide whether the SIR, SEIR, or the SEAIR model is

more appropriate for the particular disease. In contrast, the WP, seqB, ID, and IDEA methods

all rely on simplifications, and are not able to allow for such tailoring.

Although the plug-n-play and fullBayes methods are more computationally intensive and

not considered “real-time”, we note that modern day access to computational power is blur-

ring this line of distinction. Our implementations of fullBayes and plug-n-play were done on a

non-specialized desktop computer and without special consideration to computing time in the

implementations. The time required to obtain the estimates was less than two minutes in both

cases, and we do not consider this to be prohibitive. Furthermore, more careful programming

could yield even faster estimates. A more detailed discussion is available in Sectio. Computa-

tional Time.

WP: Maximum likelihood estimation of a branching model. [42] developed a straight-

forward estimation method whereby either the serial distribution is known, or the serial distri-

bution is estimated along with R0. The method assumes that only the number of infectious

individuals at discrete time points (e.g. daily or weekly) is observable and both approaches

(serial known and unknown) use maximum likelihood. Recall that I(t) denotes the number of

infecteds (i.e. the individuals in compartment I) at time t. Using our notation, and assuming

that the times t0 = 0, t1, t2, . . ., tκ are integers which count, for example, the number of days or

weeks since the beginning of the pandemic (time zero), [42] obtain the log-likelihood

‘ðR0; pÞ ¼ �
Xk

i¼1

mðtiÞ þ
Xk

i¼1

IðtiÞ log mðtiÞ;

Table 2. Summary of estimation methods for R0.

method summary

WP White & Pagano Method, due to [42]. Serial distribution can be assumed known or can be estimated

using MLE; method developed under branching process model; simple method which yields real-

time estimates (when serial interval is unknown the method takes longer to compute).

seqB Sequential Bayes Method, due to [43]. Serial distribution assumed known (only the mean is used);

method developed assuming SIR model and uses sequential Bayes methods; simple method which

yields real-time estimates.

ID Incidence Decay Method (see [44]). Serial distribution assumed known (only the mean is used);

method developed assuming an SIR model structure and uses least squares estimation. It is a simple

method which yields real-time estimates.

IDEA The Incidence Decay and Exponential Adjustment Method is presented in [44]. Serial distribution

assumed known (only the mean is used); method developed assuming SIR model and uses least

squares estimation; simple method which yields real-time estimates. IDEA uses a slightly more

complex model for fitting than ID.

plug-and-

play

Plug-and-Play Method. See [45]. Serial distribution assumed unknown; method selects one of SIR/

SEIR/SEAIR model; implementations available though not real-time (depending on input selection).

Generally, this approach fits the complete model using maximum likelihood and relying on Monte

Carlo to fill in missing observations. The R-package, called POMP, is quite technical and can be

difficult to implement [45].

fullBayes Full Bayes Method. See [46]. Serial distribution assumed unknown; method selects one of SIR/SEIR/

SEAIR model; not real-time. this approach fits the complete model using maximum likelihood and

relying on Monte Carlo to fill in missing observations. Can be quite technical in implementation.

https://doi.org/10.1371/journal.pone.0269306.t002
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where mðtÞ ¼ R0

Pminðk;tÞ
j¼1

Iðt � tjÞpðtjÞ and p is a vector denoting the (discrete and finite) serial

distribution on t1, . . ., tκ. That is, if Y is the random variable representing the serial distribution

then p(tj) = P(tj� Y< tj+1)/P(Y� tκ). If p is known (notably, this includes knowing the value

of tκ which describes the support of p) then the maximum likelihood estimate of R0 is straight-

forward to compute. In the SIR model with exponential transitions, p(tj) is a truncated geomet-

ric distribution. If p is unknown, then [42] recommend discretizing a gamma distribution to

simplify estimation. Other models (SEIR and SEAIR) do not have simple closed form expres-

sions for p(tj) (see [41]). We found that for coarse data (e.g. weekly) the discretization and

mean dominates the values of p more so than the actual distribution chosen.

The WP method assumes an underlying branching process, which is neither of the SIR/

SEIR/SEAIR models from which our data sets are generated. This model assumes, in particu-

lar, that throughout, the population size “available” to be infected remains constant, which

does not hold for our simulated ODE models. As such, estimates should only really be consid-

ered early on in the epidemic. In our simulations presented below, we highlight the inflection

point of each epidemic, and the WP method should only really be considered valid before this

time.

The method has been implemented in [47], see also [48] for details on the R package called

R0. In our simulations, we found this implementation to have some numerical instability

issues, which is most likely caused by the particular parameters of our simulated data sets. This

instability was particularly profound when p was assumed unknown, and most often the algo-

rithm would not yield a solution. For this reason, we programmed our own implementation,

for which we used a simple grid search. The built-in alternative optimization function in R

uses the bisection method, and was very sensitive to the starting value (a small change in the

starting value could change the R0 estimate by orders of a thousand). In comparison, the grid

search approach performed better, although it was still not ideal. The likelihood surface is very

flat, which resulted in a non-unique MLE (we report only a default value). This property of

the likelihood surface is most likely what also causes the issues we observed for our data in the

implementation of the R0 R package [48].

Furthermore, note that the log-likelihood assumes that the serial distribution is discrete,

and that this discretization matches the observed data. That is, if data is observed weekly, the

serial distribution is only known on a weekly timescale. This discretization can affect the serial

distribution considerably, particularly if the timescale is quite coarse.

seqB: Equential Bayes estimation using an SIR approximation. [43] developed a Bayes-

ian approach used to estimate R0. As above, it is assumed that infectious counts are observed at

periodic times such as days or weeks. The basic idea is to start with a mildly informative prior

on R0 and then update sequentially. The approach is based on the SIR model, and assumes that

the mean of the serial distribution is known (under the SIR model, this is equivalent to know-

ing the parameter γ which is the inverse of the mean of the serial distribution). [43] note that

under the SIR model, and considering time interval tj+1 − tj

Iðtjþ1Þ ¼ IðtjÞ exp g
R tjþ1

tj
R0

SðsÞ
N
� 1

� �

ds
� �

� IðtjÞ exp ½ðtjþ1 � tjÞgðRt � 1Þ�;

where Rt = R0 S(t)/N� R0 at the beginning of an infection. Using this result, seqB assumes that

the conditional distribution of I(tj+1), conditional on I(tj), R0, is Poisson with mean λ = I(tj)
exp{(tj+1 − tj)γ(R0−1)}. In the approach, γ is known, and a prior is placed on R0. With N0

also assumed known, posterior estimates are found using a hierarchical or sequential Bayes

approach. Note that the method cannot handle data sets where there are no new infections

PLOS ONE Estimating the basic reproduction number at the beginning of an outbreak

PLOS ONE | https://doi.org/10.1371/journal.pone.0269306 June 17, 2022 6 / 24

https://doi.org/10.1371/journal.pone.0269306


observed in some time interval tj+1 − tj (as this results in a Poisson mean of zero). Therefore,

the times at which infectious counts are observed must be sufficiently coarse so that all counts

are non-zero (e.g. weeks instead of days). The method would also be inappropriate for situa-

tions where long intervals between cases are observed in the initial stages of the epidemic. This

was observed, for example, in Canada for the first cases of COVID-19.

Although the above development is based on the SIR model, the resulting approximation

behaves similarly to a branching process, much like the WP method. We therefore again con-

sider this estimator valid only in the early stages, which for our simulations translates to times

prior to the inflection points of the epidemic.

The posterior distribution of R0 will have the same support as the prior, and placing a dis-

cretized prior on R0 makes computations relatively straightforward, since the normalizing con-

stant of the posterior is easy to implement. In the R implementation in [48], called R0, the

initial prior on R0 is assumed to be uninformative. Their package focuses on the posterior

mode, and much like their implementation of the WP method, uses a discretized version of

the serial distribution (which could affect the input value of γ). We again chose to use our own

implementation, and report the posterior mean which minimizes the Bayes’ risk.

ID and IDEA: Least square estimation using incidence decay approximations. [44]

introduced two simplified models describing the relationship between R0 and other epidemic

parameters in the SIR model. The first of these is the incidence decay (ID) model where

~IðsÞ ¼ Rs
0
: ð1Þ

In the model, time s is measured in units re-scaled based on the serial distribution. Recall that

under the SIR model the serial distribution is exponential with mean 1/γ. We then have the

relationship in (1) that ~IðsÞ ¼ IðgsÞ. As (1) is only valid for a short (and unknown) period of

time, [44] proposed a second alternative formulation, where a decay factor d was introduced

in order to reflect the often observed outbreak decline. In the incidence decay and exponential

adjustment (IDEA) model, the relationship becomes instead

~IðsÞ ¼
R0

ð1þ dÞs
� �s

: ð2Þ

Under the ID model, we can solve (1) to obtain

R0 ¼ ~IðsÞ1=s:

Of course, this relationship is not valid for real data across all values of s as ~IðsÞ is stochastic.

To obtain an estimate of R0 least squares is a natural option, and hence the ID estimator is the

minimizer of

Xk

j¼1

log R0 �
1

sj
log ~IðsjÞ

 !2

;

which yields

exp
1

k

Xk

j¼1

1

sj
log ~IðsjÞ

( )

: ð3Þ

As noted above, the number of infectious people increases rapidly at the beginning of an

outbreak, so a method based on (1) is expected to underestimate R0. The IDEA model was
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introduced to overcome this issue. As in the ID model, we solve (2)

R0 ¼
~IðsÞ1=sð1þ dÞs;

and use least squares estimation to obtain its estimate. The IDEA estimator is defined then as

the minimizer of

Xk

j¼1

log R0 �
1

sj
log ~IðsjÞ � sj logð1þ dÞ

 !2

:

Unlike in the ID model, we also need to obtain a minimizer of d to solve the optimization

problem, and hence we require k� 2. Minimizing, we obtain

exp

Pk
j¼1

s2
j

� � Pk
j¼1

1

sj
log ~IðsjÞ

 !

�
Pk

j¼1
sj

� � Pk
j¼1

log ~IðsjÞ
� �

k
Pk

j¼1
s2
j � ð

Pk
j¼1

sjÞ
2

0

B
B
B
B
@

1

C
C
C
C
A
: ð4Þ

Details of these calculations are given in the S1 Appendix. Note that the formula is not valid

for k = 1.

Both the ID and IDEA methods are straightforward and estimate R0 directly, as long as the

mean of the serial distribution is known. The model was built under the SIR assumption. In

our simulations we examine the effect of misspecification of the underlying epidemic model.

plug-n-play: Maximum likelihood using sequential Monte Carlo for partially observed

epidemics. Maximum likelihood is one of the more popular approaches used to estimate

unknown parameters in a statistical model. The general idea is to find the parameter set θ
which maximizes the likelihood (probability model) evaluated at the observed data. The diffi-

culty for our setting is that our compartmental models (see the discussion of the epidemiologi-

cal models) rely on data which is unobservable. In particular, the models require that the exact

times of infections are known while we observe only daily or weekly counts of infectious indi-

viduals. The WP method [42], which also uses maximum likelihood, gets around this issue by

creating a simplified model with a likelihood which relies only on observable data. Another

alternative, discussed in [49], is to maximize the full likelihood and fill in the unobservables

using many Monte Carlo simulations in a way which matches the fixed observable data points.

Such an approach is often referred to as “plug-n-play”.

The plug-n-play inferential method of [49] is based on likelihood inference using sequential

Monte Carlo of partially observed Markov processes (POMP), also known as hidden Markov

models or state-space models. The plug-and-play terminology comes from the fact that infer-

ence is based on Monte Carlo simulations from the model and does not require explicit expres-

sions of the transition probabilities, which can be quite complicated. The algorithm for this

method has been implemented in the R package POMP [45]. This software package can be

accessed from the comprehensive R archive network (CRAN), see also [50]. As mentioned

previously, the basic idea is to generate complete epidemic data in a way which matches the

observed weekly infectious observations. To simplify the implementation, complete continu-

ous-time data is not generated but rather an approximation is generated with observations of

all components at a discretized time-scale Δt (single value selected by the user). These discre-

tized epidemics are generated using sequential Monte Carlo methods. An estimate of θ is

then obtained via maximum likelihood using iterated filtering. The implementation in [50]

allows for the selection of the model SIR, SEIR, or SEAIR. We refer to [49, 50] for additional

details. The algorithm returns estimates of θ, as well as an estimate of R0 derived via the
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formula

R0 ¼ b
Dt

1 � e� Dt g
;

regardless of the epidemiological model. We refer to the estimate thus obtained as the plug-n-

play estimator. R code detailing our simulations and choices of input values is provided as

S1 File.

fullBayes: Bayesian inference for partially observed epidemics. Similar to the plug-n-

play approach of the previous section, this is a simulation approach in which the incomplete

observed data is replaced with complete data via simulations. The main difference is that the

complete data is generated by placing a prior on its distribution in a Bayesian inferential

approach. Some examples of epidemiological inference under the Bayesian paradigm are

described in [46].

In order to describe the method we need first to introduce some additional notation. We

do this for the SEAIR model, as all other models are simplifications of this case. Recall that we

have observed infection counts I(t1), . . ., I(tk) at times t1, . . ., tk. Let m denote the vector with

jth element given by the cumulative sums mj ¼
Pj

i¼1
IðtiÞ. As such, m describes the entirety

of the observed data. For a time interval [0, T] the complete epidemic includes much more

information. Let tEi ; i � 2 denote the individual times of exposure. Similarly, tAi ; i � 2; tIi ; i �
2; tRi ; i � 1 denote the individual times of transitions into the asymptomatic, infectious, and

recovered states, respectively. We assume that m0 = 1. We also assume that all people who

are infected in week j will recover in week j + 1. Furthermore, we assume that the number of

exposed and asymptomatic people in week j is also equal to mj −mj−1. We let

t ¼ ftAi ; i � 2; tIi ; i � 2; tRi ; i � 1g

denote the epidemic path which contains all of this information.

As in [46], the first infection tI
1

is treated separately as a parameter of the model. Hence a

prior pIðt
I
1
Þ is placed on this variable. Recall that θ denotes the vector of compartmental model

parameters; see Table 1, (b) An independent prior is also placed on θ, π(θ), and samples from

the posterior distribution pðy; tI
1
; tjmÞ / Lðy; tI

1
jt;mÞpðyÞpIðt

I
1
Þ are obtained. The marginal

distribution of pðy; tI
1
; tjmÞ is π(θ|m), which is the posterior distribution of θ given the observ-

able data, and the distribution we are interested in.

We now calculate the likelihood Lðy; tI
1
jt;mÞ for the SEAIR model.

Lðt;mjy; tI
1
Þ

¼
Ymk

i¼2

bSðtEi Þ
N

IðtEi Þ þ AðtEi Þ
� �

( )
Ymk

i¼2

sEðtAi Þ

( )
Ymk

i¼2

rAðtIiÞ

( )
Ymk� 1

i¼1

gIðtRi Þ

( )

� exp �
R tk
tI
1

½bSðtÞðIðtÞ þ AðtÞÞ=N þ sEðtÞ þ rAðtÞ þ gIðtÞ�dt
n o

:

The joint prior distribution of the unknown rate parameters θ is made up of independent

gamma distributions given by Γ(α, k) with mean k/α. We assume that α is the same for the

parameters β, σ, ρ, γ, while k varies and if appropriate will be denoted by kβ, kσ, kρ, kγ. In the

simulations we take α = 1 and kβ = kσ = 3, kρ = 2, kγ = 5. The prior distribution on � tI
1

is expo-

nential with rate one, and this is independent from the θ vector. Calculations given in the S1

Appendix give the posterior marginal distributions for pðtI
1
jy; t;mÞ and pðyjt;m; tI

1
Þ all of

which have gamma distribution with closed form expressions for the parameters. Some
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sensitivity analysis to the prior distributions was conducted (see S1 Appendix), and changing

the prior did not visibly affect the results.

The general approach we take is now described using the following steps.

1. Use Markov chain Monte Carlo (MCMC) to simulate from pðy; t; tI
1
jmÞ:

2. From Step 1, we obtain a sequence of samples ðtl; yl; t
I
1;lÞ for l = 1, . . ., b + B from the poste-

rior distribution pðy; tI
1
; tjmÞ. Here, b denotes the burn-in period for the MCMC results,

and B denotes the number of MCMC samples collected. To obtain an estimate of θ, from

the samples l = b + 1, . . ., b + B, one option is to simply average the values θl. Instead, we

treat each ðtl; yl; t
I
1;lÞ a sample from the full posterior model, and calculate the posterior

mean of �y l; using the formulas given in the S1 Appendix.

3. Average the posterior means �y l; l ¼ bþ 1; . . . ; bþ B to obtain an estimate of θ.

The final reported estimate is obtained from the estimate of θ in Step 3 using the appropri-

ate formula in Table 1. In our simulations, we take b = 100 and B = 1000, and refer to the esti-

mator as fullBayes.

The MCMC algorithm we use is the Metropolis-within-Gibbs. Namely, there are three

main components to the posterior distribution θ, τ, and tI
1
. In the S1 Appendix, the posterior

distributions for pðyjt; tI
1
;mÞ and pðtI

1
jy; tÞ ¼ pðtI

1
jyÞ are obtained in closed form. Given one

observation of ðyl; tl; t
I
1;lÞ; the algorithm generates the next observation as follows.

1. Sample tI
1;lþ1

from the posterior pðtI
1
jylÞ:

2. Sample θl+1 from the posterior pðyjtl; t
I
1;lþ1

;mÞ

3. Sample τl+1 using a Metropolis step:

(a). Propose a new τ: For each i = 1, . . ., k

(i). tEj is IID uniformly distributed on [ti−1, ti] for j = mi−1, . . ., mi

(ii). tAj is IID uniformly distributed on [ti−1, ti] for j = mi−1, . . ., mi

(iii). tIj is IID uniformly distributed on [ti−1, ti] for j = mi−1, . . ., mi

(iv). tRj is IID uniformly distributed on [ti−1, ti] for j = mi−2, . . ., mi−1

(b). Accept the proposal with probability min{1, α} where

a ¼
pðtjylþ1; t

I
1;lþ1

;mÞgðtjtlÞ
pðtljylþ1; t

I
1;lþ1;mÞgðtljtÞ

¼
Lðtjylþ1; t

I
1;lþ1

;mÞ
Lðtljylþ1; t

I
1;lþ1;mÞ

;

noting that with the proposal distribution in (a), we have that g(τ|τl)/g(τl|τ) = 1.

Details are provided in the S1 Appendix

The chain is initialized by sampling θ from its prior distribution.

Real world COVID-19 data

We consider an example for the COVID-19 pandemic in Canada. The first case of COVID-19

was recorded on January 25th, 2020 in Toronto, Ontario [51]. For the first few weeks, isolated

cases arrived, however strict contact tracing kept the pandemic from beginning. We therefore

do not consider the first four weeks of the pandemic timeline (there were very few cases, and

most weeks had zero cases at this stage). In late February, the pandemic took hold and cases
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began to grow exponentially with community transmission [51]. Approximately one month

from this, non-pharmaceutical measures were imposed and most provinces went into some

form of lockdown. We therefore do not consider data much longer after lockdown initiation

as these measures would decrease the transmission rate.

We estimate R0 for all of Canada, and for the three most populous provinces, British

Columbia (BC), Ontario, and Quebec. In Ontario, strict restrictions were imposed following

March break (a one week school break during the winter) which fell around March 20th, 2022.

In Quebec, lockdown was imposed around March 24th, and strict public measures were imple-

mented around March 17th in BC. Epidemic data is provided from [52]. Public health mitiga-

tion data and dates are provided by [51].

Workflow

The goal of our study is to quantify R0 estimation in well-specified and misspecified settings,

including misspecification of the model and serial distribution. For all models we therefore

consider data coming from SIR, SEIR, and SEAIR epidemiological models, and the realworld

COVID-19 pandemic in Canada. We study the R0 estimation methods as follows:

Using synthetic data provided by the SIR, SEIR, and SEAIR models, we apply the following

methods for well-specified and misspecified settings

1. WP method assuming

• serial distribution (SD) is known and set to exponential with correct mean (5 days for

influenza 1 and 2 and 5.2 days for COVID-19)

• SD is known and set to exponential with incorrect mean (3 days for influenza 1, 2 and 7

days for influenza 2, and 4.2 and 7.5 days for COVID-19)

• SD is unknown and estimated from a gamma distribution with unknown mean and vari-

ance (using a grid search algorithm)

2. seqB method assuming

• SD has the correct mean (5 days for influenza 1 and 2 and 5.2 days for COVID-19)

• SD has an incorrect mean (3 days for influenza 1, 2 and 7 days for influenza 2, and 4.2

and 7.5 days for COVID-19)

3. ID and IDEA methods assuming

• SD has the correct mean (5 days for influenza 1 and 2 and 5.2 days for COVID-19)

• SD has an incorrect mean (3 days for influenza 1, 2 and 7 days for influenza 2, and 4.2

and 7.5 days for COVID-19)

4. plug-n-play and fullBayes methods developed assuming

• SIR

• SEIR (SEIR and SEAIR data only)

• SEAIR (SEAIR data only)

In these examples, the outbreaks are followed for 15 weeks, and this is the timeline given in

our results. This timeline is presented only as a comparison to what is happening at the earliest

stages. It also, however, improves the comparison between methods. Our comments below
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focus only on the time period before the inflection point (denoted as a vertical blue line for all

methods).

Using real world data, we apply the WP, seqB, ID, and IDEA methods with known SI, using

incorrect and true values for COVID-19. We then apply WP, fullBayes and plug-n-play. Esti-

mates are generated using weeks 5 to 10 for Canada, BC, Ontario, and Quebec. The date that

lockdown was implemented is indicated by a vertical line for all three provinces. No such line

is given for all of Canada, as the measures were handled provincially and not nationally.

When considering the results, recall that seqB and IDEA methods require at least two

weeks of observations.

Results

Epidemic simulations

Fig 1 plots the number of individuals in compartment I for each model structure, and each

parameter set. The grey lines plot the simulation outcomes while the black lines plot the mean

of the simulation data. Although the complete epidemic path is simulated, we assume that only

the weekly number of infectious people is actually available. The epidemics are followed for 15

weeks, which covers the first 100 days of an outbreak. Simulation data is recorded at every

event time. Weekly data is extracted from each simulation and saved in a data file for use for

all of the R0 estimators employed here. The blue vertical line indicates the point of inflection,

where the concavity/curvature of the black line changes. The inflection points are 7, 12, and 9

for influenza 1 parameter values, 6, 7, and 7 weeks for influenza 2, and 3, 5, and 6 weeks for

COVID-19, for the SIR, SEIR, and SEAIR models, respectively. These points are used to deter-

mine appropriate time intervals for R0 estimation for each model since R0 estimates are associ-

ated with early exponential growth and can be affected by decreases in the growth rate as the

epidemic continues towards and past the point of inflection. Thus, “early in the epidemic” is

the same as prior to the point of inflection. In real data, this time point would be unknown.

Code and files containing all results have been provided in the S1 File.

R0 estimates

Using synthetic data from the SIR, SEIR and SEAIR epidemiological models. We sum-

marize our numerical results in plots comparing the average mean squared error (MSE), side-

by-side boxplots, as well as tables reporting the median R0 estimates and its standard deviation.

Again, these are all provided in a separate file as S1 File. In the main manuscript, we show only

plots comparing the MSE of the various methods for the SIR data for the influenza 1 and 2

examples (Figs 2, 3 and 5), and SEAIR for the COVID-19 example (Figs 4 and 5). The MSE

plots do not include the WP method where the serial distribution is estimated, as here the

MSE was much too large to report. This can be ascertained from the Tables and the side-by-

side boxplots provided in the Supplementary Material (in particular, see Tables 7, 12 and 17 in

S1 File).

Figs 2 and 3 plot the MSE of the estimated R0 values and the true R0 value, for the WP,

seqB, ID, and IDEA methods for the influenza 1 and 2 examples, using SIR data, and assuming

a known serial interval. These plots provide examples of the well-specified and misspecified

cases, using the true and misspecifed values of the known serial interval. Of the methods pre-

sented in these plots, seqB performs best, followed by ID. When SEIR and SEAIR data are

considered, all estimators have larger MSE. However, our conclusion does not change (se. Sec-

tions 1–3 of the additional file included as S1 File) and seqB and ID still perform best. Finally,

considering both bias and variance, as shown in the totality of boxplots and tables in the

S1 File, our conclusion remains the same.
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Fig 4 plots the MSE of the estimated R0 values and the true R0 value for the WP, seqB, ID

and IDEA methods for the COVID-19 example, using SEAIR data. These plots provide

examples of misspecification given incorrect serial interval (serial intervals of 4.2 and 7.5

days are incorrect, and 5.2 days is the true value), and given misspecified data where SEAIR

Fig 1. The number of infectious individuals (y-axis) at time t in weeks (x-axis); from left to right: SIR, SEIR, and SEAIR; from top to bottom the examples are

influenza 1, influenza 2, then covid19. Individual simulated outbreaks from 1000 simulations are shown as grey lines, and their average is denoted as a black line. The

blue vertical dashed lines show the inflection points for each model.

https://doi.org/10.1371/journal.pone.0269306.g001
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data is used for these methods that relate best to the SIR model framework. Here, again,

seqB performs best, followed by ID. This is also true when SIR and SEIR data are consid-

ered, and considering bias and variance as presented in the totality of boxplots and tables in

the S1 File.

We plot the MSE of R0 estimates calculated using the fullBayes and plug-n-play methods

in Fig 5 for influenza 1 and 2 examples using SIR data and SIR model structure, and for

the COVID-19 example using SEAIR data, but with SIR, SEIR and SEAIR model structures.

In all cases presented in this figure, we find that plug-n-play outperforms fullBayes. full-

Bayes performs well in the longterm, but this is not our goal—R0 estimates are needed

early on in the epidemic. A review of all of the cases presented in the S1 File confirm our

conclusion.

Fig 2. Influenza example 1 estimated MSE of R0 estimators assuming known serial interval (SI) with SIR data (week on x-axis). The inflection point indicated by

the blue dashed vertical line.

https://doi.org/10.1371/journal.pone.0269306.g002

PLOS ONE Estimating the basic reproduction number at the beginning of an outbreak

PLOS ONE | https://doi.org/10.1371/journal.pone.0269306 June 17, 2022 14 / 24

https://doi.org/10.1371/journal.pone.0269306.g002
https://doi.org/10.1371/journal.pone.0269306


Computational time is a crucial factor as real-time estimates are desirable. Table 3 shows

computational time for the SEIR model for a single data set and using a 1.60GHz/8GB RAM

64-bit operating system, x64-based processor. The results in this work are based on fullBayes

with 1000 iterations and plug-n-play with 1000 particles and 10 IF iterations, where IF stands

for the iterated filtering algorithm. The fullBayes method was implemented in R, and it is pos-

sible that faster implementations can be achieved using a different programming language. In

comparison, the real-time methods (WP, seqB, ID, and IDEA) take less than one second each

to compute.

Based on the estimator outcomes, our recommendations are as follows. When the serial

interval is known, we recommend seqB and ID. We also recommend plug-n-play when the

serial interval is known. When the serial interval is unknown, plug-n-play performs the best.

Overall, we recommend that a suite of these estimators be used—employ plug-n-play, seqB,

Fig 3. Influenza example 2 estimated MSE of R0 estimators assuming known serial interval (SI) with SIR data (week on x-axis). The inflection point indicated by

the blue dashed vertical line.

https://doi.org/10.1371/journal.pone.0269306.g003

PLOS ONE Estimating the basic reproduction number at the beginning of an outbreak

PLOS ONE | https://doi.org/10.1371/journal.pone.0269306 June 17, 2022 15 / 24

https://doi.org/10.1371/journal.pone.0269306.g003
https://doi.org/10.1371/journal.pone.0269306


and ID. When the serial interval is unknown, a range of serial intervals can be provided to the

seqB and ID methods to compare to the plug-n-play results. Practitioners, however, should

consider their own preferences as to bias and variability of the estimators. We note here that

as this study is focused on data observed weekly, our results may not be applicable to data

observed, for example, daily, as the effect of the serial distribution on the results may be differ-

ent. We also assumed that our data did not suffer from collection bias, under-reporting, and

reporting delay. These issues are important, but beyond the scope of this work. However, it is

our belief that weekly data, as considered here, is less sensitive to some of these issues than

more fine-grained data.

Using real world COVID-19 data. Fig 6 shows plots of estimates of R0 for all six estima-

tors as applied to real world COVID-19 epidemic data from Canada. The provinces of BC (sec-

ond column), Ontario (third column), and Quebec (last column) are studied, as well as the

Fig 4. COVID-19 estimated MSE of R0 estimators assuming known serial interval (SI) with SEAIR data (week on x-axis). The inflection point indicated by the

blue dashed vertical line.

https://doi.org/10.1371/journal.pone.0269306.g004
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Fig 5. Estimated MSE of R0 estimators assuming unknown serial interval (SI) (week on x-axis). For both influenza

examples the data is SIR while for the COVID-19 example the data is SEAIR. The inflection point indicated by the blue

dashed vertical line.

https://doi.org/10.1371/journal.pone.0269306.g005

PLOS ONE Estimating the basic reproduction number at the beginning of an outbreak

PLOS ONE | https://doi.org/10.1371/journal.pone.0269306 June 17, 2022 17 / 24

https://doi.org/10.1371/journal.pone.0269306.g005
https://doi.org/10.1371/journal.pone.0269306


entire nation (first column). The WP, seqB, ID and IDEA methods are applied using assumed

known serial intervals of 2, 5, and 8 days. We compare our estimates to previously found R0

estimates (black horizontal lines) of the Canadian pandemic in reference [3], to the Greater

Toronto Area (which represents approximately 1/6 of the Canadian population). In summary,

seqB, ID and plug-n-play estimates perform best. seqB produces estimates within the range

denoted by the black horizontal lines for all serial interval values considered. The same is true

for early estimates for plug-n-play. The ID method achieves the lower estimate for all geo-

graphic jurisdictions. It is sensitive to the choice of serial interval value, however, and higher

serial interval values may drive the estimation to lie above the upper bound. See, for example,

the subplots for Canada and Ontario. Given the findings here, we again recommend a combi-

nation of seqB, ID, and plug-n-play methods for estimation of R0.

Conclusion

The basic reproduction number, R0, is an important parameter for estimation early in an epi-

demic so that public health interventions can be informed. As many estimators exist, and the

assumptions of the estimators as well as their dependency on particular biological estimates

(i.e., the serial interval), vary between methods, it is expected that R0 estimates will differ. It is

thus important to understand what estimators provide better outcomes under both true and

misspecified conditions. Since respiratory viruses (especially influenza, and coronaviruses i.e.,

COVID-19 of late) affect the global population every year, we have chosen to study the estima-

tors of R0 for these types of infections, which are typically modelled using SIR, SEIR and

SEAIR compartmental models. We have also chosen to consider weekly case data, as this is

characteristic of pandemic influenza and other pandemic respiratory infection outbreak

reported data, globally (with the exception of COVID-19, which was reported almost daily in

most regions until early 2022).

We have considered six estimators that are commonly used when determining R0 for any

infectious disease outbreak. We discussed the advantages and disadvantages of each method,

including dependencies on proper estimates of the serial distribution, and the computational

resources needed to run each estimator. Our simulations consider a variety of well- and mis-

sspecified settings. Briefly, we find that the WP method can provide close estimates to the

true R0 value if the SD is known, but when the SD is unknown, the method suffers greatly (see

Tables 7, 12 and 17 in S1 File). The seqB method performs well given SIR data but underper-

forms if there is any misspecification; the ID and IDEA methods, are useful due to their sim-

plicity. ID outperforms the IDEA model, but ID estimates of slightly higher MSE copared to

seqB. fullBayes estimates can have large variabilities, and are sensitive to the underlying model

structure, but the plug-n-play method provides consistent estimates even with only one week

of data.

Table 3. Computational time for the SEIR model for one data set (IF: Iterated filtering algorithm).

method iterations time

fullBayes 1000 iterations 8 minutes

3000 iterations 19.76 minutes

plug-n-play (1000 particles) 5 IF iterations 3.10 minutes

10 IF iterations 5.82 minutes

100 IF iterations 58.44 minutes

1000 IF iterations 9.77 hours

https://doi.org/10.1371/journal.pone.0269306.t003
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Fig 6. R0 estimators (y-axis) for COVID-19 data in Canada. Data from [52]. The x-axis shows time in weeks where t = 0 denotes January 25, 2020—the date of

the first known case in Canada [51]. The vertical gray line shows the date of lockdown for each of the provinces (there was no national lockdown date) [51]; while

the horizontal lines denote estimates of R0 from reference [3]. The provinces of BC (second column), Ontario (third column), and Quebec (last column) are

studied, as well as the entire nation (first column). The WP, seqB, ID and IDEA methods are applied using assumed known serial intervals of 2, 5, and 8 days.

https://doi.org/10.1371/journal.pone.0269306.g006
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Considering both bias and variability, as well as misspecification, we find that the perfor-

mance of the seqB, ID, and plug-n-play estimators is best, providing estimates of R0 that are

closest to the true value under both correctly specified and misspecified cases. Notably, plug-

n-play does not require prior knowledge of the serial distributions. However, if the serial inter-

val is known, seqB and ID outperform plug-n-play. Furthermore, seqB and ID require less

computational time, and are easier to implement.

The choice of R0 estimator is ultimately up to the practitioner. In our analysis we have

shown that some R0 estimators can be greatly affected by even a small level of misspecifica-

tion. Given that biological certainty may be lacking at the beginning of an infectious disease

outbreak, the number of disease stages needed in a model and a proper distribution of the

serial interval may not be known. This means that a range of R0 results will ensue, and the

accuracy of the estimates will be unclear. We therefore recommend that a suite of estimators

be used when estimating R0. Given the current study results, we recommend that seqB, ID,

and plug-n-play methods be included in any suite. plug-n-play does not require knowledge

of the serial distribution and provides close to true estimates under different model struc-

tures quickly. seqB and ID should be implemented using a range of known serial intervals,

to provide sensitivity analysis and confidence in R0 estimation. We do however note that

plug-n-play may be difficult to implement for some, since the R package is quite technical

[45].

Daily case reporting data has been available for the most recent COVID-19 pandemic.

Daily data was not provided during the 2009 H1N1 pandemic, however. Furthermore, there

may be issues with daily reporting (such as periodicity, reporting delay) whereby public

health may choose to use weekly reporting data over daily data as the weekly data would be

more reliable. We have thus only considered weekly case reporting data in this study as it is

expected that weekly case reporting data can be expected in many future epidemics and pan-

demics. It is important to note that First Few Hundred (FF100) studies, whereby the first few

hundred cases of a new virus are followed in detail at the beginning of an infectious disease

outbreak, have been implemented during the 2009 H1N1 and COVID-19 pandemics [53–

60]. In these cases the serial distribution, and the need to consider exposed and/or asymp-

tomatic periods of infection can be quickly determined, enabling realization of earlier and

more certain estimates of R0 early on. Given that First Few Hundred protocols are not imple-

mented in much of the globe, weekly case report data however may still be considered the

norm for future pandemics.

In our current study we have assumed perfect data with no unobserved infections, no

reporting delay, and no data collection bias. These issues are intuitively expected to affect R0

estimates. We venture to continue our study of R0 estimation considering these aspects in our

epidemiological data sets.

In summary, our work has various strengths, and some limitations. A unique strength of

our work is the study of model misspecification. We are unaware of previous work in this

direction. We did not consider all possible estimators of R0, but focused on those most com-

monly used in the field of Infectious Disease Modelling. We selected a variety of influenza

and COVID-19 scenarios for our simulations, which provide considerable information on

the behaviour of these estimators. We did not investigate other infectious diseases, such as

Ebola, which could potentially have quite different parameters. Our overall recommenda-

tions are however, general, and are therefore widely applicable. Lastly, we considered only

the scenario of perfect data. Alternative settings are beyond the scope of this work, however,

this, along with other infectious diseases and potentially more estimators will be considered

in future.
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47. Obadia T, Boëlle P. R0: Estimation of R0 and Real-Time Reproduction Number from Epidemics; 2015.

R package version 1.2-6.
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