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Abstract Members of the fibroblast growth factor (FGF) family play pleiotropic roles in cellular and metabolic
homeostasis. During evolution, the ancestor FGF expands into multiple members by acquiring divergent
structural elements that enable functional divergence and specification. Heparan sulfate-binding FGFs, which play
critical roles in embryonic development and adult tissue remodeling homeostasis, adapt to an autocrine/paracrine
mode of action to promote cell proliferation and population growth. By contrast, FGF19, 21, and 23 coevolve
through losing binding affinity for extracellular matrix heparan sulfate while acquiring affinity for
transmembrane α-Klotho (KL) or β-KL as a coreceptor, thereby adapting to an endocrine mode of action to
drive interorgan crosstalk that regulates a broad spectrum of metabolic homeostasis. FGF19 metabolic axis from
the ileum to liver negatively controls diurnal bile acid biosynthesis. FGF21 metabolic axes play multifaceted roles
in controlling the homeostasis of lipid, glucose, and energy metabolism. FGF23 axes from the bone to kidney and
parathyroid regulate metabolic homeostasis of phosphate, calcium, vitamin D, and parathyroid hormone that are
important for bone health and systemic mineral balance. The significant divergence in structural elements and
multiple functional specifications of FGF19, 21, and 23 in cellular and organismal metabolism instead of cell
proliferation and growth sufficiently necessitate a new unified and specific term for these three endocrine FGFs.
Thus, the term “FGF Metabolic Axis,” which distinguishes the unique pathways and functions of endocrine FGFs
from other autocrine/paracrine mitogenic FGFs, is coined.
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Introduction

Fibroblast growth factors (FGFs) are pleiotropic signal
molecules for all types of cell and tissue systems in
metazoans [1–3]. FGFs share a conserved core structure of
β-trefoil fold consisting of 12-stranded β-sheets arranged
in three similar lobes around a central axis, of which six
strands form an antiparallel β-barrel [4,5]. Except for the
four FGF-homologous intracrine factors that are function-
ally reminiscent of the ancestor FGF, the FGFs can be
classified into mitogenic and metabolic FGFs, which
overtly regulate cellular proliferation and substrate/energy
metabolism, respectively, on the basis of their distinct
functions and endpoint biological effects [6,7]. Both FGF
classes signal through the same types of transmembrane
receptor tyrosine kinases, that is, the FGF receptors
(FGFRs) 1 to 4 with multiple splicing variants [8].
However, in physiology, these two types of regulatory

activities driven by the two FGF classes appear to be
spatially and temporally segregated. At a physiological
level, mitogenic FGFs appear to be incapable of traveling
far to other tissues, including metabolic tissues, to promote
cellular metabolism because of local trapping after
secretion that is mediated by high affinity binding to the
extracellular matrix heparan sulfate (HS). On the other
hand, metabolic FGFs circulate but are inactive for
nonmetabolic tissues or cells that often undergo active
tissue remodeling via the renewed cycles of cell prolifera-
tion and population growth because of the lack of critical
transmembrane accessory coreceptors. This divergence
necessitates a distinction of the metabolic axis that is a term
as we call hereafter, which the metabolic FGFs drive, from
the mitogenic axis that the mitogenic FGFs drive. The
metabolic axis still shares the major aspects of structural
coevolution [9,10] while gaining unique structural and
functional divergence with the mitogenic axis within each
subfamily (Table 1), as our recent structural studies have
revealed [2,5,11]. From the evolutionary standpoint,
although the two axes largely parallel and drive differential
effects via divergent intracellular mechanisms, they aim for
a common goal of promoting the survival and homeostasis
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of each cell/tissue system and the organism as a whole
(Fig. 1), as we have summarized in a previous review [7].

The mitogenic FGF axis

The classic FGF family consists of 17 structurally related
polypeptides, which are secreted and act as extracellular
signaling molecules, in humans [1,3,7,12]. For the most
part of FGF history beginning in the late 1970s [13,14],
FGFs are known as short-range mitogens in a wide variety
of cell types in the developing ectoderm, mesoderm, and
endoderm. FGFs elicit a chemoattractant activity to
promote cell migration and tissue remodeling and
antiapoptotic effects to promote cell survival. FGF1 and
2 are the prototypes that are initially isolated based on
potent mitogenic activity toward fibroblasts or fibroblast-
like cells [13,14]. It was found early that the mitogenic
FGFs bind tightly to the local extracellular matrix HS
chains, do not circulate, and accordingly act in a paracrine
or autocrine mode. This heparin/HS binding property
renders their potent activity temporarily contained but
timely released locally upon injury or demand of tissue
remodeling [15]. These mitogenic FGFs include 14
members (Table 1), which strongly promote genomic
DNA synthesis and subsequent cell division and popula-
tion growth [12,16,17]. Therefore, mitogenic FGFs play
critical roles in the development of multiple tissues/organs
[18–20]. They initiate the mitogenic axis by binding to the
Ig-like ectodomains of their cognate transmembrane

FGFRs in complex with HS motifs on diverse target
cells and tissues in the first step [1,21,22]. The subsequent
activation of the intracellular kinase domains of FGFRs
results in downstream signal relay primarily through the
PI3K-AKT, RAS-MAPK, and PLCg-PKC pathways [23–
25], as we have summarized previously [3]. These HS and
FGFR dependent activities driven by the mitogenic FGF
axes contribute not only to the regulation of virtually all
aspects of development and organogenesis but also to
many natural processes of active post-developmental tissue
repair, remodeling, and homeostasis [26].
Among mitogenic FGFs, FGF7, which is also known as

keratinocyte growth factor (KGF), has the highest
specificity for receptor isotypes [12,22,27]. FGF7 only
activates the IIIb-type isoform of FGFR2. Given that FGF7
is produced in mesenchyme cells, while FGFR2IIIb resides
on the epithelial or keratinocyte cells, FGF7 forms a
unidirectional paracrine communication axis with FGFR2
from mesenchyme to epithelium compartment within a
tissue or organ. On the other hand, epithelial cells secrete
specific FGFs (e.g., FGF1 or 9), which then acts on
mesenchymal cells that harbor FGFR1IIIc within two
compartmental tissues. Therefore, these FGF1 and FGF7
driven mutual cell communication axes are poised to drive
tissue remodeling and maintain tissue homeostasis [28].
The prolonged or abnormal activation of the FGFR-HS
binary complexes by mitogenic FGF axes contributes to an
array of cell/tissue-specific developmental diseases and
multiple cancer types [3,29] (see a brief summary in
Table 1). The proliferation- and survival-promoting

Fig. 1 Scheme of FGF metabolic axis evolution. The FGF family originates from a common FGF13-like ancestor molecule in early metazoans that
bifurcates into the so-called intracrine FGF-homologous factor (FHF) subgroup (black arrow), including FGF11, 12, 13, and 14 (not shown), and
FGF4-like molecule, which continues to bifurcate into two major functional subgroups with diverging structural and functional specifications. The so-
called mitogenic FGF subgroups, including the FGF5, 8, 9, and 10 subfamilies (red arrows, Table 1), bind extracellular matrix heparan sulfate and
drive autocrine/paracrine mitogenic signal axes to promote cell proliferation and population growth. By contrast, the endocrine FGF subgroup
members (green arrow, Table 2), including FGF19, 21, and 23, drive metabolic signal axes that elicit broad-spectrum functions in regulating the
metabolic homeostasis of bile acid, lipids, glucose, energy, and minerals without direct proliferation-promoting activity. However, both the FGF
mitogenic and FGF metabolic axes are designed to promote cell and organismal survival in the vertebrates (orange arrows and blue-colored font).
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activities of the diverse mitogenic FGF axes have been a
major focus of utilities as regenerative and repair agents in
a range of medical settings [30–34]. In the past, we
demonstrated the benefits of the application of mitogenic
FGFs to tissue damage complications of diabetes mellitus,
including diabetic cardiomyopathy, nephropathy, and
neuropathy [35–37], as well as to wound healing and
spinal cord injury repair [38–40]. On the other hand, the
mitogenic FGF mediated cell miscommunications have
also been on the menu for developing inhibitors to be used
in cancer therapy [29,41,42].
It should be pointed out that, although at a physiological

level mitogenic FGFs are not evolutionarily designed to
circulate and target distal tissues or organs for an endocrine
effect, at pharmacological or supraphysiological levels,
mitogenic FGFs exert certain regulatory activities beyond
promoting cell proliferation and growth possibly due to
their accumulation sufficiently to achieve an effect in distal
metabolic tissues, where a cognate FGFR isotype is
expressed. It was shown in the early 1990s that a bolus
intravenous injection of FGF1 or 2 could target vascular
endothelium to decrease arterial blood pressure [43].
FGF16 is expressed in classical brown fat depots during
the later stages of embryonic development, and recombi-
nant FGF16 is a mitogen for adipocytes [44]. Mice
overexpressing FGF16 delivered by adeno-associated
virus display dramatic weight loss and uncoupling
protein-1 (UCP1) upregulation in inguinal white adipose
tissue (WAT), which is a common site for emergent active
brown adipose tissue (BAT). These effects are likely a
combined result of reduced food and water intake and
abnormal feces replete with lipid and bile acid due to the
brain, liver, and intestinal actions of overexpressed FGF16
[45]. Mice deficient in FGF1 exhibit insignificant pheno-
types under standard dietary conditions; however, under a
chronic high-fat diet, these mice develop an aggressive
diabetic phenotype coupled with aberrant adipose pheno-
types, including multiple histopathologies in the adipose
vasculature network, accentuated inflammatory response,
aberrant adipocyte size distribution and expansion, and
ectopic expression of pancreatic lipases [46]. In particular,
we show by structure-based mutagenesis that FGF1 can be
designed to have full metabolic activity of wild-type FGF1
but with reduced proliferative potential both in vitro and in
vivo [47]. These studies underscore the important role of
FGF1 in maintaining local adipose tissue homeostasis,
which upon significant tissue perturbations impinges on
the metabolic functions that subsequently affect the
systemic metabolic state. Thus, the metabolic effects of
several mitogenic FGF axes may be due to either a local
function in maintaining cellular homeostasis that is closely
associated with local metabolic state at a physiological
concentration or an induced metabolic response to a
supraphysiological concentration from circulation in the

metabolic tissues or organs where FGFR resides. However,
at pharmacological levels, few mitogenic FGFs may also
be designed to elicit systemic metabolic effects.

The metabolic FGF axis

In contrast to mitogenic FGFs, the metabolic FGF
subfamily contains only three members, namely, FGF19
(mouse FGF15), 21, and 23 [2,7,48–51]. However, the
metabolic axes of these three FGFs regulate a wide range
of metabolic pathways, resulting in tissue and organismal
metabolic homeostasis of bile acids, lipid, glucose, energy,
and minerals. Although the metabolic FGF axes do not
overtly promote DNA synthesis, thereby leading to cell
proliferation [12,52,53], both metabolic and mitogenic
FGF axes appear to enhance cell survival and promote an
optimal state of homeostasis in the target tissues and
organisms [7].
Based on current knowledge, the metabolic FGFs appear

to originate from a common FGF13-like ancestor molecule
as mitogenic FGFs and then bifurcate in early evolution
through an FGF4-like molecule from all other mitogenic
members by acquiring unique structural and mechanistic
properties [5,10,11,54], thereby leading to specific activ-
ities in modulating metabolic states in specific cell and
tissue types [2]. Instead of acting locally, metabolic FGFs
take a hormonal or endocrine route of action by traveling
through circulation from the originating tissue to other
peripheral tissues/organs. This endocrine action can be
attributed to the loss of the structurally conserved HS-
binding domain characteristic of the mitogenic FGFs [5].
Both the expression and target tissues of the metabolic
FGFs are relatively limited to the metabolically active
endocrine organs, such as liver, intestine, adipose tissue,
pancreas, muscle, bone, kidney, heart, parathyroid, and
specific neurons in specific regions of the central nervous
system (CNS) [55,56]. In expression tissues, metabolic
FGF genes are subject to direct transcriptional control by
several major metabolite-responsive nuclear receptors,
including farnesoid X receptor (FXR), peroxisome pro-
liferator-activated receptor α (PPARA) and γ (PPARG),
carbohydrate-response element-binding protein (Ch-
REBP), sterol regulatory element-binding protein-1c
(SREBP1c), retinoic acid-related orphan receptor α
(RORA), liver X receptor β (LXRB), vitamin D receptor
(VDR) [48–50,57–65], and stress-sensing transcription
factors, such as ATF4 [66], depending on the location of
specific nutrition/energy-sensing cells in specific tissues. In
target tissues, the biological effects of the metabolic FGF
axes are still mediated by FGFRs but in a different binary
complex with a new transmembrane nonkinase accessory
coreceptor, the α-Klotho (KL) or β-KL (KLB) [5,11,55,67]
(Table 2), to which mitogenic FGFs do not bind.
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Structurally, metabolic FGFs coevolve with coreceptor
KL/KLB but also acquire new structural elements that
direct specific contact interactions with KL/KLB and
FGFRs, thereby leading to a tethered basic triad complex
and subsequent activation of intracellular kinase domains
of FGFRs [5,11]. The C-terminus of the metabolic FGFs
mimics the interaction mode of a sugar chain that docks
into the pseudo-glycolytic pocket of KL/KLB while
interacting with FGFR ectodomains through the domains
that are conserved across the FGF family [5,68]. Mean-
while, the interacting KL/KLB protrudes an “arm” from
the membrane-proximal glycosidase domain griping onto
the FGFR ectodomain.
Although the FGFRs, in particular FGFR1, are broadly

expressed, the highly restricted expression of KL/KLB and
metabolic FGFs, and the new structural elements and
mutual interaction modes, set the tone for tissue-specific
functions of the metabolic FGF axes (Table 2). The
different intracellular molecular constituents in different
cells types, which are tailored to perform specific
biological functions, may be also an important limiting

factor. For instance, the adult adipocytes are not poised in a
normal context to increase population by direct prolifera-
tion due to the loss of several key proliferation-controlling
pathways, thereby partly accounting for the inability of the
activated FGFR1 by FGF21 to promote adipocyte
proliferation. Overall, metabolic FGFs appear to be
inducible stress factors in response to organismal meta-
bolic perturbations [7,69] and signal distal peripheral
tissues through the FGFR-KL/KLB complex to control due
metabolic pathways. In this sense, the metabolic FGF acts
as a key to ignite the FGF-FGFR-KLB/KLB triad
complex, which functions similarly as an engine with an
axis to drive effects in a tissue-specific manner, thereby
leading to beneficial effects that offset the initial adverse
metabolic changes and prevent metaflammation and tissue
damage not only in the FGF-producing tissues but also
systemically [2,7] (Table 2). Consequently, both the
analogs of endocrine FGFs and the agonists of FGF-KL/
KLB have been actively pursued clinically for the
prevention and treatment of a wide range of metabolic
diseases and comorbidities [2,70–75].

Table 2 The metabolic FGF axis.

Subfamily
Members
of ligands

Physiological function
(knockout phenotypes)

Known pathologies
Receptor specificity

1b 1c 2b 2c 3b 3c 4 KL KLB

FGF19 FGF19 1. Bile acid metabolism
2. Gall bladder filling
3. Lipid and energy
metabolism

1. Bile acid diarrhea, IBD
2. Cholestasis
3. Overexpression
— liver cancer

✓ ✓ ✓ ✓ ✓

FGF21 1. Lipid metabolism
— lipolysis, fatty acid
oxidation, lipogenesis
2. Energy metabolism
— uncoupling
thermogenesis
3. Macronutrient
preference
4. Starvation response
and associated
physiology
5. Insulin sensitivity and
glucose homeostasis

1. Obesity
2. Diabetes
3. NAFLD
4. Hyperlipidemia
5. Metabolic syndrome
6. Pancreatitis

✓ ✓ ✓

FGF23 Phosphate, calcium,
sodium, and vitamin D
homeostasis

1. Activation mutation
— autosomal dominant
hypophosphatemic rickets
and tumor-induced
osteomalacia
2. Inactivation mutation
— familial tumoral
calcinosis
3. Increase
— X-linked dominant
hypophosphatemia, CKD
4. Decrease
— GALNT3-related
familial tumoral calcinosis

✓ ✓ ✓ ✓

Abbreviations: IBD, inflammatory bowel disease; NAFLD, nonalcoholic fatty liver disease; CKD, chronic kidney disease; and GALNT3, polypeptide N-
acetylgalactosaminyltransferase 3.
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FGF19 metabolic axis

FGF19 is the prime controller of diurnal bile acid flux, and
the FGF19-driven metabolic axis is a temporal interorgan
crosstalk from the ileum to the liver in response to the
increase in the postprandial serum and transintestinal flux
of bile acids [2,49] (Fig. 2). This axis serves to control the
enterohepatic and systemic levels of bile acids negatively,
which facilitate the uptake and absorption of dietary lipids
after a meal but are toxic as biodetergent if the flux is
prolonged at increased levels. The ileal initiation of the
FGF19 signal is under the transcriptional control of FXR,
which is stimulated by the reabsorbed enterocyte bile acids
as a natural ligand that is originally released from
gallbladder and mixed with food traveling down from
the duodenum to jejunum and ileum. This enterocyte-
derived FGF19 activates the remote FGFR4-KLB complex
[67] residing across the membrane of hepatocytes in the
liver, resulting in a major feedback termination of the
transcription of the rate-limiting enzymes Cyp7A1 and
Cyp8b1 in the bile acid biosynthesis pathways [49,76].

Therefore, the FGF19 axis triggers the shut-off of hepatic
biosynthesis of new bile acids from cholesterol and the
refilling of gallbladder approximately 2 h after the peak of
serum bile acids is reached.
In experimental animals, FGF19 overexpression or

administration elicits other metabolic effects [77,78].
Excessive FGF19 promotes lipolysis, metabolic rate, and
energy expenditure and reduces body weight, serum
glucose, and lipids. The FGFR1-KLB complex on adipose
tissues, including WAT and BAT, was suggested in a large
part to mediate these metabolic effects [79] (Fig. 2).
However, the direct metabolic roles of bile acid fluctuation
and bile acid-activated FXR and TGR5 cannot be
excluded.
Although there is no evidence for any genetic mutation

of FGF19 gene that may be involved in human metabolic
diseases, its reduced synthesis and blood levels are
suggestive of a causative factor of chronic bile acid
diarrhea [80,81] and certain metabolic disorders, such as
metabolic syndrome, nonalcoholic fatty liver disease
(NAFLD), and insulin resistance. Experimentally, the

Fig. 2 FGF19 metabolic axis. The major FGF19 metabolic axis drives a temporal interorgan crosstalk from the ileum to the liver in response to the
increase in postprandial serum and transintestinal flux of bile acids to discontinue the biosynthesis of new bile acids after sufficient food digestion,
thereby preventing the prolonged exposure of tissues to potential bile acid toxicity. Pharmacological FGF19 may also initiate multiple signal axes to
drive effects on multiple tissues/organs, such as promoting (green arrow) energy expenditure in white and brown adipose tissues, increasing muscle
mass and insulin sensitivity, and preventing (red long-tailed “T” sign) systemic hyperglycemia and hyperlipidemia. FAA: free fatty acids.

516 Metabolic functions of FGFs



neutralization of FGF19 by specific anti-FGF19 antibodies
causes severe diarrhea in monkeys accompanied by the
increases in bile acid synthesis, serum and fecal total bile
acids, specific bile acid transporters, and liver toxicity [82].
In obese patients who undergo Roux-en-Y gastric bypass
bariatric surgery, FGF19 increases to normal values, which
at least partially underlie the benefits of this approach [83].
On the other hand, high FGF19 expression levels are found
in the livers of patients with extrahepatic cholestasis
[84,85], suggesting FGF19 as a therapeutic target for this
disease.
Recently, the FGF19 axis was shown to elicit hyper-

trophic and protective effects on the skeletal muscle
presumably through a KLB-FGFR4-dependent mechanism
by increasing myofiber size in the soleus, muscle mass, and
grip strength [86]. Pharmacological FGF19 ameliorates
skeletal muscle atrophy and prevents muscle wasting in
mice with glucocorticoid treatment, obesity, or sarcopenia.
These results highlight a potential treatment strategy for
muscle wasting induced by glucocorticoid treatment,
obesity, aging, and cachexia. However, whether the same
treatment will have a similar adverse effect on the liver still
has to be determined because muscle-specific transgenic
mice developed prominent hepatocellular carcinoma
(HCC) [87].
Despite the tumorigenic concern, the FGF19 analog

NGM282 was tested in patients with nonalcoholic
steatohepatitis (NASH). It markedly reduced liver fat
content but with significant side effects [70]. In a phase 2
trial in patients with type 2 diabetes and chronic idiopathic
constipation, NGM282 significantly improved bowel
function by accelerating gastric emptying and colonic
transit [81]. Furthermore, NGM282 was further tested in
mouse models and human patients with cholestasis and
primary biliary cholangitis, showing efficacy in signifi-
cantly reducing bile acid levels and improving hepatic
inflammatory injury and fibrosis [84,88,89].

FGF21 metabolic axis

FGF21 is a prime lipid catabolic factor that regulates
energy balance. However, the physiological roles and
pharmacological effects of FGF21-driven metabolic axes
are multifaceted [2,7,90] (Fig. 3). FGF21 was discovered
as a driver of glucose uptake in adipocytes and a PPARα-
dependent hepatic starvation hormone [48,50,51]. In mice,
FGF21 levels are induced when calories are restricted or
when glucose is low to allow fats to be burned for energy
supply. The increasing levels of FGF21 drive diverse
aspects of the adaptive starvation response, including
stimulation of hepatic fatty acid oxidative for ketone body
production during prolonged fasting and starvation.
Whether this action of FGF21 is autocrine/paracrine in
the liver or endocrine in adipose tissues through adipose
lipolysis and fatty acid oxidation is a matter of debate. The

liver is a major contributor to the circulating FGF21 levels,
which is associated with hepatic fat content and adiposity
but inversely associated with serum glucose levels [91–
93]. The hepatic expression of FGF21 is responsive not
only to starvation but also to a broad spectrum of cellular,
metabolic, or pathological changes in the liver as well as
systemic metabolic perturbations [7,69,94]. As FGF21 is
incapable of activating FGFR4-KLB complex [67], which
is predominant in the liver that expresses FGFR1-KLB
with lower levels, hepatic FGF21 acts mainly as an
endocrine factor to drive the metabolic pathways in
peripheral tissues, including WAT, BAT, muscle, heart,
kidney, and CNS that express high levels of FGFR1/2/3-
KLB, leading to the correction of metabolic derangements
and amelioration of metaflammation and stress damage
(Fig. 3) [7,94].
Although the liver is unlikely a major direct target of

FGF21, the effects of FGF21 on the liver are prominent. In
addition to its role as a regulator of integrated hepatic
metabolism in multiple aspects [48,50,95–98], including
fatty acid oxidation, ketogenesis, gluconeogenesis, and
macronutrient preference, FGF21 counteracts hepatic
pathologies in response to a number of nutritional and
chemical insults, including ketogenic diet, high fat diet,
high fructose diet, methionine and choline deficient diet,
ethanol-supplemented diet, and diethylnitrosamine [99–
103]. Under a chronic obesogenic diet, FGF21-deficient
mice developed a spectrum of progressive fatty liver
disease, including simple hepatosteatosis to NASH,
fibrosis, and HCC, which is the most lethal complication
of this disorder. These findings highlight the role of FGF21
metabolic axis as a defensive barrier for the deleterious
stress damage caused by metabolic disorders in the liver
[104]. Current clinical trials with FGF21 analogs show
promising efficacy against NAFLD, NASH, and fibrosis
without noticeable adverse side effects [73].
Acting onWATand BAT, the FGF21 axis drives an array

of catabolic effects, including insulin-independent glucose
uptake, lipid droplet expansion inhibition, lipolysis, fatty
acid oxidation, white adipocyte beigeing, and thermogenic
dissipation of energy [79,105,106]. This route of action has
been proposed as a major endocrine axis of FGF21 for
insulin sensitization; lowering of systemic glucose,
triacylglycerol, and LDL; fighting against obesity, dia-
betes, fatty liver diseases, hyperlipidemia, and associated
comorbidities; and achieving metabolic health [2,73,
74,107]. Some of these effects are likely mediated by
adipokines, such as CCL11 and adiponectin, as shown in
mice [108,109]. In cold-induced nonshivering thermogen-
esis or exercise stress condition, BAT also becomes a
source of endocrine FGF21 in a β-adrenergic- and cAMP-
dependent manner, which in turn facilitates mitochondrial
genesis, oxidative capacity, uncoupling, and heat genera-
tion, leading to adaptation to cold conditions and core body
temperature maintenance [110–112].
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In line with the beneficial effects of FGF21 on
maintaining metabolic homeostasis during diverse adverse
conditions, pharmacological FGF21 markedly extends the
lifespan of mice by blunting the growth hormone/insulin-
like growth factor-1 signaling pathway in the liver without
reducing food intake or affecting longevity-associated
markers of NAD+ metabolism, AMP kinase, and mTOR
signaling pathways [113]. The thymus functions in
producing new T cells for the immune system, but with
age, it becomes fatty and loses the ability to produce a
sufficient amount of new T cells, which is an important
cause of increased risks of infections, obesity, diabetes, and
certain cancer types, leading to reduced lifespan in the
elderly people. The FGF21 level in thymic epithelial cells
is several folds higher than that in the liver. The high level
of FGF21 is proposed to protect thymus from the age-
related fatty degeneration and to increase the production of
new T cells to bolster immune function, thereby lowering
the incidence of diseases and promoting longevity [114].
The acinar cell compartment in the pancreas expresses

the highest levels of FGF21 constitutively among tissues,
but contributes little to the circulation [56,115]. Acinar
cells appear to be both the dominant source and target (via
FGFR1-KLB complex) of pancreatic FGF21. The high
levels of FGF21 is proposed to act as an exocrine pancreas
secretagogue to stimulate pancreatic digestive enzyme
secretion and pancreatic juice flow to the intestine, thereby
relieving potential self-digestion caused proteostasis stress
and protecting pancreas from pancreatitis, including but
not limited to those caused by high-fat diet, pancreatic
toxins, and alcoholism [116]. Although islets express
significantly lower amounts of FGF21, acinar cell derived
or endocrine FGF21 helps protect against fatty pancreas,
high-fat diet induced islet hyperplasia, and inflammatory
damage [117–119]. Demyelination in the CNS can cause
severe neurological deficits, such as multiple sclerosis and
neurological dysfunction. Pancreatic FGF21 acts on
oligodendrocyte precursor cells to promote the remyelina-
tion process, leading to better recovery of neurological
functions in mice [120].

Fig. 3 FGF21 metabolic axis. The liver is the major organ of origin of endocrine FGF21 in response to a broad spectrum of stress conditions. The
hepatic and pharmacological FGF21 drive multiple signal axes in multiple tissues/organs, resulting in multifaceted beneficiary metabolic effects,
including promoting (green arrow) glucose, lipid, and energy homeostasis; offsetting metabolic derangements; and preventing (red long-tailed “T”
sign) metaflammation, inflammatory tissue damage, and tissue-specific pathogenesis, including obesity, type 2 diabetes, fatty liver disease, metabolic
syndrome, and associated comorbidities. FAA: free fatty acids. Black semicircular arrows indicate possibility of paracrine mode of FGF21 within local
tissue environment.
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Exposure to alcohol or sugar induces hepatic FGF21
through ChREBP, which then acts on the hypothalamus
reward pathway to suppress the desire for sugar and
alcohol in favor of drinking water in mice depending on the
β-adrenergic circuit [97,98,121,122]. This finding may
represent a new hydration pathway that is independent of
the classical renin-angiotensin-aldosterone thirsty pathway
in the kidney in response to nutritional stress, suggesting a
previously underappreciated association of water intake to
metabolism through the FGF21 metabolic axis. A human
rs838133 allele in FGF21 is associated with higher alcohol
and sugar intake and higher blood pressure and waist-hip
ratio, with lower total body-fat percentage [123]. Compar-
ison of the genomes of more than 105 000 light and heavy
social drinkers also identifies a variation in the rs11940694
locus of the KLB gene in association with the aversion for
alcohol [124]. Neuronal cell stress reaction, such as those
caused by disturbances in the mitochondria and endoplas-
mic reticulum (ER), is an important factor in the
development of neurodegenerative diseases. Studies
found that the integrated stress response induces neuronal
FGF21, which presumably serves to attenuate stress and
neural damage [125].
In addition to the liver, pancreas, and adipose tissues,

cardiac muscle produces FGF21 in response to cardiac
stress, cardio exercise, and endurance training [126,127],
which then speeds up glucose uptake, lipid catabolism, and
energy metabolism, and protects against cardiovascular
stress damage, apoptosis, and heart dysfunctions, such as
cardiac hypertrophy, myopathy, steatosis, ischemic infarc-
tion, and atherosclerosis [128–132]. Through a multiorgan
crosstalk, hepatic FGF21 drives the expression of
angiotensin-converting enzyme 2 in adipocytes and renal
cells, which hydrolyzes angiotensin II to active vasodilator
angiotensin-(1-7) in the renin-angiotensin system, thereby
alleviating angiotensin II-associated hypertension and
reversing vascular damage [133]. Skeletal muscle under
the bouts of exercise or stress, such as mitochondrial
myopathies, also induces FGF21 expression [134–136]. In
turn, FGF21 acts on muscle and adipose tissue to reduce
lipid load by increasing lipolysis, fatty acid utilization,
energy expenditure, and insulin sensitivity, thereby
preventing diet-induced obesity and insulin resistance
[137–140].
Hepatic FGF21 acts on the paraventricular nucleus in the

hypothalamus to drive the release of corticotropin-releas-
ing factor, which then stimulates the involuntary sympa-
thetic nerve activity. This leads to the activation of brown
adipose tissue by upregulaing UCP1 and increases of
glucose uptake, lipolysis, mitochondrial oxidation of fatty
acids and glucose, body heat generation, and weight loss
[141,142]. The increase in corticotropin-releasing factor
levels may also stimulate the pituitary gland to release
adrenocorticotrophic hormone and subsequent corticoster-

one production in adrenal cortex, leading to increased
hepatic gluconeogenesis during prolonged fasting to
prevent hypoglycemia [143]. Hepatic FGF21 acts on the
suprachiasmatic nucleus (SCN) in the hypothalamus to
suppress the vasopressin-kisspeptin and gonadotropin-
releasing hormone signaling cascade, which then inhibit
the proestrus surge in luteinizing hormone from anterior
pituitary gland, thereby contributing to female infertility in
response to nutritional challenge, such as prolonged
starvation [144]. The SCN action of FGF21 may also
alter circadian behavior [145]. By increasing neuropeptide
Y levels and Y1 receptor activation, the hypothalamus
action of FGF21 may decrease locomotive activity,
metabolic rate, and body temperature, leading to torpor
under nutrition limitation [146]. FGF21 may also act on the
hippocampus to decrease reactive oxygen species and
inflammatory damage, thus decreasing brain cell damage
and improving cognition [147,148].
The endocrine FGF21 axes as well as the paracrine

FGF21 axes within the local tissue compartments have
been shown in many tissues and organs to counteract stress
response and attenuate stress-ensued inflammation and
inflammatory damage [7,104,117]. Therefore, FGF21 is
not only a stress-responsive or -induced factor but also an
anti-stress and anti-inflammatory factor. The stress-off-
setting effects, in particular the anti-inflammatory activ-
ities, can be attributed to the metabolic effects of FGF21
axes that prevent fatty degeneration, gluco-lipotoxicity,
oxidative and ER stress, and inflammatory and immune
cell infiltration. These metabolic activities may be
mediated in part through efficient and durable systemic
and local glycemic and lipidemic control, improvement of
insulin sensitivity, and promotion of lipid catabolism
(lipolysis and fatty acid oxidation), adipose beigeing, and
futile energy expenditure in adipose tissues, local adipo-
cytes, and brain in both UCP1-dependent and adrenergic
sympathetic nervous system-dependent mechanisms
[79,105,106,141,149,150]. As a result, FGF21 effectively
reverses hepatic steatosis in obese mice and clinical obese
patients [73,105,151]. Furthermore, the pharmacological
FGF21 analogs and FGFR1-KLB agonists have been
shown to directly improve the spectrum of adverse
components of metabolic syndrome, including central
obesity, insulin resistance, fasting hyperglycemia, dyslipi-
demia, systemic hypertension, and fatty liver, which are
the major risk factors for cardiovascular disease (CVD),
type 2 diabetes mellitus, chronic kidney disease (CKD),
and all-cause mortality [2,7,73,74,107]. The FGF21 axes
suppress atherosclerotic plaque by reducing hypercholes-
terolemia, oxidative stress, and smooth muscle cell
proliferation via adiponectin-dependent and adiponectin-
independent mechanisms [129]. FGF21-deficient mice
developed significant islet hyperplasia and periductal
lymphocytic inflammation upon chronic challenge of an
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obesogenic high-fat diet, indicating a protective role of
FGF21 in compensatory islet hyperplasia and pancreatic
inflammation associated with obesity [117,152]. FGF21
directly suppresses triglyceride levels and lipid accumula-
tion in kidney tissues, thereby reducing lipotoxicity,
oxidative stress, inflammation, glomerular abnormalities,
fibrotic renal injury in diabetic nephropathy, while
deficiency of FGF21 aggravates these conditions
[153,154], indicating a defensive role of FGF21 against
kidney pathogenesis associated with obesity and diabetes.
The anti-stress and anti-inflammatory effects of FGF21

may be also attributable to its direct action on non-
metabolic cells and non-metabolic activities. FGF21
directly inhibits cardiomyocyte apoptosis, oxidative stress,
myocardial injury, thereby reducing the risk of pathologi-
cal cardiac remodeling and dysfunction, cardiac hyper-
trophy, myocardial ischemia, and heart failure in ischemic
heart tissue and diabetic cardiomyopathy [130,155].
FGF21 protects the pancreas from caerulein- and L-
arginine-induced pancreatitis, acinar cell injury, and
fibrosis in mice [118,119,156]. FGF21 acts directly on
renal mesangial cells to reduce glucose reabsorption and
prevent hyperglycemia-induced fibrogenesis in db/dbmice
[157,158]. Interestingly, recent evidence supports that
FGF21 can directly act on inflammatory and immune cells
to attenuate inflammation and inflammatory damage.
FGF21 activates THP-1-derived macrophages to promote
cholesterol efflux, oxidized low-density lipoprotein
(oxLDL) uptake, and foam cell formation and inhibits
macrophage inflammatory capacity through the Nrf2
pathway [156,159,160]. Adipose tissue is an endocrine
organ and plays an active role in the inflammation in
obesity that can favor CVD and CKD progression by
inducing a chronic and low-grade inflammation via
secreted proinflammatory adipokines and cytokines. Stu-
dies in diet-induced obesity and pancreatitis models
indicate that FGF21 promotes anti-inflammatory macro-
phage polarization in adipose depots and pancreas, WAT
browning, and insulin sensitivity, thereby effectively
preventing adipose tissues from adapting proinflammatory
profiles and the pancreas from inflammatory fibrosis
[109,156,159,161]. Interestingly, FGF21 was found highly
expressed in neutrophils and monocytes among circulating
leukocytes and stimulates phagocytosis, glucose uptake,
and reactive oxygen species production in a NADPH
oxidase-dependent manner in the neutrophil-like HL-60
and monocytic THP-1 cells [162–164]. In the type II
collagen-induced arthritis mouse model, FGF21 acts on the
spleen to reduce inflammatory IL-17, TNF-α, IL-1β, IL-6,
IL-8, and MMP3 and the number of splenic TH17 cells,
thereby alleviating arthritis severity [165]. These studies
highlight the potential mediator role of FGF21 in innate
immunity and inflammatory disorders. The direct impact of
FGF21 on the function of inflammatory and immune cells
and associated health consequences is yet to be validated.

FGF23 metabolic axis

FGF23 is a key hormonal regulator of phosphate, vitamin
D, and calcium metabolism, and its metabolic axes drive a
complex interorgan crosstalk network for bone health and
systemic mineral balance (Fig. 4) [2,61,166–168]. Osteo-
blastic cells in osseous tissue are the major source of
FGF23 in response to elevated calcitriol, increased
phosphate and calcium burdens, increased parathyroid
hormone, iron and magnesium loss, and active bone
remodeling in a vitamin D receptor dependent mechanism.
Acting on kidneys that express the FGFR1-KL complex,
the FGF23 signal axis represses the expression of NPT2a
and NPT2c, the sodium-phosphate cotransporters in the
proximal tubule, thereby decreasing reabsorption and
increasing secretion of phosphate in renal brush border
membrane vesicles. Another important function of this
bone to kidney FGF23 signal axis is suppressing the
expression of 25-hydroxyvitamin D3-1-α-hydroxylase and
stimulating the expression of 1,25-dihydroxyvitamin D(3)
24-hydroxylase, thereby inhibiting the production of active
calcitriol in renal proximal tubules, which subsequently
inhibits the expression of NPT2b and phosphate absorption
in the apical brush border of small intestine. The bone
FGF23 acts on the basolateral FGFR1-KL complex in the
renal distal tubules to increase the intracellular transport of
fully glycosylated TRPV5 from the Golgi apparatus to the
plasma membrane, thereby stimulating calcium reabsorp-
tion in distal renal tubules and preventing calcium loss
[169]. These FGF23-associated axes also directly increase
the membrane abundance of the Na+:Cl– cotransporter
NCC in distal renal tubules, and thus, increase sodium
reabsorption, plasma volume, and blood pressure [170].
This change may be a new cause of high blood pressure
and heart disease under the modern processed phosphate-
rich foods.
Bone FGF23 also acts on the parathyroid gland to inhibit

the production and secretion of parathyroid hormone
(Fig. 4) [171], which then reduces serum calcium through
its effects on the bone, kidney, and intestine. High serum
FGF23 levels in patients with CKD decrease calcitriol,
thereby contributing to the development of secondary
hyperparathyroidism, which has a crucial role in increasing
the levels of FGF23 because the parathyroid hormone
stimulates FGF23 expression.
Recent studies revealed the potential roles of the FGF23

axis in suppressing erythropoiesis in bone marrow.
Erythroid progenitor cells highly express FGF23 and
FGFR-KL, suggesting that they are both a source and a
target of FGF23. The loss of FGF23 or injection of an
FGF23-blocking peptide in mice results in increased
erythropoiesis, reduced erythroid cell apoptosis, and
increased renal and bone marrow erythropoietin (EPO)
expression with increased circulating EPO levels. On the
other hand, the increased EPO or acute blood loss increases
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FGF23 expression in the bone marrow with a concomitant
increase in serum FGF23 [172,173]. A recent study
suggests that FGF23 is involved in the association between
functional iron deficiency, increased EPO levels, and
death. The further elucidation of the role of the EPO-
FGF23 signaling axis in hereditary anemia and chronic
hemolytic diseases, CKD, and mineralization disorders
will add to the understanding of the pathophysiology of
these diseases and life expectancy and will inform new
treatment strategies for the diseases.
Current evidence indicates that FGF23 is more structu-

rally unique than FGF19 and 21 [5]. FGF23 contains a
conserved furin-sensitive 176RHTR179 cleavage site near
the C-terminus, which inactivates the intact FGF23 upon
cleavage, leading to signal attenuation. The biological
importance of this activity control mechanism is demon-
strated by point mutations (e.g., R176Q, R179Q, and
R179W) of this site, which results in cleavage-resistant
FGF23 and increased circulating levels of active FGF23, in
autosomal dominant hypophosphatemic and vitamin D-
deficient rickets characterized by renal phosphate wasting,
hypophosphatemia, rickets, osteomalacia, leg deformities,

short stature, bone pain, and dental abscesses [168,174,
175]. FGF23 levels are increased and may play important
roles in other hereditable and acquired phosphate wasting
disorders, including X-linked dominant hypophosphate-
mic rickets, autosomal recessive hypophosphatemic rick-
ets, hypophosphatemic rickets associated with McCune-
Albright syndrome/fibrous dysplasia of bone, and linear
sebaceous nevus syndrome [176,177]. The increased
FGF23 levels are also found in acquired phosphate wasting
disorders in some tumor types, such as the benign
mesenchymal neoplasm phosphaturic mesenchymal
tumor, causing tumor-induced osteomalacia, a paraneo-
plastic syndrome [168].
During post-translational modification, FGF23 is glyco-

sylated at Thr-178 in the cleavage site by GalNT3, which
facilitates its secretion and protects the protein from being
broken down, suggesting a novel posttranslational reg-
ulatory model of FGF23 involving competing O-glycosy-
lation and proteolytic processing to determine the level of
secreted active FGF23 [178]. The importance of this
glycosylation modification is demonstrated by inactivating
GalNT3 mutations that render FGF23 susceptible to

Fig. 4 FGF23 metabolic axis. The bone-derived FGF23 drives signal axes to promote (green arrows) the metabolic homeostasis of phosphate,
vitamin D, and calcium through a complex interorgan crosstalk network for bone health and systemic mineral balance. The bone to the kidney axis of
FGF23 is central to the metabolic roles of FGF23, which inhibits (red long-tailed “T” sign) the reabsorption of phosphate and the production of active
calcitriol in renal proximal tubules while increasing the calcium and sodium reabsorption in renal distal tubules. The bone to parathyroid axis of
FGF23 inhibits the production and secretion of parathyroid hormone that also plays critical roles in mineral and vitamin D balance.
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proteolysis [179,180], thereby reducing circulating intact
hormone levels and leading to autosomal recessive familial
tumoral calcinosis that manifests with hyperphosphatemic
and massive calcium deposits in the skin and subcutaneous
tissues throughout the body. Consistently, at least seven
mutations in the conserved backbone of FGF23, such as
S71G, M96T, S129F, and F157L, destabilize the tertiary
structure and render it susceptible to degradation, thereby
resulting in autosomal recessive familial tumoral calcinosis
with hyperphosphatemia [2,5,181–184].
Patients with CKD have increased serum levels of

phosphate as well as FGF23, which lead to increased
uptake of calcium by the kidneys, resulting in vascular
calcification. This explains the CVD complications, such
as cardiac hypertrophy and congestive heart failure, in
patients with CKD [185,186]. The inhibition of FGF23 or
its axis could be a strategy to bring CVD and vascular
calcification under control. The FGF23 level in patients
with CKD can even indicate their life expectancy. The
dysregulation of calcium levels can have an array of
serious health consequences. Chronic hypocalcemia can
potentially lead to heart failure, nervous system and muscle
disorders, and encephalopathy, while hypercalcemia can
increase the risk of kidney stones, cause muscle weakness,
and worsen psychological issues, such as dementia and
depression. This may explain some current observations
that people with high serum FGF23 can be at risk of
dementia, and that mice lacking FGF23 exhibit defective
learning and memory problems similar to those seen in
KL-deficient mice [187,188].

Conclusions and future perspectives

The three members of the metabolic FGFs, including
FGF19, 21, and 23, share a conserved core structure of β-
trefoil fold but diverge in functions from other mitogenic
members of the FGF family during evolution (Fig. 1).
These metabolic FGFs acquire specific structural elements
that endow them with abilities to function via an endocrine
mode and to bind new accessory receptors that have strict
expression patterns in metabolic tissues. Although meta-
bolic FGFs still signal through the transmembrane FGFR
tyrosine kinases as the mitogenic FGFs, these new
properties divert their functions to metabolic regulation.
As such, FGF19, 21, and 23 drive a wide range of diverse
metabolic axes that function in maintaining the home-
ostasis of bile acids, glucose, lipids, energy, and minerals;
offsetting detrimental metabolic derangements; and
achieving optimal metabolic health without an overt effect
on cell proliferation and population growth. In this sense,
each of the metabolic axes of FGF19, 21, and 23 stands
alone as a driver of specific metabolic effects with
important physiological functions and pathological con-
sequences. Therefore, these axes together constitute the

“FGFMetabolic Axis,”which is a new term that we start to
call hereafter, with broad-spectrum pathophysiological
roles and consequences on the quality of survival (Fig. 1).
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