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ABSTRACT Salmonella enterica is a Gram-negative human pathogen widely known
to cause food poisoning. Here, the genome of S. enterica phage Shelanagig is de-
scribed. Its 42,541-bp genome codes for 68 proteins, for which 33 were assigned a
predicted function. Shelanagig shares high similarity at the protein level with other
Salmonella phages.

The Gram-negative bacterium Salmonella enterica is a bacterial human pathogen,
causing illnesses such as gastroenteritis and typhoid fever (1). Outbreaks of S.

enterica typically lead to many deaths, have high monetary costs, and spread via
bacterial contamination of food products such as chicken or leafy greens. Phages that
target this pathogen may be used to decrease the prevalence of S. enterica outbreaks
through decontamination of food or food production facilities (2). Here, we report the
genome sequence of phage Shelanagig, which infects S. enterica.

Phage Shelanagig was isolated from cattle holding pen soil samples collected in
Michigan after processing as described by Xie et al. (3). The host, S. enterica serovar
Enteritidis, was cultured on tryptic soy broth or agar (Difco) at 37°C with aeration. Phage
were propagated using the soft agar overlay method (4). Phage samples were stained
with 2% (wt/vol) uranyl acetate and viewed using transmission electron microscopy at
the Texas A&M Microscopy and Imaging Center to ascertain morphology (5). The
Shelanagig genome was purified by the shotgun library preparation protocol modifi-
cation of the Promega Wizard DNA clean-up system (6). Illumina sequencing libraries
were prepared with their TruSeq Nano low-throughput kit. The sequencing occurred by
v2 500-cycle chemistry on an Illumina MiSeq platform with paired-end 250-bp reads.
The 162,861 total reads in the index containing the phage were controlled for quality
using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Based on
that, the reads were trimmed with the FASTX-Toolkit v0.0.14 (http://hannonlab.cshl
.edu/fastx_toolkit/). Assembly using SPAdes v3.5.0 yielded a contig with 74-fold cov-
erage (7). The contig was fully closed by PCR (forward primer, 5=-GCTCAAGACAGTGA
GCAGTAA-3=, and reverse primer, 5=-TTTACAGCCCATCTGTCGTG-3=) and Sanger se-
quencing. Genes were predicted with Glimmer v3.0 and MetaGeneAnnotator v1.0 (8, 9).
tRNA coding was probed with ARAGORN v2.36 (10). The presence of Rho-independent
terminators was predicted with TransTermHP v2.09 (11). Gene functions were then
predicted using domain searching with InterProScan v5.22-61 and comparison via
BLAST v2.2.31 to the NCBI nonredundant, UniProtKB Swiss-Prot, and TrEMBL databases
using a 0.001 cutoff for the maximum expectation value (12–14). As needed, TMHMM
v2.0 results were also inspected (15). Full-length nucleotide sequence similarity was
calculated using progressiveMauve v2.4.0 (16). All annotation tools are hosted in the
Galaxy and Web Apollo instances at the Center for Phage Technology (https://cpt.tamu
.edu/galaxy-pub) (17, 18). Unless otherwise stated, all tools were executed using default
parameters.

Shelanagig is a siphophage with a genome of 42,541 bp and 49.8% G�C content.
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It has 68 protein-coding genes on both strands, 33 of which have predicted functions,
and the coding density is 94.1%. The phage contains no tRNA genes. The program
PhageTerm predicts a headful packaging mechanism (19). While at the nucleotide level,
Shelanagig has the highest identity to Salmonella phages ST3 (GenBank accession
number MF001364) and ST1 (GenBank accession number MF001366), at 84.92% and
84.90% similarity, respectively, Shelanagig shares 59 proteins with Salmonella phages
SETP7 (GenBank accession number KF562865), wksl3 (GenBank accession number
JX202565), and BPS11Q3 (GenBank accession number KX405002). Interestingly, Shel-
anagig contains the slippery sequence needed to produce a frameshifted version of the
tail assembly chaperone, as characterized in Escherichia phage lambda G and GT (20).

Data availability. The genome sequence and associated data for phage Shelanagig
were deposited under GenBank accession number MK931446, BioProject accession
number PRJNA222858, SRA accession number SRR8869227, and BioSample accession
number SAMN11360386.
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