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Congenital malformations frequently involve either skeletal, smooth or cardiac tissues.

When large parts of those tissues are damaged, the repair of the malformations is

challenged by the fact that so much autologous tissue is missing. Current treatments

require the use of prostheses or other therapies and are associated with a significant

morbidity and mortality. Nonetheless, affected children have generally good survival rates

and mostly normal schooling. As such, new therapeutic modalities need to represent

significant improvements with clear safety profiles. Regenerative medicine and tissue

engineering technologies have the potential to dramatically improve the treatment of

any disease or disorder involving a lack of viable tissue. With respect to congenital soft

tissue anomalies, the development of, for example, implantable muscle constructs would

provide not only the usual desired elasticity and contractile proprieties, but should also be

able to grow with the fetus and/or in the postnatal life. Such an approach would eliminate

the need for multiple surgeries. However, the more widespread clinical applications of

regenerative medicine and tissue engineering technologies require identification of the

optimal indications, as well as further elucidation of the precise mechanisms and best

methods (cells, scaffolds/biomaterials) for achieving large functional tissue regeneration

in those clinical indications. In short, despite some amazing scientific progress, significant

safety and efficacy hurdles remain. However, the rapid preclinical advances in the field

bode well for future applications. As such, translational researchers and clinicians alike

need be informed and prepared to utilize these new techniques for the benefit of their

patients, as soon as they are available. To this end, we review herein, the clinical need(s),

potential applications, and the relevant preclinical studies that are currently guiding the

field toward novel therapeutics.

Keywords: skeletal muscle, tissue engineering, stem cells, biomaterials, regenerative medicine, congenital

abnormalities, functional regeneration, animal models

Introduction

The majority of children affected by congenital malformations have a defect involving either skele-
tal, smooth or cardiac tissues. When large parts of those tissues are damaged, the repair of the
malformations can be often challenged by the fact that autologous tissue is missing (de Coppi,
2013). Major cardiac anomalies, bladder exstrophy, omphaloceles, diaphragmatic hernia or long
gap oesophageal atresia are only some of the situations in which we have to use prostheses or adopt
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solutions associated with a significant degree of morbidity and
mortality. Since these children have, overall, good survival rates
and mostly normal schooling, it is important to avoid using solu-
tions that are not optimal, as this may limit their options in the
future. Ideally, besides the usual elasticity and contractility pro-
prieties, the implanted muscle, in contrast to implantation in
post-adolescent individuals, should be able to grow with the fetus
and/or into the postnatal life. To avoid a planned re-do surgery,
absorbable materials should therefore be considered.

One classical example is congenital diaphragmatic hernia.
Fetuses diagnosed with this malformation mostly receive a syn-
thetic prosthesis at birth which allows the repair of the diaphrag-
matic defect. However, this patch will neither growwith the child,
nor integrate with the native tissue, so there’s more chance of
muscle contraction with possible scoliosis, hernia recurrence or
patch infections resulting in a poor quality of life for the child and
his or her family (de Coppi and Deprest, 2012). For all these rea-
sons many surgeons dealing with congenital malformations have
been interested in tissue regeneration (Grikscheit et al., 2003;
Atala et al., 2006; Kunisaki et al., 2006).

The possibility of making new tissue in vitro would indeed
completely change the way we treat these children and transform
their lives. The recent progress in tissue engineering (TE) and
regenerative medicine (RM) has been possible due to improved
understanding and utilization of the stem cells and biomaterials
that are cornerstones for this field of medical science. Due their
overt importance to the more widespread clinical applications of
TE and RM technologies, both will be considered herein. We will
begin with consideration of stem cells.

Stem Cells for TE and RM Applications

Stem cells have developmental potentials varying from the totipo-
tency of cells derived from the first few divisions of the fertil-
ized egg to the unipotency of somatic cells present in peripheral
tissue (Thomson et al., 1998; Pittenger et al., 1999). To regen-
erate large amounts of tissues, pluripotent cells would be ideal
because they can be expanded and are able to generate any tissue
(Thomson et al., 1998). However, they are still limited in their
clinical use because, besides ethical concerns and immunogenic-
ity, which have been partially overcome with the discovery of
induced pluripotent stem (iPS) cells, they are so powerful that
they can be tumorigenic (Takahashi and Yamanaka, 2006). On
the other side we have multipotent cells, which are limited to the
generation of tissues within the same germ layer but they are safer
and indeed they have already been adopted to correct some of
these malformations (Pittenger et al., 1999; Elliott et al., 2012).

Embryonic stem cells would be ideally positioned to build
muscle tissues for children with congenital malformations
(Thomson et al., 1998). However, besides their tumorigenic
potential and the ethical issues, immunosuppressive treatment
should also be adopted to avoid their rejection by the trans-
planted patient. It is believed that embryonic stem cells are less
immunogenic, but this is only true if you consider them prior
to differentiation. Once they are terminally differentiated and
express all the major histocompatibility complexes, they would
be rejected if immunosuppression therapies were not adopted.
ES cells have been demonstrated to differentiate reliably to

cardiomyocytes (Burridge et al., 2012), which have been success-
fully engineered to obtained cardiac microtissues (Thavandiran
et al., 2013). However, the fully formed heart is composed of
diverse cell lineages including myocytes, endothelial cells, vascu-
lar smooth muscle cells (SMC), and fibroblasts that derive from
distinct subsets of mesoderm during embryonic development. As
a consequence engineering of functional cardiac muscle for clin-
ical application is still a major challenge. In this regard, ES cells
can also be differentiated into distinct populations of SMC sub-
types under chemically defined conditions (Cheung et al., 2012).
As such, their ability to derive an unlimited supply of human
cell types, including SMCs, could further accelerate applications
of stem cells to regenerative medicine as well as disease model-
ing (e.g., patient-specific stem cells for exploring mechanisms of
disease) (Cheung et al., 2014). PAX7-positive skeletal muscle pro-
genitors can also be obtained from human and mouse ES cells
opening the possibility of engineering autologous skeletal muscle
in large quantity through the direct reprogramming of cells from
children born with a malformation (Shelton et al., 2014).

On the opposite side of the picture there are the adult stem
cells (Pittenger et al., 1999). Somatic stem cells can be expanded
from different postnatal tissues and could be useful for ther-
apy particularly in neonates and children where they are gen-
erally more abundant and probably more potent than in adults
(Fulle et al., 2012). Classically the bone marrow contains, besides
haematopoietic stem cells, mesenchymal stem cells, but somatic
cells with different potentials can also be isolated and grown in
good quantities. These cells can be used in an autologous set-
ting avoiding immunogenic problems. As far as we know they are
not tumorigenic, and their use does not raise any ethical issues
(Bianco et al., 2008).

Proof of Concept for Clinical Applicability
of RM

As an example of the potential of TE and RM technologies, 15
years ago a cover of Nature Biotechnology celebrated the first arti-
ficial bladder taking shape in dogs (Oberpenning et al., 1999).
In those studies, the whole dome of the bladder was success-
fully replaced using smooth muscle and urothelial cells expanded
from the recipient and this established the basis for treating the
first patients affected by bladder exstrophy. The group, coordi-
nated by Dr. Atala, described in 2006 in The Lancet a pilot study
of seven patients who had received implanted tissue engineered
bladders from 1998 onwards (Atala et al., 2006). Similar to the
animal model, they reported the use of either collagen scaffolds
seeded with cells or a combined polyglycolic acid (PGA)-collagen
scaffold seeded with cells for bladder replacement. These engi-
neered tissues were implanted with or without omental coverage.
Patients reconstructed with engineered bladder tissue created
with cell-seeded PGA-collagen scaffolds and omental coverage
showed increased compliance, decreased end-filling pressures,
increased capacities and longer dry periods over time (Atala et al.,
2006). More recently, the same group showed that in 5 boys who
had urethral defects, tubularised urethras could be engineered
and remain functional in a clinical setting for up to 6 years (Raya-
Rivera et al., 2011). A tissue biopsy was taken from each patient,
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and the muscle and epithelial cells were expanded and seeded
onto tubularised polyglycolic acid:poly(lactide-coglycolide acid)
scaffolds. Patients (range 10–14 years old), who had surgery
between March 2004, and July 2007 were followed up until
July 2010 showing maintenance of normal function and tissue
architecture after biopsy (Raya-Rivera et al., 2011). However, as
recently noted by Andersson (2014), despite encouraging proof
of concept results, the more widespread applications of the blad-
der repair technologies awaits further preclinical investigation.
Another example of the utility of somatic cells for TE and RM
applications derives from the use of adult cardiomyocytes. In
contrast to what was initially thought, cardiomyocytes can also
be expanded from adult tissue and they have been used in in
patients with ischaemic cardiomyopathy (Bolli et al., 2011). How-
ever, their numbers are limited and expansion may not be effi-
cient enough to generate sufficient cell populations for engi-
neering functional tissue. In addition, satellite cells, the skeletal
muscle precursors, can be easily isolated and expanded. In fact,
satellite cells have been used for cellular therapy and tissue engi-
neering purposes in both synthetic and decellularised polymers
in small and large animal models. Freshly isolated SCs showed
a higher regenerative potential, with implemented proliferation
and migration. They retain a high myogenic potential in vitro
and more interestingly in vivo during the first few passages but
they are unable to be expanded for longer in culture (Rossi et al.,
2010). Within the muscle there are at least two other cell types,
muscle associated but not somite-derived, that present a high
myogenic potential. The mesoangioblasts, vessel-associated stem
cells, express early endothelial markers, such as Flk-1, CD34,
stem cell antigen 1 and VE (vascular-endothelial)-cadherin, but
not late markers, like Von Willebrand factor (Cossu and Bianco,
2003). They can be expanded for several passages, are not tumori-
genic and, even if they do not express the transcription factors
Myf5 and MyoD, they can be easily induced toward myogen-
esis upon co-culture with myoblasts. Similarly, pericytes have
also shownmyogenic potential. They are, as the mesoangioblasts,
vessel-associated progenitors, they do not express endothelial
markers but they do express NG2 proteoglycan and alkaline
phosphatase (ALP). Unlike the canonical myogenic precursors
(SCs), pericyte-derived cells express myogenic markers only in
differentiated myotubes, which they form spontaneously with
high efficiency (Mitchell et al., 2010).

Given these initial successes and the possibilities they portend,
why don’t we always use adult stem cells? First, because the num-
bers of cells are small and they decrease with age. Second, these
cells are multipotent not pluripotent, so they cannot give rise to
all lineages. Finally, they can be exposed to virus and toxins dur-
ing their lifetime. (Pittenger et al., 1999). That means that we
have cells in our body that continuously accumulate deletions and
mutations (Bianco et al., 2001). Our immune system normally
destroys them, however if they are replicated in large numbers in
the laboratory and transplanted back in the recipient they may be
able to fight against our immune system and generate a tumor.

In 2006 a seminal paper published by Shinya Yamanaka
described how some of the limitations of both embryonic and
adult stem cells might be overcome (Takahashi and Yamanaka,
2006). His group found, first in mice and subsequently in

humans, that pluripotent stem cells could be generated from
their adult counterpart using defined transcription factors (Taka-
hashi et al., 2007). The findings were confirmed by independent
groups and it is now possible to derive induced pluripotent stem
(iPS) cells using different methodologies (Zhao and Daley, 2008).
iPS cells, when compared to ES cells, eliminate the immuno-
genic problem, so you can use them in an autologous setting,
and they also reduce the ethical concerns. However, iPS are still
tumorogenic and their clinical use has still not been adopted.

Amniotic fluid stem (AFS) cells should also be considered.
They are distinct both from adult and embryonic stem cells, can
be used in an autologous setting, their use is not controversial and
they are not tumorogenic (Pozzobon et al., 2010). Moreover, they
are more naïve than adult stem cells and can be superior both in
terms of proliferation and differentiation. Isolation of stem cells
from amniotic fluid is easy to perform, there’s a low risk for the
mother and the fetus and it is a widely accepted method for pre-
natal diagnosis. So, AFS cells are ideal for pre-natal and neo natal
applications (Moschidou et al., 2013a). AFS cells, are immunose-
lected by the stem cell factor receptor c-kit (CD117) and give rise
to lineages representing the three germ layers both in vitro and in
vivo (de Coppi et al., 2007a). The cells express markers of all three
germ layers, and endogenously express the important transcrip-
tion factor OCT4, whichmaintains the pluripotency of ESCs. AFS
cells are easily reprogrammed not only by DNA-integrating sys-
tems (Wolfrum et al., 2010), but also without any genetic manip-
ulation by means of the histone deacetylase inhibitor, valproic
acid (VPA) (Moschidou et al., 2012, 2013b). Both human and
rodent AFS cells display multi-lineage potential (Ditadi et al.,
2009) and can exert a beneficial paracrine action in models of
bladder (de Coppi et al., 2007b), heart (Bollini et al., 2011), kidney
(Sedrakyan et al., 2012), and lung (Grisafi et al., 2013) disease.

AFS cells could also have a role for In utero stem cell ther-
apy (IUSCT) (Surbek et al., 2008). IUSCT in humans have been
successful only for the treatment of congenital severe combined
immunodeficiency (SCID). (Tiblad and Westgren, 2008) Rejec-
tion of allogeneic cells in utero could be at least partially explained
by the migration of the in utero injected cells into maternal circu-
lation and mounting of a rejection response, which could dimin-
ish the engraftment. This is most likely due in mice to activated
maternal T cells which can cross the placenta in mice and destroy
engrafted allogeneic cells (Nijagal et al., 2011). In order to avoid
this response, stem cells matched to the mother could be used.
Alternatively, in monogenic disease, AFS cells derived from the
fetus could be used for therapy after genetic modification since
they would not trigger an immunogenic response from either the
fetus or the mother.

Regarding the application of AFS cells for the treatment of
acquired muscle conditions, we and others have tested various
disease models. In a mouse model of Spinal Muscular Atro-
phy with a muscular dystrophy appearance of the skeletal mus-
cle (HSA-Cre, SmnF7/F7 mice) receiving intravenous injection
of a small number of AFS cells were able to survive with dras-
tic improvement of their muscle force (Piccoli et al., 2012).
Histopathological evaluation of the treated animals revealed inte-
gration of AFS cells not only in the skeletal muscle fibers, but also
in the stem cell compartment of the muscle. Indeed secondary

Frontiers in Pharmacology | www.frontiersin.org 3 April 2015 | Volume 6 | Article 53

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Christ et al. Muscle tissue engineering and regeneration

transplants of satellite cells (SCs) derived from treated mice
indicated that AFS cells integrate into the muscle stem cell
compartment and have long-term muscle regeneration capac-
ity indistinguishable from that of wild-type-derived SC (Piccoli
et al., 2012).

AFS cells however, have not been used clinically yet. There-
fore, attempts to generate tissues or organs in the laboratory for
the correction of congenital malformations has only been tried
thus far using adult somatic cells.

Developing TE Strategies for the Fetus and
Newborn

As summarized above, there has been a lot of research directed
toward identifying cell source(s) with potential applications for
improving TE and RM technologies. Another critical component
of TE/RM approaches is the biomaterial component. Although,
as noted in a recent review (Wolf et al., 2014), biomateri-
als/scaffolds alone are being actively pursued both pre-clinically
and clinically for restoration of volumetric muscle loss (VML;
injuries of sufficient magnitude to result in permanent functional
and cosmetic deficits) injuries in adults, the focus in this review
will be on TE and RM solutions for the fetus/neonate. In addition,
several other excellent recent reviews are available that address
more general aspects of TE/RM for skeletal muscle repair (Rossi
et al., 2010; Juhas and Bursac, 2013; Mertens et al., 2014).

With respect to the explicit purpose of this report, any con-
templated TE implant for the fetus or neonate would need to
grow with the patient, we direct the remainder of this report to
consideration of biomaterials/scaffolds that are being designed
for the presence of a cellular component. This emphasis seems
especially applicable to the large volume muscle tissue replace-
ment required for correction of congenital anomalies in fetuses
and newborns, as discussed herein. In this scenario, the biomate-
rial serves as a cellular delivery vehicle that can provide structure
and appropriate environmental context and/or instructional cues
for improved regeneration. Recent research in this area has begun
to address the enormous possibilities this approach portends.

Biomaterials for Skeletal Muscle TE and
RM for the Fetus and Newborn

As noted in the discussion thus far, the vast majority of preclin-
ical studies conducted to date for skeletal muscle tissue repair—
that might eventually be applicable to fetal/neonatal tissue repair
and replacement—have used adult somatic cells, and in par-
ticular, the focus has been on myogenic progenitor cells (i.e.,
satellite cells, myoblasts, myotubes). This is true for studies con-
ducted both in vitro and in vivo. In that regard, much progress
has been made in engineering skeletal muscle since the seminal
work of Vandenburgh and colleagues on avian myocytes in 1988
(Vandenburgh et al., 1988). The pertinent literature in this area
is still actively growing. Below we provide a thorough, though
not exhaustive, review of the recent PubMed database related
to cell-based skeletal muscle tissue engineering approaches. The
goal was to review the literature and identify the major sources

of tested biomaterials/scaffolds for TE-based skeletal muscle
repair/replacement.

As noted in Table 1 and schematically depicted in Figure 1,
synthetic and naturally-derived biomaterials have been used with
similar frequency for TE purposes. Of the studies reviewed, a
naturally-derived biomaterial was used in roughly half of all stud-
ies conducted. Only a minority of studies have combined natural
and synthetic biomaterials as part of the preferred scaffold config-
uration. Also of note, roughly 1/3 of the studies reviewed (25/78)
have been conducted using C2C12 cells, which while more con-
venient to work with for a variety of reasons, lack clinical applica-
bility. Thus, the discussion below emphasizes the use of primary
cultures. So, how have these biomaterials been combined with
myogenic cells to yield TE skeletal muscle?

From an experimental perspective, three general approaches
to in vitro TE skeletal muscle have been utilized thus far: (1)
Cells embedded in a hydrogel, (2) Cells placed on or within a
more structured/patterned scaffold, and (3) Cells placed in cul-
ture and allowed to develop their own extracellularmatrix in vitro
(scaffold-free, but resulting in a naturally-derived extracellular
matrix). These cell-seeded scaffolds have been subjected to a vari-
ety of strategies including different culture media, incorporation
of mechanical forces and electrical cues, as well as incubation
times of distinct durations. The end result has been to pro-
duce myotubes and myofibers of varying lengths and diameters
in vitro. A host of histological, immunochemical and molecular
evaluations have been conducted to assess the phenotype of the
TE skeletal muscle produced. However, only ≈30% of all stud-
ies conducted (either in vitro or in vivo) actually evaluated the
contractile function of the resultant constructs (see Table 1 and
Figure 1). Because the functional status of TE skeletal muscle, at
all stages of the TE process, is critical to evaluating their potential
clinical applications and experimental utility (e.g., as a screening
tool for drugs in vitro), we will focus going forward on a discus-
sion of those studies that measured function, especially those that
did so in vivo or following implantation in vivo.

Characteristics of TE Skeletal Muscle In

Vitro

One school of thought for development of TE skeletal muscle for
in vivo implantation is to create constructs that are as similar to
native skeletal muscle as feasible prior to implantation. An intrin-
sic benefit of this approach is that these same technologies may
be applicable to drug screening for muscle toxins, as well as for
treatment of muscle diseases and disorders. Thus far, however,
all attempts to create TE skeletal muscle in vitro still result in a
relatively immature/neonatal muscle phenotype, with respect to
fiber diameter (generally <20µM) and functionality (the degree
of measured force following stimulation), as well as expression
of embryonic myosin isoforms. In fact, absolute forces for TE
skeletal muscle in vitro have typically ranged from as little as
≈1–30 µN (Borschel et al., 2004; Fujita et al., 2010), to 400–800
µN (Dennis and Kosnik, 2000; Dennis et al., 2001; Huang et al.,
2005; Borschel et al., 2006; Lam et al., 2009). The specific force,
when it has been measured (Dennis et al., 2001), has only been a
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TABLE 1 | Summary of literature on cell and biomaterial combinations used for tissue engineered skeletal muscle.

References Scaffold material Natural/Synthetic Cells and implantation model/site

Juhas and Bursac, 2014 Fibrin hydrogel Natural Rat Myoblasts, satellite cells

Juhas et al., 2014 Fibrin hydrogel Natural Rat Myoblasts (Murine SCI window)

Kikuchi et al., 2014 Collagen hydrogel Natural Myoblasts

Hosseinzadeh et al., 2014 PCL Synthetic Satellite cells

Fuoco et al., 2014 PEG hydrogel Synthetic Muscle-derived pericytes (Porcine SCI)

Ostrovidov et al., 2014 Gelatin, carbon nanotubes Synthetic, Natural C2C12 cell line

Cei et al., 2014 PLLA, PCL, PLGA films or scaffolds Synthetic Human myoblasts, fibroblasts

Corona et al., 2014 Bladder acellular matrix (BAM) Natural Rat myoblasts (TA defect)

Salimath and Garcia, 2014 PEG-maleimide hydrogel Synthetic C2C12 cell line

Wang et al., 2014 Alginate Synthetic Murine myoblasts (TA SCI)

VanDusen et al., 2014 Naturally-derived, scaffold-free ECM Natural Rat MPCs (TA defect implantation)

Ahadian et al., 2014 CNT/Methacrylated gelatin hydrogel Synthetic C2C12 cell line

Zhang et al., 2014 PLGA hexagonal patterned Synthetic C2C12 cell line

Ye et al., 2013 PGS Synthetic Human skeletal muscle, ECs (SCI and IPI)

Corona et al., 2013 Muscle ECM Natural Rat BM-derived Stem Cells (TA defect)

Wang et al., 2013 PLGA grooved films, RGD or YIGSR peptides Synthetic C2C12 cell line

Shah et al., 2013 Collagen coated glass fibers Synthetic, Natural Human muscle progenitor cells

Tamaki et al., 2013 3-D nerve-vascular gel patch Synthetic, Natural Murine muscle-derived cells

Martin et al., 2013 Fibrin hydrogel Natural Human MPCs

Jana et al., 2013 Chitosan Natural Murine MPCs

Guex et al., 2013 Poly(epsilon-caprolactone) Synthetic C2C12 cell line

Greco et al., 2013 PEDOT/PSS Synthetic C2C12 cell line

Du et al., 2013 Calcium alginate gel Synthetic Rat BM-MSCs (LPP; urethra defect)

Criswell et al., 2013 Bladder acellular matrix (BAM) Natural Murine ECs, MPCs, pericytes (SCI)

Bandyopadhyay et al., 2013 PLC sponge Synthetic Human myoblasts (SCI)

Williams et al., 2013 Naturally-derived, scaffold-free ECM Natural Rat MPCs (Hindlimb implantation)

Bayati et al., 2013 Polycaprolactone/polycarbonate-urethane Synthetic Human adipose-derived stem cells

Wang et al., 2012 Alginate, RGD peptides Synthetic Mouse myoblasts

Shah et al., 2014 Phosphate Glass Synthetic Human MPCs

Sengupta et al., 2012 2-D RGD-peptide micropatterned film Synthetic Human Myoblasts

Ku et al., 2012 PCL/PANi Synthetic C2C12 cell line

Fujie et al., 2012 PLL/PMMA microarray films, fibronectin Synthetic C2C12 cell line

Corona et al., 2012 Bladder acellular matrix (BAM) Natural Rat myoblasts (Rat LD defect)

Fernandes et al., 2012 Maltodextrin-derivative Synthetic C2C12 cell line (SCI)

Hinds et al., 2011 Fibrin hydrogel Natural Rat myoblasts

Sirivisoot and Harrison, 2011 Carbon nanotube/Polyurethane Synthetic C2C12 cell line

Page et al., 2011 Fibrin microthread Natural Human MPCs (Murine TA defect)

Ladd et al., 2011 PCL/collagen, PLLA/collagen Synthetic C2C12 cell line

Ker et al., 2011 Polystyrene fiber Synthetic C2C12 cell line

Machingal et al., 2011 Bladder acellular matrix (BAM) Natural Rat myoblasts (LD Defect)

Falco et al., 2011 EHD, EH, EH-PEG Synthetic Human myoblasts

Rossi et al., 2011 Hyaluronic acid-photoinitiator Synthetic Murine MPCs or satellite cells (TA defect)

Borselli et al., 2011 Alginate gel, RGD peptides Synthetic Murine myoblasts (Murine TA defect)

Yang et al., 2010 poly(β- amino esters)/DNA nanoparticles Synthetic Human MSCs, ESCs (Murine SCI)

Fujita et al., 2010 Magnetite-incorporated C2C12 constructs Synthetic C2C12 cell line

Merritt et al., 2010 Muscle-derived ECM Natural Rat MSCs (Gastrocnemius defect)

Ayele et al., 2010 Bovine tunica vaginalis Natural Rabbit myoblasts (abdominal wall defect)

Singh et al., 2010 pHEMA-gelatin cryogel Synthetic C2C12 cell line

Moon et al., 2008 Collagen acellular matrix Natural Human MPCs (SCI)

Kim et al., 2010 MPEG-PCL gel Synthetic Human ADSCs (SCI)

Stern et al., 2009 Muscle-derived extracellular matrix (M-ECM) Natural C2C12 cell line, rat myoblasts

(Continued)
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TABLE 1 | Continued

References Scaffold material Natural/Synthetic Cells and implantation model/site

Lam et al., 2009 PDMS, Fibrin gel Synthetic, Natural Rat satellite cells and myoblasts

Beier et al., 2009 Collagen-fibrin gels, collagen sponges Natural Rat myoblasts

Bian and Bursac, 2009 Fibrin/Collagen I gel Natural C2C12 cell line, rat myoblasts

Riboldi et al., 2008 DegraPol Synthetic C2C12 cell line

Stern-Straeter et al., 2008 Gelatin Natural Human myoblasts

Kroehne et al., 2008 Collagen sponge Natural C2C12 cell line (Murine TA defect)

Falco et al., 2008 EH Synthetic Rat myoblasts

Boldrin et al., 2008 PLGA Synthetic Human MPCs (Murine TA defect)

Matsumoto et al., 2007 Fibrin gel Natural C2C12 cell line

Boontheekul et al., 2007 Alginate gel/G4RGDSP peptide Synthetic C2C12 cell line

Yan et al., 2007 Collagen Natural Rat Satellite cells

Huang et al., 2006 PLLA Synthetic C2C12 cell line

Borschel et al., 2006 Fibrin Gel Natural Rat myoblasts

Hill et al., 2006 Alginate Synthetic Murine myoblasts

Larkin et al., 2006 Naturally-derived, scaffold-free ECM Natural Rat MPCs

Conconi et al., 2005 Muscle matrix Natural Rat myoblasts (Abdominal wall defect)

Shah et al., 2005 Phosphate glass Synthetic Human MPCs

Huang et al., 2005 Fibrin gel Natural Rat myoblasts

Riboldi et al., 2005 DegraPol Synthetic C2C12 cell line, human satellite cells

Borschel et al., 2004 Muscle-derived extracellular matrix (M-ECM) Natural C2C12 cell line

Kamelger et al., 2004 PGA, alginate, or hyaluronic acid gels Synthetic, natural Rat myoblasts (SCI)

Kim et al., 2003 Collagen gel Natural Rat myoblasts (Tongue defect)

Lai et al., 2003 Collagen gel Natural Rat myoblasts (Abdominal wall defect

Dennis et al., 2001 Naturally-derived, scaffold-free ECM Natural Rat, mouse MPCs, C2C12, 10T1/2

Dennis and Kosnik, 2000 Naturally-derived, scaffold-free ECM Natural Mouse MPCs

Saxena et al., 1999 PGA fiber mesh Synthetic Rat myoblasts

Mulder et al., 1998 Polyurethane thin films Synthetic Mouse G8 skeletal myoblasts cell line

Red lettering indicates functional studies were performed on TE constructs implanted in vivo (i.e., contraction of engineered/retrieved constructs were evaluated. Highlighted in yellow

are the engineered skeletal muscle tissues that were implanted, as well as the site and nature of implantation. Abbreviations: EH network: polymeric scaffolds (EH network) made

from the cyclic acetal monomer, 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl- 1,3-dioxane-2-ethanol diacrylate (EHD); PEG, polyethylene glycol; Poly-hydroxyethyl methacrylate (pHEMA)-

gelatin cryogel scaffold; MPEG–PCL, methoxy poly(ethylene glycol) poly(3-caprolactone); PDMS, polydimethylsiloxane; PGA, poly glycolic acid; PLGA, poly-lactic-glycolic acid; PLC,

L-lactide/epsilon-caprolactone copolymer; PLA, poly lactic acid; PLLA, poly (L-lactic acid); PLL, poly (L-Lysine); PMM, Poly (methyl methacrylate); PANi, polyaniline; PEDOT:PSS,

poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate); TA, tibialis anterior muscle; LD, latissimus dorsi muscle; SCI, subcutaneous implantation; MPCs, muscle progenitor/precursor

cells; ADSCs, adipose-derived stem cells; MSCs, mesenchymal stem cells; ECs, endothelial cells.

FIGURE 1 | Schematic summary of the main findings of literature review concerning tissue engineering approaches for muscle repair that combine

cells plus a scaffold.
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fraction (<10%) of what might be considered normal for a mam-
malian/rodent skeletal muscle (250 kN/M2). The most complete
functional analysis of force generation per se on TE skeletal mus-
cle is that of Dennis and colleagues (Dennis et al., 2001). More
recently, Larkin and colleagues (Williams et al., 2013; Mertens
et al., 2014; VanDusen et al., 2014), as well as Bursac and col-
leagues (Perniconi et al., 2011; Juhas and Bursac, 2013, 2014;
Juhas et al., 2014) have made significant improvements in both
the phenotype and function (contractility) of TE skeletal mus-
cle in vitro. Bursac, in particular, has shown that key aspects of
excitation-contraction coupling (calcium transients) are intact,
and moreover, that the constructs maintain the ability for myo-
genesis and regeneration in vitro. Both Bursac’s biomimetic scaf-
folds (Juhas et al., 2014), as well as the SMUs (skeletal muscle
units) of Larkin and colleagues (VanDusen et al., 2014) showed
significant improvements in phenotype and contractility, as well
as vascularization, following implantation in vivo for 1–4 weeks.
These latter observations clearly point to the importance of the
in vivo environment for enhanced maturation and function of
TE skeletal muscle, even when TE muscle begins to more closely
approximate native muscle with respect to excitation-contraction
coupling and force generation. However, when thinking about
this approach more broadly, it seems plausible that these more
immature phenotypes may not be as large a barrier to TE skele-
tal muscle repair and replacement in the fetus and newborn, as
they may be for skeletal muscle repair and replacement of VML
injuries in adult mammals.

Implantation of TE Skeletal Muscle

As detailed inTable 1, fewer than 36% (28/78) of all the studies we
reviewed involved implantation of TE skeletal muscle constructs
in vivo. These implantations were either subcutaneous or in a
model of VML injury. The remaining 16 (57%) in vivo implanta-
tions were placed in a model of VML injury to assess restoration
of muscle tissue volume and/or function. These are each briefly
described below.

In Situ Implantation of TE Skeletal Muscle

Of the 28 studies that included in vivo implantation, 12 (43%)
were implanted subcutaneously or otherwise in situ (e.g., rat
hindlimb), essentially using the body as a “bioreactor” to evaluate
the impact of the in vivo environment on TE muscle matura-
tion. However, only 3/12 studies actually evaluated contractile
function (Moon et al., 2008; Williams et al., 2013; Juhas et al.,
2014). Importantly, as alluded to above, in all of those (3) stud-
ies in vivo implantation was found to enhance muscle maturation
and function.

Skeletal Muscle TE for Improved
Regeneration of VML Defects In Vivo

The explicit goal of TE skeletal muscle for the fetus/neonate
is to develop strategies that can repair or regenerate congen-
ital anomalies. Importantly, the magnitude of muscle regen-
eration required in the VML rodent models is a reasonable

approximation of the requirement of any TE/RM strategy in
the fetus/neonate that would also be sufficient to accommodate
growth of the fetus/neonate. Thus, another approach to TE skele-
tal muscle for repair and replacement in vivo, is to develop con-
structs that mainly mature in vivo. In contrast to in vitro TE
approaches, many of these constructs lack the functional charac-
teristics of even immature skeletal skeletal muscle (i.e., contrac-
tion; see above for details), but contain various combinations of
satellite cells, myoblasts, myotubes, etc., on a cell delivery vehicle
that will subsequently leverage the existing in vivo environment
to provide the required key components for accelerated and/or
enhanced functional regeneration in the scenario of VML injury.

In this regard, 16 studies evaluated implantation of a TE mus-
cle construct in a VML defect in vivo (most commonly, surgically
created defects), where by definition, there was no improvement
expected in the absence of repair. In 75% of those studies func-
tional outcomes were evaluated. Interestingly, with respect to
surgically-created VML injuries to the legs (eight different stud-
ies), despite the distinct approaches that have been tried thus far
(implantation of fibers in a hydrogel (Rossi et al., 2011), implan-
tation of myoblasts on a fibrin microthread (Page et al., 2011),
scaffold implantation with subsequent stem cell injection (Mer-
ritt et al., 2010; Corona et al., 2013), implantation of SMUs (Van-
Dusen et al., 2014), bioreactor preconditioned myoblasts and
myotubes (Machingal et al., 2011; Corona et al., 2012, 2014) in
all cases, there were residual functional deficits, generally in the
20–30% range. Such an observation, albeit on a very small sample
size with significant differences inmodels, muscles andmeasures,
points out both the incredible promise of TE/RM for VML injury,
as well as the limitations of current technologies and the need for
standardized animal models and physiological measures.

Potential Clinical Applications to Neonates

We are not aware of any current or proposed clinical trial for
the use of an RM/TE technology in the treatment of a cranio-
facial VML injury in the fetus or newborn. However, our group
has been pursuing a tissue engineered muscle repair (TEMR)
technology for clinical applications to craniofacial reconstruc-
tion and repair. We have been using the rodent latissimus dorsi
(LD)muscle as amodel system. The LDmuscle has long-standing
clinical utility (surgical reconstruction, heart wrap, etc.,) and fur-
ther, is a relatively thin, sheet-like muscle that is morphologically
analogous to the muscles in the face (i.e., muscles of mastica-
tion). The TEMR constructs have been implanted in a surgically
created VML injury (i.e., excision of 50% of the LD muscle).
These constructs are created by seeding myoblasts on a bladder
acellular matrix (BAM), and subjecting the construct to cyclic
mechanical preconditioning (10% stretch) in a bioreactor prior to
implantation of a construct containing myoblasts and myotubes
in a unidirectionally organized monolayer into the LD VML
injury. As alluded to above, TEMR implantation is associated
with restoration of significant functional capacity (60–70% recov-
ery of contractile force) in athymic nude mice within 2 months of
implantation (Machingal et al., 2011; Corona et al., 2012). This
recovery appears to involve, at least to some extent, regeneration
of a portion of the muscle fibers that were surgically removed.
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Thus, building on the preclinical development of the TEMR
technology, Christ and colleagues at UT-Houston (Drs. Mark
Wong and Phil Freeman) have identified a craniofacial muscle-
only defect (secondary revision of cleft lip), which represents
a VML injury that might be effectively treated by this first
generation TEMR technology. The study that will be proposed
would be to address secondary revision of unilateral cleft lip
(UCL) in adults. If successful though, these studies could have
important implications for neonates as well. In fact, clefts of lip
and the palate are among the most common congenital defects
observed, with a frequency of about 1.7 per 1000 liveborn babies
(Mossey et al., 2009), in which the orbicularis oris muscle has
been shown to be deficient in both volume and function. In
addition, secondary repair of UCL is necessary in a significant
percentage of patients for correction of both functional and cos-
metic deformities. It is conceivable, that TE approaches, such as
the TEMR technology, may find utility for this clinical applica-
tion, as implantation will occur in a fresh surgical wound bed
in healthy subjects and is readily scalable to construct tested in
rodents. Discussions are currently ongoing with the US Federal
Drug Administration (FDA) to this end.

Summary

Clearly there is certainly much to be excited about with respect
to the potential applications of TE skeletal muscle for clinical

applications to the fetus/newborn. Nonetheless, there is much
work still to be done. In short, overall, too few functional assess-
ments are being performed, as is too little work in relevant
animal models. In addition, there are numerous biomaterials,
animal models, muscles, time points, cell types, etc., that have
been utilized thus far, and therefore, there is a need for stan-
dardization of animal models and functional measures to permit
more direct comparisons of different approaches in similar VML
injuries.

Conclusion

In conclusion regenerative medicine and tissue engineering
are changing the way we think about how we might 1
day treat patients born with serious congenital malforma-
tions involving muscle tissue. However, the science still needs
time to better understand mechanism of action(s) responsi-
ble for improved functional regeneration, as well as the best
cell(s) and biomaterial(s) and/or their combinations for maxi-
mizing the rate and magnitude of functional regeneration. In
addition, we still must determine the safety profile of stem
cell products and biomaterials prior to clinical applications.
Nonetheless, the advances are coming rapidly along, and we
need to be informed, educated and prepared to utilize these
techniques for the benefit of patients, as soon as they are
available.
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