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Abstract
Background: Nearly 50% of U.S. women of child-bearing age are overweight or obese, conditions linked to offspring
obesity and diabetes.

Methods: Utilizing the sheep, females were fed a highly palatable diet at two levels of overfeeding designed to induce
different levels of maternal body weight increase and adiposity at conception, and from conception to midgestation.
Fetal growth and organ development were then evaluated at midgestation in response to these two different levels of
overfeeding. Ewes were fed to achieve: 1) normal weight gain (control, C), 2) overweight (125% of National Research
Council [NRC] recommendations, OW125) or 3) obesity (150% of NRC recommendations, OB150) beginning 10 wks
prior to breeding and through midgestation. Body fat % and insulin sensitivity were assessed at three points during the

gestation (day 78).

development.

study: 1) diet initiation, 2) conception and 3) mid-gestation. Ewes were necropsied and fetuses recovered at mid-

Results: OB150 ewes had a higher % body fat than OW125 ewes prior to breeding (P = 0.03), but not at mid-gestation
(P =10.37). Insulin sensitivity decreased from diet initiation to mid-gestation (P = 0.04), and acute insulin response to
glucose tended to be greater in OB150 ewes than C ewes (P = 0.09) and was greater than in OW125 ewes (P = 0.02).
Fetal crown-rump length, thoracic and abdominal girths, and fetal perirenal fat were increased in the OW125 and
OB150 versus C ewes at mid-gestation. However, only fetal heart, pancreas, and liver weights, as well as lipid content of
fetal liver, were increased (P < 0.05) in OB150 ewes versus both C and OW125 ewes at midgestation.

Conclusions: These data demonstrate that different levels of overfeeding, resulting in differing levels of maternal
weight gain and adiposity prior to and during pregnancy, lead to differential effects on fetal overgrowth and organ

Background

Approximately two-thirds of U.S. adults are overweight
or obese [1]. Among women ages 20 to 44, approximately
25% are overweight and an additional 23% are obese [2].
With these rates of overweight/obesity and over four mil-
lion births in the U.S. annually, approximately two million
births are likely to occur from overweight or obese moth-
ers each year. Maternal obesity has been linked to an
increased rate of obese children and adolescents. When
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female offspring become overweight or obese, a self-per-
petuating cycle of obesity and its related health problems
is established [3-5]. In 2003-2004, rates of overweight
children ages 2-5 yrs were 14% and at ages 6-11 yrs were
19%, increased markedly from rates of approximately 5%
in similar age children reported in the 1970s [1].

Insulin resistance during pregnancy is a normal mater-
nal adaptation which is thought to help direct nutrients,
particularly glucose, to the feto-placental compartment.
As pregnancy progresses, it is observed that insulin
response to elevated blood glucose increases, while
peripheral insulin sensitivity (the ability of insulin to
accelerate glucose clearance from the blood into tissues)
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decreases [6,7]. Severe insulin resistance may result in
hyperinsulinemia, hyperglycemia and eventual gesta-
tional diabetes, conferring risk to both mother and fetus
[7-9].

Maternal obesity in pregnancy has been linked to
increased fat deposition in fetal sheep [10]. In humans,
neonates of obese mothers demonstrated increased adi-
posity, higher indices of insulin resistance (homeostasis
model assessment) and a significant correlation between
neonatal insulin resistance and maternal pre-pregnancy
body mass index (BMI) [11]. Greater adiposity and
altered glucose and insulin dynamics in fetal and neonatal
life are mechanisms which may predispose offspring of
obese mothers to obesity and metabolic disease later in
life.

Moreover, pre-pregnancy BMI is associated with
greater neonatal adiposity independent of birth weight or
maternal weight gain during pregnancy in women [12].
Childhood obesity heightens childhood risk of metabolic
syndrome, indicating that prevention of early onset obe-
sity may substantially reduce the prevalence of metabolic
syndrome in youth and their future risk of life-threaten-
ing conditions such as diabetes and cardiovascular dis-
ease [4].

The aim of this study was to examine the effects of two
levels of maternal overfeeding initiated prior to concep-
tion and continuing through mid-pregnancy on maternal
weight gain, % body fat, and glucose and insulin dynam-
ics, in association with changes in fetal growth and organ
development in the ewe.

Methods

Animals and dietary treatments

All methods were approved by the University of Wyo-
ming Animal Care and Use Committee. Twenty nullipa-
rous Western white-faced ewes (Rambouillet/Columbia
breeding) were randomly divided into three dietary
groups and fed a highly palatable diet at one of 3 levels: 1)
fed to maintain body weight (allowing 10-15% increase in
BW during early gestation; control, C; n = 7), 2) fed a
global nutrient excess of 125% of National Research
Council (NRC) recommendations [13] to become over-
weight (OW125, n = 8) or 3) fed a global nutrient excess
of 150% of NRC recommendations to become obese
(OB150, n = 5). Ewes were adapted from their previous
diet of mixed legume-grass hay to the experimental diet
(Table 1) at 100% of NRC recommendations over a one
week period. Experimental diets given at appropriate
treatment levels (C, OW125 and OW150) were then
applied beginning in September for 10 wks prior to
breeding and continued throughout the first half of gesta-
tion (February/March). Feed was provided to ewes once
daily at approximately 1600 hr. Ewes were grouped into
six adjacent pens in an open fronted pole barn. Each
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Table 1: Nutrient analysis of experimental diet

Mean SE
% Dry matter 88.1 1.01
% Crude protein 9.2 0.20
% Acid detergent fiber 14.9 135
% Neutral detergent fiber 25.2 2.03
% Total digestible nutrients 73.7 0.80

Results are reported as a percent of dry matter.

treatment group (C, OW125 and OB150) was divided
into two pens per dietary treatment to allow replication.
Feed amounts which were calculated based on body
weight (BW) according to NRC guidelines were adjusted
weekly to account for increases in BW. An intact ram
(white-faced, Rambouillet/Columbia breeding) fitted
with a marking harness was continuously maintained in
each of the six pens for approximately six weeks begin-
ning in late November, and the first day each ewe marked
was considered day 0 of gestation.

Ewe anthropometrics and blood collection

All ewes were weighed weekly, and body condition score
(BCS) was obtained bi-weekly to detect changes in sub-
cutaneous fat deposition. BCS was assessed indepen-
dently by two trained evaluators by palpation of the spine,
spinous processes, ribs and tail-head on a 1 (emaciated)
to 9 (obese) scale as previously established for sheep [14].
An average score was then calculated from the two evalu-
ators. Blood was collected bi-weekly between 0900 and
1100 h via jugular venipuncture into two blood collec-
tions tubes containing either no anti-coagulant or sodium
heparin (143 U.S.P units per 10 mL whole blood, BD
Vacutainer, Franklin Lakes, NJ). Heparinized tubes were
immediately centrifuged at 1000 x g for 15 min and
plasma frozen at -20°C until time of assay for glucose and
insulin. Tubes without anti-coagulant were allowed to sit
at room temperature for 1 hour, and then refrigerated at
4°C overnight. Serum was then collected after centrifuga-
tion (1000 x g for 15 min) the following morning, and
stored frozen at -20°C until used for leptin assay.

Dual Energy X-ray Absorptiometry (DEXA)

To accurately determine total % body fat, Dual Energy X-
ray Absorptiometry (DEXA, GE Lunar Prodigy™ 8743;
Madison, WI) was utilized as previously used in our labo-
ratory and previously described and validated for sheep
[15-17]. DEXA scanning was performed in a subset of 12
ewes (4 from each dietary group) at three different sam-
ple points: 1) immediately prior to diet initiation, 2)
immediately prior to breeding and 3) at mid-gestation.
Crown to rump length (CRL) of each ewe was measured
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and used in place of height to calculate sheep body mass
index (BMI = (BW, kg)/(CRL, m)?2). Ewes were deprived of
food and water for approximately 24 h to prevent emesis
and subsequent aspiration of gastric material while under
sedation, and were sedated with Ketamine (22.2 mg/kg
body weight) immediately prior to performing DEXA
scans. The whole body scan mode was used for all ani-
mals and scan times were ~3 min depending on the
length of the animal. A single, blinded, and experienced
investigator performed all DEXA scans and quantified %
body fat. DEXA was calibrated and quality assurance
tests performed daily prior to measurement and accord-
ing to the manufacture specifications and programmed
acceptable limits.

Intravenous glucose tolerance tests

An insulin-modified frequently sampled intravenous glu-
cose tolerance test (FSIGT) was applied to the same sub-
set of 12 ewes utilized for DEXA scanning and at the
same three sample points for assessment of glucose and
insulin dynamics, as previously utilized [18]. FSIGTs were
applied before DEXA scanning whenever possible or at
least two days after refeeding following the scans to pre-
vent the 24 h food and water withdrawal from impacting
FSIGT measurements. A venous catheter (Abbocath,
16ga, Abbott Laboratories, North Chicago, IL) was
placed aseptically into a jugular vein approximately one
hour prior to collection of the first blood sample on the
morning of the FSIGT. A 124.5 cm extension tubing set
(Seneca Medical, Tiffin, OH) was attached to the catheter
and then secured to the wool of the ewes' backs to allow
for infusion and sampling without disturbing the animal.
Ewes were maintained in individual adjacent pens with
free access to water, but no feed was provided during the
test. Baseline blood samples were taken at -15 min and
immediately prior to intravenous glucose injection (250
mg/kg BW, 50% dextrose, Vedco Inc., St. Joseph, MO).
Blood samples were then taken at 2, 4, 6, 8, 10, 12, 14, 16,
and 19 min following glucose injection. At 20 min post-
glucose, insulin (20 mIU/kg BW recombinant human
insulin, Humulin R, Lilly, Lake Forest, IL) was adminis-
tered via injection through the catheter and blood sam-
pling continued at 22, 23, 24, 25, 27, 30, 35, 40, 50, 60, 70,
80, 100, 120, 150, 180, 210 and 240 min post-glucose
injection as previously described [19,20].

Parameters of the minimal model of glucose and insulin
dynamics; insulin sensitivity (SI), glucose effectiveness
(Sg), acute insulin response to glucose (AIRg), and dispo-
sition index (DI); were determined by simultaneous fit-
ting of glucose and insulin curves resulting from the
FSIGT according to the following equations using Min-
Mod Millenium software (Version 5.10, MinMod Inc.)
[19,21]:

G'(t) = -(Sg+X)*G(t) + Sg*Gb,
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where G(t) = glucose at minute (t) and Gb = baseline

glucose

X'(t) = -Py*X(t) + P3*(I(t)-Ib),

where X(t) = insulin action at minute (t), I(t) = insulin

concentration at minute (t), Ib = baseline insulin con-

centration, P, = loss rate of insulin action (X), P53 =

action of one unit insulin on glucose disposal per

minute

SI represents the acceleration of glucose clearance by

the insulin present (SI = P4/P,), Sg is the basal (unstimu-
lated) glucose clearance rate, AIRg is the initial insulin
response available to act on glucose clearance (via SI)
measured in the first 10 min following glucose injection,
but prior to exogenous insulin administration, and DI is a
measure of the absolute insulin action potential attribut-
able to the initial insulin response (AIRg) and the tissue
response (SI).

Fetal and maternal tissue collection

At day 78 x 1 d of gestation, ewes were sedated with Ket-
amine (22.2 mg/kg body weight) and maintained under
isofluorane inhalation anesthesia (4% induction, 1-2%
maintenance). Ewes were then exanguinated while under
general anesthesia and the gravid uterus quickly
removed. There were 5 singleton and 4 twin fetuses from
C ewes, 3 singleton and 8 twin fetuses from OW125 ewes
and 2 singleton and 6 twin fetuses from OB150 ewes.
Fetal BW, CRL, thoracic and abdominal circumferences
were recorded for all fetuses. Fetal tissues, including the
heart, kidneys, adrenals, pancreas, liver and perirenal fat
depots, were dissected out and tissue weights recorded.
Fetal hearts were dissected further to record weights of
right and left ventricles. A mean weight was calculated
for paired organs (kidneys, adrenals and perirenal fat
depots). Maternal liver was also collected and weighed.

Ether extraction of fetal liver

Tissue dry matter (DM) and percent lipid (ether extract)
was determined on duplicate 0.5 g samples of tissue by
AOAC procedures [22]. Briefly, samples were weighed
out onto dried filter paper and the filter paper folded to
securely enclose samples. The samples were dried at 100°
C for 24 h, then placed into an ether refluxer for 24 h.
Weights were recorded between steps and the difference
in weights were used to calculate lipid as a percent of DM.

Biochemical assays

Plasma glucose was measured in triplicate by photoab-
sorbance following the addition of glucose hexokinase
reagent (Liquid Glucose Hexokinase Reagent Set, Pointe
Scientific, Inc., Canton MI) using 96-well plates as previ-
ously described [23]. Mean intraassay coefficient of varia-
tion (CV) was 1.5% and interassay CV was 4.0%. Plasma
insulin was measured in duplicate by commercial radio-
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immunoassay kit (Siemens Healthcare Diagnostics, Deer-
field, IL). Intra- and inter-assay CV for insulin were 7.6%
and 14.9%, respectively. Serum leptin was measured by
commercial radioimmunassay kit (Multi-species Leptin
RIA, Millipore Corporation, Billerica, MA) in duplicate
within a single assay. Intra-assay CV was 2.5%. Leptin and
insulin assays were previously validated for use in sheep
[23].

Statistical analyses

Differences among sample time point or weekly and
biweekly measurements (SI, AIRg, % fat, BMI, BW, BCS,
basal glucose, insulin and leptin) were assessed using a
mixed analysis of variance with repeated measures using
SAS (SAS Institute Inc., Cary, NC). There was no signifi-
cant effect of pen/group on changes in BW or % fat in any
treatment group when pen was included in the statistical
model; therefore, pen/group was eliminated from analy-
ses and each ewe was considered a single experimental
unit. There was no significant effect of dietary treatment
on pregnancy type (single vs. twin) (P = 0.35). Also, there
was no significant effect of pregnancy type (single vs.
twin) on fetal size measures or BW-adjusted organ
weights. Therefore, all analyses and data presented are for
single and twin fetuses combined. Comparisons of mid-
gestation measures (e.g. fetal size measures, fetal organs
weights, etc.) were made using analysis of variance by
general linearized models in SAS. Regression analysis was
used to determine relationships between various mater-
nal and fetal variables. Differences are determined signifi-
cant at P < 0.05 and trends at P < 0.10.

Results

Ewe anthropometrics and organ weights

Ewe BW was not different between any groups at diet ini-
tiation (P > 0.10). Weekly BW of ewes increased from diet
initiation to mid-gestation in all groups (Figure 1). The C
ewes did not increase significantly in BW from diet initia-
tion to breeding (P = 0.07), but exhibited a 14% increase
(P < 0.001) in BW during early pregnancy from breeding
to mid-gestation. Both OW125 and OB150 ewes
increased in BW from diet initiation to breeding (P <
0.01) and from breeding to mid-gestation (P < 0.01).
From diet initiation to breeding, OW125 ewes increased
in BW by approximately 27.1%, while OB150 ewes
increased by 27.8% over the same interval. By mid-gesta-
tion, OW125 ewes had increased BW by 49.9% and
OB150 ewes increased by 55.8% from BW at diet initia-
tion. Biweekly BCS decreased in C ewes from diet initia-
tion to breeding due to a statistically significant (P <
0.05), yet slight decrease in BCS of approximately 0.5
score unit which occurred in the first several weeks of the
study, and maintained a relatively constant BCS thereaf-
ter. The OW125 and OB150 ewes increased in BCS from
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Figure 1 Body weight. Body weight (BW) of control (-#- closed dia-
monds, fed to requirement; n = 7), overweight (-0J- open squares, fed
125% of nutrient requirements; n = 8) and obese (- closed circles, fed
150% of nutrient requirements; n = 5) ewes throughout study.

diet initiation to breeding (P = 0.009 and P < 0.001,
respectively), but did not increase further during early
pregnancy from breeding to mid-gestation (P = 0.34 and
P = 0.17, respectively; Figure 2).

Body fat % determined by DEXA revealed a significant
treatment by sample point interaction (P < 0.01; Table 2).
Body fat % was similar for C, OW125 and OB150 groups
before diet initiation, but increased in all treatment
groups from diet initiation to mid-gestation. Percentage
body fat of C ewes was lower than OW125 ewes (P =
0.02) and OB150 ewes (P < 0.001) prior to breeding and
remained lower than both groups at mid-gestation (P <
0.001 for each). The OB150 ewes had a higher % body fat
than OW125 ewes prior to breeding (P = 0.03), but not in
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Figure 2 Body condition. Body condition score (BCS) control (- -
closed diamonds, fed to requirement; n = 7), overweight (- - open
squares, fed 125% of nutrient requirements; n = 8) and obese (-+-
closed circles, fed 150% of nutrient requirements; n = 5) ewes through-

out study.
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Table 2: Ewe body mass index (BMI) and % body fat of subset of ewes utilized for DEXA

Control,n=4 OW125,n=4 OB150,n=4
Sample point Mean SE Mean SE Mean SE
BMI, cm/kg?
Diet initiation 31.92A 1.4 34.024A 0.8 34,024 17
Breeding 35.92A8 23 43.7b8B 13 44.3b8 3.6
Mid-gestation 38.628 2.7 47.4b8B 2.2 53.2bC 17
Body fat, %
Diet initiation 4.62A 0.5 4.5aA 0.2 4.53A 0.3
Breeding 11.128 24 16.2b8 1.0 21.1¢8 24
Mid-gestation 16.2a¢ 1.5 25.1bC 1.7 27.0bC 1.2

Superscripts in lower case indicate significant differences (P < 0.05) between treatment groups within a sample point (across rows) and upper
case indicate differences (P < 0.05) between sample points within a treatment group (down columns). Number of observations (n) denoted

represents number of ewes.

mid-gestation due to a marked increase in % body fat of
OW125 ewes. Ewe % body fat was strongly associated
with fetal BW-adjusted perirenal fat mass (R2 = 0.64, P <
0.001) at mid-gestation. Ewe BMI was strongly associated
with % body fat (R2 = 0.79, P < 0.01), more robustly than
the relationship of BCS to % body fat (R2=0.37, P < 0.01).
Thus, ewe BMI of C, OW125 and OB150 ewes showed
changes similar to those of % body fat from diet initiation
to mid-gestation (Table 2). However, BMI failed to detect
differences between OW125 and OB150 ewes prior to
conception and also between breeding and mid-gestation
in the OW125 ewes (Table 2). At necropsy in mid-gesta-
tion, ewe liver weight was significantly affected by treat-
ment (P < 0.01) due to increased total liver weight with
increased level of feeding (C: 766 x 5.7 g < OW125: 1061
x 6.0 g < OB125: 1162 x 6.6 g), but this effect was elimi-
nated when liver weight was adjusted for ewe BW.

Biweekly blood variables

Baseline blood glucose concentrations increased over
time between diet initiation and breeding (P < 0.01; Fig-
ure 3A); however, there was no significant effect of treat-
ment on biweekly glucose concentrations during this
period (P = 0.29). There were no further changes in glu-
cose concentrations in any groups between breeding and
mid-gestation. Baseline insulin concentrations increased
in OW125 and OB150 ewes between diet initiation and
breeding (treatment*week interaction, P = 0.05), and
remained elevated between breeding and mid-gestation
(Figure 3B). In contrast, baseline insulin concentrations
of C ewes remained relatively low and constant from diet
initiation to mid-gestation. Insulin concentrations at
mid-gestation were significantly associated with fetal
BW-adjusted perirenal fat depot weight (R2 = 0.22, P =
0.02) and fetal BW-adjusted pancreas weight (R2 = 0.19, P

= 0.03). Leptin concentrations increased in OW125 and
OB150 ewes from diet initiation to breeding, but did not
change in C ewes. From breeding to mid-gestation, leptin
concentrations did not increase further in OW125 ewes,
but continued to increase in OB150 ewes (Table 3).
Maternal leptin at mid-gestation was associated with
BW-adjusted weights of fetal liver and pancreas (R2= 0.39
and R? = 0.28, respectively; P < 0.01 for each).

Intravenous glucose tolerance tests

While there was no overall effect of treatment on SI, SI
did decrease overall from diet initiation to mid-gestation
(P = 0.04; Figure 4A). With all treatment groups com-
bined, SI at diet initiation tended to differ from SI prior to
conception (P = 0.07) and differed significantly from mid-
gestation (P = 0.02). SI did not change significantly from
breeding to mid-gestation (P = 0.49). Within OB150 ewes
only, SI tended to decline across time points (P < 0.09). In
OB150 ewes only, there was a significant relationship
between SI and % body fat (Rz=0.40, P = 0.03). AIRg (B-
cell responsiveness) was affected by treatment (P = 0.06)
due to greater AIRg in OB150 ewes than C ewes (P =
0.09) and OW125 ewes (P = 0.02; Figure 4B). Disposition
index, the product of SI and AIRg, was not significantly
affected by sample time point or treatment.

Fetal morphometrics and organ characteristics

Mean fetal weight at midgestation tended (P = 0.09) to
increase with increasing level of feeding (C < OW125 <
OB150) (Table 4). Similarly, fetal crown rump length, tho-
racic girth and abdominal girth were all increased in the
overfed ewes. Crown rump length was greater in OW125
(P = 0.02) and OB150 (P = 0.02) than in C fetuses, but no
significant difference was observed between OW125 and
OB 150 fetuses (P = 0.76). Fetal thoracic and abdominal
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Table 3: Ewe leptin concentrations throughout the experimental period
Control,n=7 OW125,n=7 OB150,n=4
Sample point Mean SE Mean SE Mean SE
Leptin, ng/mL
Diet initiation 1.663A 0.14 1.95aA 0.10 1.902A 0.26
Breeding 2.29aA 0.21 6.760B 0.78 7.47bB 1.21
Mid-gestation 3.042A 0.42 6.22b8 1.23 11.29¢¢ 2.38

Superscripts in lower case indicate significant differences (P < 0.05) between treatment groups within a sample point (across rows) and upper
case indicate differences (P < 0.05) between sample points within a treatment group (down columns). Number of observations (n) denoted

represents number of ewes.

girths were greater in OB150 fetuses than C or OW125
with no significant differences between the latter groups
(Table 4). Absolute fetal organ weight was greater (P <
0.05) in OB150 fetuses than C or OW125 fetuses for
heart, kidneys, adrenals and pancreas (Table 5). Fetal
organ weights were increased (P < 0.05) in both OW125
and OB150 groups, relative to C, for right and left ventri-
cles and perirenal fat. Fetal liver weight was greater (P =
0.03) in OW125 than C fetuses, and greater still (P = 0.03)
in OB150 versus OW125 fetuses. For kidneys and
adrenals, these treatment effects were eliminated when
organ weights were adjusted for fetal BW. For BW-
adjusted organ weights of the heart, pancreas and liver,
OB150 weights were greater (P < 0.05) than C or OW125,
the latter not being different from each other. Fetal BW-
adjusted right ventricle weight was greater in OB150
fetuses than C fetuses, but OW125 weights, which were
intermediate, were not significantly different from C or

OB150 ewes. BW-adjusted tissue weights of the left ven-
tricle and perirenal fat depots were not different between
OW125 and OB150 fetuses which were both greater than
C fetuses (P < 0.05; Table 5).

Lipid content of fetal liver was also affected by maternal
dietary treatment (P < 0.001). OB150 fetal livers had
greater % lipid (9.6 x 0.89%) than in livers of C (4.1 x
0.85%) or OW125 (6.4 x 0.76%) fetuses (P < 0.03). Hepatic
% lipid was not significantly different between C and
OW125 fetuses (P = 0.13).

Discussion

To our knowledge, this study is the first to assess changes
in maternal glucose and insulin dynamics, BCS and abso-
lute % body fat, along with fetal growth and organ devel-
opment, under two different levels of overfeeding
beginning prior to and continuing throughout the first
half of gestation in a large precocial species. Sheep are
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Figure 3 Biweekly plasma glucose and insulin concentrations. Biweekly plasma glucose (A) and insulin (B) concentrations control (- - closed di-
amonds, fed to requirement; n = 7), overweight (- - open squares, fed 125% of nutrient requirements; n = 8) and obese (--- closed circles, fed 150%
of nutrient requirements; n = 5) ewes through the pre-pregnancy portion of the study prior to breeding (dashed line) and through the first half of
gestation.
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Figure 4 Insulin sensitivity and acute insulin response.Insulin sensitivity (SI; A) and acute insulin response to glucose (AIRg; B) at the three different
sample points: 1) immediately prior to diet initiation (white bars), 2) immediately prior to breeding (gray bars) and 3) at mid-gestation (black bars) for
a subset of control (C, n = 4), overweight (OW125, n =4) and obese (OB150, n = 4) ewes. There was an overall effect of time point on SI (P = 0.04) and

common models for studying fetal development because
the timeline of fetal organ development and physiologic
responses is similar between sheep and human [24]; how-
ever, other ewe models of maternal overnourishment or
high glycemic intake have not applied feeding treatments
until after conception [25,26] or very late in gestation [27-
29] which is less relevant to the problem of already over-
weight or obese women becoming pregnant. Our model
is unique in that it establishes obesity induced by over-
feeding beginning 10 weeks prior to conception, thus
allowing examination of the effects of the maternal over-
weight and obese condition beginning prior to concep-
tion and continuing throughout gestation. In this study,
the differing levels of overfeeding resulted in progres-
sively increasing maternal body weights and % body fat,
which corresponded to progressively increasing fetal size
and differential increases in fetal heart, liver, pancreas
and perirenal fat mass, as well as fetal hepatic lipid con-
tent at mid-gestation, which corresponds to mid-gesta-
tion in humans.

The OW125 ewes, which entered pregnancy with %
body fat approximately 5% lower than OB150 ewes, failed
to induce significant differences in fetal thoracic girth,

abdominal girth or fetal BW-adjusted heart, liver and
pancreas weights relative to C ewes and their fetuses at
midgestation even though % BW gain in OW125 ewes
was similar to OB150 ewes prior to pregnancy. Therefore,
as indicated by other investigators, pre-gravid body fat,
and not body weight, may be the best indicator of risk for
altered fetal development [30]. Since BW-adjusted fetal
weights of heart, pancreas and liver were only increased
in OB150 ewes, these organs may be protected from
overgrowth with moderate maternal overfeeding and pre-
pregnancy adiposity, as seen in OW125 ewes. Similar
perirenal fat mass of OW125 fetuses to OB150 fetuses
suggests excess energy substrate preferentially stores as
visceral fat and that heart, pancreas and liver develop-
ment is only affected when fetal substrate delivery sur-
passes the ability of fetal fat depots to incorporate
additional substrate. The greater degree of fetal over-
growth and increased BW-adjusted fetal organ weights
(heart, pancreas and liver) observed in OB150 fetuses
suggests that a greater amount of excess energy substrate
was redistributed to feto-placental tissues of OB150 ani-
mals, fueling fetal growth instead of continued maternal
fat deposition in an animal already having high fat stores.

Table 4: Fetal body weight and morphometrics on day 78 of gestation

Control,n=9 OW125,n=11 OB150,n=8

Mean SE Mean SE Mean SE
Fetal weight, g 2915 9.97 311.8 9.20 324.4 9.60
Crown-rump length, cm 21.42 0.51 22.9b 0.51 23.6P 0.26
Thoracic girth, cm 13.82 0.16 14.1a 0.16 14.9b 0.07
Abdominal girth, cm 12.82 0.42 13.02 0.22 14.4b 0.35

Differing superscripts across rows indicate significant differences, P < 0.05. Number of observations (n) denoted represents number of fetuses.
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Table 5: Fetal organ weights on day 78 of gestation
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Organ weight, g (Organ weight/fetal weight)*100

Control,n=9 OW125,n=11 OB150,n=8 Control Oow125 OB150

Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE
Heart 2422 0.10 2.642 0.13 3.26> 0.19 0.862 0.02 0.842 0.04 1.01b 0.08
Right ventricle 0.592 0.05 0.77b 0.04 0.92b 0.04 0.212 0.02 0.262p 0.02 0.29v 0.02
Left ventricle 0.732 0.07 1.04b 0.05 1.16P 0.13 0.262 0.03 0.33b 0.02 0.36 0.03
Kidney 1.562 0.06 1.552 0.06 1.83p 0.16 0.542 0.01 0.502 0.02 0.562 0.04
Adrenal 0.052b 0.00 0.052 0.00 0.06b 0.00 0.022 0.00 0.022 0.00 0.022 0.00
Pancreas 0.302 0.03 0.382 0.03 0.60b 0.09 0.102 0.01 0.122 0.01 0.18° 0.03
Liver 16.672 0.42 18.68P 0.71 20.88¢ 0.76 5.752 0.16 5.982 0.09 6.45b 0.21
Perirenal fat 0.512 0.04 0.79p 0.04 0.82b 0.06 0.172 0.01 0.26b 0.01 0.25b 0.01

Differing superscripts indicate significant differences (P < 0.05) across rows, but within category (organ weight or organ weight/fetal weight).

Number of observations (n) denoted represents number of fetuses.

This may overburden fetal metabolism with glucose in
excess of developmental need and beyond what can be
stored as fat, causing the altered organ development
observed in the OB150 fetuses. Supporting this hypothe-
sis, maternal % body fat was a good predictor of fetal per-
irenal fat mass in this study, indicating the increasing
incorporation of excess substrate into fetal intra-abdomi-
nal fat with increasing maternal fat mass.

A redistribution of maternal excess energy substrate to
the fetus is likely driven by insulin resistance of maternal
tissues [31]. While there was no significant effect of treat-
ment on SI in this small subset of animals, the mean SI of
OB150 ewes (1.04 x 0.09 x 10-*mIU-1.L-min-!) was similar
to values reported for type II diabetic men and women
(0.74 x 0.3), whereas SI in C (2.57 x 1.2) and OW125 (3.69
x 1.1) ewes was more comparable to SI observed in lean
(4.89 x 0.7) and non-diabetic obese (2.75 x 0.5) subjects
[32]. Furthermore, SI at mid-gestation for OB150 ewes
was within the second lowest reference quintile devel-
oped for SI in apparently healthy horses (SI range 0.79-
1.5), but fell into the upper fourth (2.28-3.04) and fifth
(3.05-5.94) equine references quintiles in C and OW125
ewes, respectively [33]. The relationship between SI val-
ues measured using minimal model analysis in sheep ver-
sus horses or humans has not been determined, but such
comparisons provide a point of reference for discussing
values determined in different species. The degree of pre-
pregnancy adiposity may determine how early in gesta-
tion maternal insulin resistance develops to a level which
sufficiently slows maternal energy storage/utilization and
enhances fetal nutrient delivery. This agrees with obser-
vations that pre-pregnancy BMI in women is an impor-
tant indicator for gestational diabetes mellitus (GDM),
pre-eclampsia and fetal macrosomia [30,31].

Greater lipid content of OB150 fetal livers likely
accounts for part of the increased fetal liver weight
observed in this organ. Non-alcoholic fatty liver disease is
characterized by adipose accumulation and inflammatory
stress in the liver and is associated with development of
the metabolic syndrome. Though few studies have evalu-
ated the effects of maternal nutrition on fetal and postna-
tal liver function, high fat feeding has been shown to
result in increased postnatal hepatic fat content in rats
and altered gluconeogenic enzymes and hepatic fat con-
tent in fetal livers of nonhuman primates [34,35].
Increased visceral adiposity has also been shown to be a
strong predictor of fatty liver [36]. Thus, the combination
of increased fetal hepatic lipid content and greater vis-
ceral (perirenal) fat in OB150 fetuses may play a role in
predisposing these fetuses to postnatal development of
metabolic disease. In response to intrauterine growth
restriction induced by placental insufficiency in ewes,
fetal liver growth was reduced and gene expression of
pathways affecting nutrient sensing, insulin responsive-
ness and gluconeogenesis were altered [37]. Hepatic over-
growth and/or fatty liver may affect similar pathways, but
further research into the functional changes occurring
during hepatic overgrowth induced by maternal over-
nourishment and obesity is needed.

An enlarged pancreas in fetuses of obese ewes have also
been shown to have increased insulin content and num-
ber of insulin-producing cells in studies using the same
experimental paradigm as the present study comparing
only obese (analogous to OB150) and control treatments
[17]. These alterations in pancreas size and composition
provide a mechanism for the fetal programming of 3-cell
function and future metabolic disease by maternal over-
nourishment/obesity [31].
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Maternal leptin was significantly associated with BW-
adjusted weights of fetal liver and pancreas, indicating a
potential role of leptin in predicting risk for altered devel-
opment of these important fetal organs. Furthermore,
increased maternal insulin was associated with increased
fetal pancreas and perirenal fat mass. Since the pancreas
and liver are both organs involved in glucose metabolism,
altered fetal development of these organs is likely particu-
larly important in conferring future risk for obesity and
metabolic disease to these offspring. Fetal adrenals and
kidneys, organs important for stress responses and blood
pressure regulation, appeared to grow proportionally to
the fetal body, suggesting these organs may be less
affected by maternal adiposity and dietary excess prior to
pregnancy and during early gestation.

During early pregnancy, both overfed groups gained,
on average, an additional 0.2 (OW125) or 0.3 (OB150)
BCS units, which suggests that additional fat accumula-
tion was similar. However, % body fat gain in OW125
ewes by DEXA from pre-conception to mid-gestation
was enough to result in similar % body fat at the end of
the study in both overfed groups. Thus, during early
pregnancy, OW125 may have gained more intra-abdomi-
nal fat (indicated by increased overall fat with DEXA),
without substantial change in subcutaneous fat (assessed
by BCS), indicating the importance of comprehensive
measures of body composition such as those provided by
DEXA. Also during the early pregnancy period, C ewes
increased in BW, maintained a moderate BCS and
increased in % body fat, implicating intra-abdominal fat
accumulation for increased adiposity without a change in
subcutaneous fat. This observation is consistent with the
tendency for visceral fat accumulation during pregnancy
in women [38]. Increased intra-abdominal fat provides a
useful energy store in preparation for the increased
energy demands of late gestation and lactation. However,
intra-abdominal fat is also associated with the develop-
ment of insulin resistance and other disease risk in non-
pregnant subjects due to its greater metabolic and endo-
crine activity [39-41]. Therefore, excessive intra-abdomi-
nal adiposity in gestation may increase risk for gestational
diabetes [42]. Surgical removal of visceral fat 4 wks prior
to breeding was associated with improved overall insulin
sensitivity and improved suppression of hepatic glucose
production (hepatic insulin sensitivity) in late gestation in
the rat, further supporting the importance of visceral adi-
posity in determining the degree of insulin resistance
developed in pregnancy [43]. While DEXA analysis may
be a less practical assessment of maternal fat accumula-
tion relative to BW and BCS, methods that account for
central adiposity have been shown to be better predictors
of perinatal outcomes in women as they do in the present
study in the pregnant ewe [44].
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Conclusions

We have presented evidence of hyperinsulinemia, hyper-
leptinemia, greater fetal growth and altered fetal organ
development in OB150 ewes overfed to achieve 21% body
fat prior to conception compared to OW125 ewes fed to
16% body fat or C ewes fed to 11% body fat prior to con-
ception. Thus, fetal development of heart, liver and pan-
creas may be particularly sensitive to pre-conception
and/or early gestational changes in maternal body com-
position and metabolism beyond what is compensated
for by fetal visceral fat deposition, developmental changes
which may predispose to postnatal metabolic disease
However, greater perirenal adipose mass in OW125 and
OB150 ewes suggests that OW125 fetuses may still be at
risk for future development of obesity and metabolic
complications. Further study of fetal organogenesis
throughout the remainder of gestation in this model is
justified to fully clarify the effects of varying levels of
maternal nutritional excess and obesity on late fetal
development and the postnatal consequences of altered
development. Our findings support those observed in
pregnant women; however, our ewe model offers the
advantage of utilizing DEXA for objective measures of fat
mass, a technique not used in pregnant women due to the
perceived potential risk to fetal well-being, as well as
assessment of mid-gestational fetal size and organ devel-
opment [44]. Overall, level of maternal overfeeding and
adiposity prior to pregnancy has a significant impact on
degree of fetal overgrowth and on alterations observed in
fetal organ development at mid-gestation, with more
moderate maternal adiposity resulting in much less
severe changes in fetal development at mid-gestation
than in more obese dams.
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