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Low vitamin D levels may play a role in type 1 diabetes (T1D) susceptibility.
Since 25(OH)D synthesis is genetically regulated, single nucleotide
polymorphisms (SNPs) of important genes have also been shown to
modulate the risk of T1D, so this study aimed to investigate the relationship
between five SNPs in CYP2R1, DHCR7, CYP24A1, VDR genes, serum 25(OH)
D levels and T1D in Chinese children. This case-control study included 141
T1D patients and 200 age-matched healthy children.25 (OH) D
concentration was determined, genotyping was performed by High
resolution melting (HRM). There was a significant difference in the
prevalence of vitamin D deficiency, insufficiency, and sufficiency between
T1D and healthy controls. (χ2 = 10.86, p= 0.004), however no evidence of
the association between any group of SNPs and circulating 25(OH) D levels
was observed. The allele distribution of CYP2R1(rs1993116) was significantly
different between T1D and control group (p= 0.040), and the C allele
carriers of rs1993116 had a higher risk of T1D than the T allele carriers,
Carriers of the CC and CT genotypes of rs1993116 have higher T1D risk than
those carrying the TT genotype. GMDR analysis revealed a significant
interaction between CYP2R1(rs12794714) and CYP2R1(rs1993116) in the risk
of T1D with a maximum testing balance accuracy of 60.39%.
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Introduction

Type 1 diabetes (T1D) is generally considered a chronic autoimmune disease caused

by the destruction of insulin-producing pancreatic beta cells (1, 2), although T1D can

occur at any age, it is one of the most common chronic diseases in childhood. Peak

clinical presentation occurs between 5 and 7 years of age, at or near adolescence (3, 4).

Globally, both the incidence and prevalence of T1D are increasing, however the greatest

increase in incidence occurs in children under 15 years of age, especially in children

under 5 years of age (5), These increases cannot be fully explained by genetic
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changes, involving environmental or behavioral factors, or

both. T1D, once considered a single autoimmune disease, is

now increasingly recognized as caused by complex

interactions between environmental factors and the

microbiome, genome, metabolism, and immune system (6).

Many environmental factors have been associated with T1D,

including diet, vitamin D deficiency, viruses associated with

islet inflammation (e.g., enteroviruses), and decreased gut—

microbiome diversity. There is growing evidence that low

vitamin D concentrations are strongly associated with a

variety of adverse outcomes, such as asthma, diabetes,

cardiovascular disease, and certain cancers (7–10). Common

genetic variants affecting circulating 25(OH) D levels may be

important in enhancing our understanding of the observed

associations between vitamin D status and several diseases.

Vitamin D is a fat-soluble steroid, ergocalciferol (vitamin

D2) is produced by ultraviolet irradiation of the plant sterol

ergosterol, and cholecalciferol (vitamin D3) is produced from

its precursor 7-dehydrocholesterol (7-DHC) synthesized in

human skin under ultraviolet light. Epidemiological evidence

suggests that vitamin D deficiency is associated with the

pathogenesis of T1D (11, 12). as 25(OH) D synthesis is

genetically regulated, single nucleotide polymorphisms (SNPs)

may alter bioavailability and targeting effects of vitamin D

metabolites, polymorphisms in genes critical for vitamin D

metabolism have also been shown to modulate T1D risk (13).

Genome-wide association studies(GWAS) have confirmed that

distinct polymorphisms in genes involved in vitamin D

metabolism may affect islet autoimmunity and risk of T1D,

SNPs of important genes involved in synthesis (7-

dehydrocholesterol reductase, DHCR7), hydroxylation

(cytochrome P450 family 2 subfamily R member 1, CYP2R1),

degradation (cytochrome P450 family 24 subfamily A member

1, CYP24A1) and transcription (vitamin D receptor, VDR)

(14, 15). The purpose of this study was to evaluate the

relationship between CYP2R1(rs1993116, rs12794714), DHCR7

(rs12785878), CYP24A1 (rs17216707), VDR (rs1544410), T1D

and vitamin D levels in Chinese children.
Materials and methods

Subjects

This study was designed as a retrospective case-control

study, with all subjects from Tianjin Children’s Hospital. The

case group included 141 patients with T1D (59 males and 82

females), the mean age at the time of study ± standard

deviation (SD) = (6.3 ± 3.3 years), Diagnosis of T1D is based

on typical clinical presentation, high serum HbA1c level, low

serum C-peptide level, and presence of one or more

pancreatic autoantibodies (16). The control group included

200 healthy children (114 males and 86 females, mean
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age ± SD = (5.6 ± 3.6 years). The study was approved by the

Medical Ethics Committee of Tianjin Children’s Hospital.
Detection of serum vitamin D levels

Serum samples were collected during 2017–2019, and stored

frozen at −80 °C until analysis. Serum 25 (OH) D2 and 25 (OH)

D3 levels were detected by liquid chromatography-tandem mass

spectrometry (LC-MS/MS), and the sum of the two was 25

(OH) D concentration. To compare the prevalence of vitamin

D deficiency in T1D and controls, 25 (OH) D levels were

divided into deficiency (<20 ng/ml), insufficient (20–29 ng/

ml), and sufficient (≥30 ng/ml) (17).
Genotyping

High-resolution melting (HRM) analysis has been tested in

a variety of clinical mutation-scanning and genotyping

applications and proved to be sensitive (18), so we used HRM

for genotyping in this study. Genomic DNA was extracted

from whole blood using the Genomic blood DNA mini kit

(Beijing ComWin Biotech.) according to the manufacturer’s

protocol, and stored at −20 °C for later use. According to the

website (https://www.ncbi.nlm.nih.gov) and previous research,

Primers were designed using DNAMAN9 software and PCR

amplification was performed. The amplified products obtained

were sent to Sanger sequencing. The sequencing results were

analyzed with Chromas2.6.4 sequence analysis software and

the required High-resolution melting reference samples were

found. Amplification was performed in a 20 μl reaction

volume containing 10 μl Forget-Me-NotTM EvaGreenⓇqPCR

Master Mix (Biotum, USA), 8 μl ddH20, 0.5 μl forward

primer, 0.5 μl reverse primer, DNA 1 μl. HRM was performed

using a LightCyclerⓇ480, 1 min at 95 °C, 1 min at 40 °C,

melting was done from 55 °C to 98 °C at 0.1 °C/sec, melting

curves were analyzed with LightCycler 480 Software 1.5, After

data collection, melting curves are normalized by selecting a

linear region before and after the melting transition.
Statistical analysis

SPSS software (version 26.0) was used for the data analysis.

Mann-Whitney U test was used to detect the association

between SNPs genotype and serum 25(OH)D level. The Chi-

square test was used to calculate genotype and allele

frequencies in cases and controls, and assessment of Hardy-

Weinberg equilibrium (HWE) for controls. Logistic regression

adjustment for covariates (age, sex) was performed to

investigate the association between five SNPs in the CYP2R1,

DHCR7, CYP24A1 genes, and T1D risk. Analysis of SNP-SNP
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interactions associated with T1D risk using generalized

multifactorial dimensionality reduction (GMDR, version 0.7,

University of Virginia, USA). Two-tailed P-values <0.05 were

considered statistically significant for all tests.
Results

Clinical and biochemical data and
prevalence of vitamin D deficiency in T1d

Baseline characteristics of the study population and the

prevalence of 25 (OH) D deficiency in children with T1D and

healthy controls are shown in Table 1. There was no

significant difference in mean age at the time of the case and

control studies, (χ2 = 1.74, p = 0.083), but there was a

significant difference in the ratio of males and females.(χ2 = 7.6,

p = 0.006). For the T1D group, 56.0% were vitamin D deficient,

31.9% were vitamin D Insufficiency, and 12.1% were vitamin

D Sufficiency, while the control group 38.5% were vitamin D

deficient, 48.0% were vitamin D Insufficiency, and 13.5% were

vitamin D Sufficiency. There was a significant difference in the

prevalence of vitamin D deficiency, insufficiency, and

sufficiency between T1D and healthy controls. (χ2 = 10.86, p =

0.004). Vitamin D deficiency are more prevalent in T1D.
Genotypes and serum 25(Oh) D levels

The relationship between the genotypes of the five SNPs

and serum 25 (OH) D levels in patients and controls is
TABLE 1 Characteristics of the study population.

Characteristics T1D
(n = 141)

Control
(n = 200)

t/Z/χ2 p

Age, years (mean ± SD) 6.3 ± 3.3 5.6 ± 3.6 1.74 0.083

Gender

Male 59 (41.8%) 114 (57.0%) 7.6 0.006

Female 82 (58.2%) 86 (43.0%)

Duration of T1DM (months) 6.0 (2.0–24.0)

TC (mmol/l) 5.0 ± 1.4

TG (mmol/l) 3.1 ± 3.7

HDL-C (mmol/l) 1.4 ± 0.5

LDL-C (mmol/l) 2.9 ± 1.2

ALP, (IU/l) 266.9 ± 99.6

Vit D status

deficiency (≤20 ng/ml) 79 (56.0%) 77 (38.5%)

Insufficiency (20–30 ng/ml) 45 (31.9%) 96 (48.0%) 10.86 0.004

sufficiency (≥30 ng/ml) 17 (12.1%) 27 (13.5%)

TC, total cholesterol; TG, triglyceride; HDL, high-density lipoprotein

cholesterol; LDL, low-density lipoprotein cholesterol.

ALP, Alkaline phosphatase.
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shown in Table 2. The relationship between SNPs

genotypes and 3 groups of vitamin D levels (deficient,

insufficient and sufficient) is shown in the supplementary

materials section (Supplementary Table S1). In the control

group, CYP2R1 (rs12794714) not complied with Hardy-

Weinberg equilibrium, there may be selection bias.

Deviation from Hardy-Weinberg equilibrium was not

observed in the other four SNPs, the chi-square test is

shown in the supplementary materials section

(Supplementary Table S2). However, no evidence of

association between any group of SNPs and circulating 25

(OH) D levels was observed in our study.
Genotype and T1d risk

The genotypes and allele frequencies of CYP2R1, DHCR7,

CYP24A1, and VDR observed in patients and controls are

shown in Table 3. The allele distribution of CYP2R1

(rs1993116) was significantly different between T1D and

control group (p = 0.040), and the C allele carriers of

rs1993116 had a higher risk of T1D than the T allele carriers,

Carriers of the CC and CT genotypes of rs1993116 have

higher T1D risk than those carrying the TT genotype, the

adjusted ORs (and 95% CI) were 2.411(1.194–4.868) and

2.210(1.115–4.377), respectively. In contrast, there was no

significant association between DHCR7 (rs12785878) and

CYP2R1 (rs12794714) and CYP24A1 (rs17216707 and VDR

(rs1544410) genotypes and the risk of T1D.
SNP-SNP interactions

GMDR was used to evaluate the optimal interaction

combination of five SNPs among the 4 candidate genes

(Table 4). In general, we found that the two-locus model

including rs12794714, and rs1993116 was the best model

with statistical significance (cross-validation consistency = 10/

10, testing balanced accuracy = 0.6039, p = 0.0107), This

suggests that there is a potential interaction between

rs12794714 and rs1993116 affecting the risk of T1D.

However, we did not find significant gene-vitamin D

deficiency interactions.

To understand the combined effect of gene-gene interaction

on T1D risk, we performed logistic regression analysis on the

best model derived from GMDR. The results show that

carrying the CYP2R1 (rs1993116) allele C in conjunction with

the CYP2R1 (rs12794714) genotype CC or allele T increases

the risk of T1D, the ORs (and 95% CI) were 2.342(1.218–

4.504), 1.956(1.014–3.771), respectively (Table 5).
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TABLE 2 Relationship between SNPs genotypes and serum 25(OH) D levels.

SNPs 25 (OH)D (ng/ml) χ2 P

GG TG TT

DHCR7 (rs12785878)

Total 21.40 (14.13,24.99) 20.25 (14.16–23.12) 20.92 (14.57–25.39) 0.884 0.643

Case 21.05 (15.1–31.57) 17.77 (13.07–24.35) 19.13 (14.08–25.35) 3.620 0.164

Control 21.40 (13.00–22.47) 21.40 (15.23–22.80) 21.40 (16.47–26.87) 0.764 0.683

CC CT TT

CYP2R1 (rs12794714)

Total 21.40 (14.53–25.68) 20.12 (12.95–24.26) 20.48 (15.02–22.70) 2.252 0.324

Case 19.12 (14.20–25.60) 19.25 (12.84–25.37) 18.17 (14.39–25.36) 0.554 0.758

Control 21.39 (15.34–26.24) 21.40 (12.83–23.63) 21.40 (15.90–22.55) 1.503 0.472

CC CT TT CC

CYP2R1 (rs1993116)

Total 20.41 (14.94–24.59) 20.70 (13.69–24.67) 21.40 (14.12–26.55) 0.112 0.945

Case 18.75 (14.35–25.96) 18.50 (13.30–25.01) 21.82 (14.31–27.30) 0.532 0.767

Control 21.40 (15.52–23.62) 21.40 (15.85–23.74) 20.58 (14.10–26.27) 0.242 0.886

TT CT

CYP24A1 (rs17216707)

Total 20.95 (14.38–24.69) 18.76 (14.11–23.89) 0.828 0.363

Case 19.02 (13.58–25.36) 18.76 (14.50–27.30) 0.153 0.696

Control 21.40 (15.17–24.28) 18.79 (12.25–21.40) 2.762 0.096

GG GA

VDR (rs1544410)

Total 20.59 (14.23–24.69) 21.40 (15.68–24.19) 0.241 0.623

Case 18.75 (13.66–25.19) 23.29 (15.13–27.97) 0.846 0.358

Control 21.40 (14.70–24.46) 21.31 (17.44–22.33) 0.177 0.674

The distribution of continuous variable serum 25(OH)D is skewed, then Mann-Whitney U was applied to test the relationship between SNPs genotype and 25(OH)D

levels, described as interquartile range P50 (P25, P75).
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Discussion

We designed this case-control study to determine the role of

five polymorphisms and their influence on 25(OH)D levels and

susceptibility to T1D in Chinese children. we have identified

that CYP2R1 (rs1993116) polymorphism was significantly

correlated with T1D in Chinese children. In addition, GMDR

analysis showed that there was significant gene-gene

interaction among rs12794714 and rs1993116, which was the

model with the highest prediction accuracy of the risk of T1D

in the five SNPs.

Genome wide association studies (GWAS) meta-analysis of

serum 25-hydroxyvitamin D suggests that SNPs in CYP2R1,

DHCR7, CYP24A1, and VDR genes are associated with

circulating 25(OH) D levels (14, 19). However, no evidence of

this association was observed in our study. Yan Wang et al.

also did not find correlation between CYP2R1 (rs12794714,

rs1993116) and 25(OH) D concentration levels in the Chinese

rural population (20). The possible reasons are as follows: (i)

There are genetic background and ethnic differences in
Frontiers in Pediatrics 04
circulating vitamin D (21), GWAS-related study populations

are mostly of European ancestry, and Geographic differences

in diet, sun exposure, and genetic background may alter the

susceptibility caused by these genetic variants (22). (ii) Each

SNP has a small undetectable effect, and combinations of

several SNPs may result in an additive effect, leading to a

reduction in vitamin D levels. (iii) The sample size of our

study is not large enough, and Vitamin D levels are not

controlled for seasonal effects.

Several human observational studies have provided evidence

for an association between serum 25 (OH) D concentration and

the risk of T1D (23, 24), our study also confirmed a higher

prevalence of vitamin D deficiency and insufficiency in T1D.

As 25(OH)D synthesis is genetically regulated, single

nucleotide polymorphisms (SNPs) may alter bioavailability

and targeting effects of vitamin D metabolites (25). Previous

correlation studies have shown the association of common

variant polymorphisms of DHCR7, CYP2R1, CYP24A1, and

VDR with T1D, providing early support for the causal role of

25(OH) D in the pathogenesis of T1D (8, 26–29). However,
frontiersin.org
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TABLE 3 Genotyping frequencies of vitamin D-related polymorphisms in T1D and controls.

Polymorphisms T1D, n (%) Controls, n (%) χ2 p Adjusted OR (95% CI) Adjusted p V alue

DHCR7 (rs12785878) 1.143 0.565

TT 40 (28.4) 49 (24.5) 1 (Ref)

Genotypes GG 33 (23.4) 43 (21.5) 1.006 (0.538–1.883) 0.985

TG 68 (48.2) 108 (54.0) 0.816 (0.482–1.380) 0.448

Alleles T 148 (52.5) 206 (51.5) 0.064 0.800
G 134 (47.5) 194 (48.5)

CYP2R1 (rs12794714) 3.997 0.136

TT 26 (18.4) 50 (25.0) 1 (Ref)

Genotypes CC 53 (37.6) 82 (41.0) 1.212 (0.668–2.199) 0.527

CT 62 (44.0) 68 (34.0) 1.710 (0.943–3.101) 0.77

Alleles C 168 (59.6) 232 (36.7) 0.169 0.681
T 114 (40.4) 168 (59.6)

CYP2R1 (rs1993116) 5.682 0.058

TT 15 (10.6) 40 (20.2) 1 (Ref)

Genotypes CC 57 (40.4) 68 (34.3) 2.411 (1.194–4.868) 0.014

CT 69 (48.9) 90 (45.5) 2.210 (1.115–4.377) 0.023

Alleles C 183 (64.9) 226 (57.0) 4.211 0.040
T 99 (35.1) 170 (43.0)

CYP24A1 (rs17216707) 1.373 0.241

TT 126 (89.4) 185 (93.0) 1 (Ref)

Genotypes CT 15 (10.6) 14 (7.0) 0.645 (0.297–1.399) 0.267

Alleles C 15 (5.3) 14 (3.5) 1.312 0.252
T 267 (94.7) 384 (96.5)

VDR (rs1544410) 0.571 0.450

GG 129 (91.5) 178 (89.0) 1 (Ref)

Genotypes GA 12 (8.5) 22 (11.0) 0.753 (0.357–1.588) 0.456

Alleles G 270 (95.7) 378 (94.5) 0.541 0.462
A 12 (4.3) 22 (5.5)

n, number; OR, odds ratio; CI, confidence interval. Logistic regression analysis was performed after adjusting for age and gender.

TABLE 4 Gene-gene interaction models in T1D obtained using the
GMDR method.

Model Training
Bal. Acc.

Testing
Bal. Acc.

CVC Pa

Gene-gene interaction

rs12794714, rs1993116 0.6167 0.6036 10/10 0.0107

rs12794714, rs1993116,
rs12785878

0.6451 0.5923 10/10 0.0010

rs12794714, rs1993116,
rs12785878, rs17216707

0.6650 0.5624 10/10 0.0547

rs12794714, rs1993116,
rs12785878, rs17216707,
rs1544410

0.6795 0.5438 10/10 0.0547

Bal. Acc., balanced accuracy; CVC, cross-validation consistency; OR, odds

ratio; 95% CI, 95% confidence interval.
aThe analyses were performed under logistic regression adjusted for age, gender.

TABLE 5 Gene-gene interactions influencing T1D based on additive
model.

Gene Gene T1D Controls OR (95%CI) P

rs1993116 rs12794714

TT CC 15 39 1 (Ref)

TT TT + CT 15 40 0.975 (0.421–2.260) 0.953

CC + CT CC 38 43 2.298 (1.098–4.807) 0.027

CC + CT TT + CT 88 117 1.956 (1.014–3.771) 0.045

T1D, type 1 diabetes mellitus; OR, odds ratio; CI, confidence interval.
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some of the results are controversial, Evidence from a

Mendelian randomization study and several systematic reviews

and meta-analyses suggests an invalid association between
Frontiers in Pediatrics 05
selected variants affecting serum 25 (OH) D concentration

and T1D (25, 30). The association of CYP2R1 (rs1993116)

with T1D susceptibility in Chinese children was confirmed in

our case-control study, We found genotypes “CC” (OR =

2.968, 95% CI = 1.313–6.713, p = 0.009,) and “CT” (OR =

2.271, 95% CI = 1.066–4.838, p = 0.033,) in CYP2R1

(rs1993116) is significantly related to an increased T1D risk,

Carriers of the CC, CT genotypes of rs1993116 have higher
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T1D risk than those carrying the TT genotype, and the C allele

carriers of rs1993116 had a higher risk of T1D than the T allele

carriers.

The CYP2R1 gene is localized on chromosome 11p15.2 and

has five exons, spanning across a region of approximately

15.5 kb, In humans, CYP2R1 is mainly distributed in the

pancreas, liver, and kidney (31). It encodes microsomal

vitamin D 25 hydroxylase, which is generally considered to be

the most important enzyme in vitamin D metabolism.

CYP2R1 catalyzes the 25 hydroxylation of vitamin D3 and

vitamin D2 at comparable rates, In mice, knockout of

CYP2R1 reduced 25(OH) D levels by only 50% and did not

affect circulating 1,25(OH)2D (32), Which proves that there is

a compensatory mechanism for CYP2R1 deletion, This may

explain the lack of association between CYP2R1 and 25(OH)D

concentration levels in our study. We confirmed that CYP2R1

(rs1993116) increases the risk of T1D, but CYP2R1

(rs12794714) does not, The probable reason is that Since

rs12794714 is located in an intronic region, these synonymous

variants do not alter the protein sequence and therefore have

minimal impact on 25-hydroxylase activity and function (33).

We originally hypothesized that genetic polymorphisms

associated with vitamin D deficiency would increase the risk

of T1D, however, our results indicated that CYP2R1

(rs1993116) was not related to 25(OH)D levels, but was

significantly associated with T1D. Whether vitamin D

deficiency is a cause or secondary to T1D is still controversial.

Due to the relatively limited sample size, these results should

be interpreted with caution and further research is required.

Cooper et al. obtained evidence that DHCR7 and CYP2R1

are associated with T1D (26), A recent study showed that

CYP2R1 (rs12794714) is closely associated with T1D in

Korean children (8). However, we did not observe an effective

association between DHCR7 (rs12785878), CYP24A1

(rs17216707), CYP2R1 (rs12794714), and VDR (rs1544410)

polymorphism and T1D in Chinese children, Further research

is needed in the future.

Growing evidence suggests that T1D is a polygenic

metabolic disease with multiple etiologies, and it is necessary

to evaluate gene interactions when studying the genetic

etiology of T1D. In our study, we found gene interaction

between CYP2R1 (rs12794714) and CYP2R1 (rs1993116) was

significantly associated with the risk of T1D. Carrying the

CYP2R1 (rs1993116) genotype CC + CT in conjunction with

the CYP2R1 (rs12794714) genotype CC or genotype TT + CT

increases the risk of T1D. Although the effect of rs12794714

on T1D is insignificant, the additive interaction between

rs12794714 and rs1993116 will increase the risk of T1D.

So far, there are few studies on the relationship between

vitamin D, vitamin D-related genes and T1D in Chinese

children. We have studied five SNPs of four genes, which can

better understand the impact of vitamin D on the

pathogenesis of T1D. Also, our study had some limitations,
Frontiers in Pediatrics 06
Firstly, the selection bias in this case-control study was its

hospital-based design, and it may not be representative of the

general population. Secondly, we did not study all the genes

involved in the vitamin D metabolic pathway. Finally, our

sample size is relatively small, Further expansion of the

sample size is required in future studies.

In summary, We studied the triangulation between five

SNPs in CYP2R1, DHCR7, CYP24A1, VDR genes, serum 25

(OH) D levels and T1D in Chinese children. Our study

confirms that vitamin D deficiency and insufficiency are more

prevalent in T1D, and that CYP2R1 (rs1993116)

polymorphism is a candidate gene for susceptibility to T1D in

Chinese children, There was a synergistic effect of gene-gene

interactions between CYP2R1 (rs12794714) and CYP2R1

(rs1993116) on the risk for T1D, Vitamin D metabolic

pathway gene polymorphism, and gene-gene synergy can

better explain the effect of vitamin D on the pathogenesis of

T1D.
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