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A B S T R A C T   

Multi-modular enzyme complexes known as non-ribosomal peptide synthetases (NRPSs) and polyketide syn-
thetases (PKSs) have been widely reported in bacteria that produce secondary bioactive metabolites such as non- 
ribosomal peptides (NRPs) and polyketides (PKs), respectively. These NRPS/PKS pathways contribute to syn-
thesizing several antibiotics, such as vancomycin, rifamycin, and bleomycin, which are vital in human medicine. 
The present study aimed to isolate gut-associated bacteria from mud crab Scylla serrata, and detect NRPS and PKS 
gene clusters associated with it. This study included 36 bacterial isolates from five mud crab gut samples. 
Biosynthetic gene clusters (NRPS and PKS), were detected by PCR using degenerative primers specific to these 
genes. Three isolates (FKP2–4, FKP4–1, and FKP2–16) were positive for NRPS and two for PKS (FKP2–4 and 
FKP4–1) genes. The isolates were subjected to 16S rRNA gene amplification and sequenced. In silico analysis of 
the sequences using the Basic Local Alignment Search Tool (BLAST) identified the isolates FKP2–4, FKP4–1, and 
FKP2–16 as Acinetobacter variabilis, Vagococcus fluvialis, and Staphylococcus arlettae, respectively, after comparing 
with the existing sequences available in the National Center for Biotechnology Information (NCBI) database. 
Compared to the control, it was observed that these isolates exhibited intriguing antagonistic activities against 
Escherichia coli and Staphylococcus aureus. However, these isolates failed to show significant activity against 
Candida albicans. Exopolysaccharide production by the isolated organisms was tested using Zobell marine agar 
(ZMA) with 5% sucrose, but none of the colonies were mucoid or slimy.   

Introduction 

Natural products from microorganisms are structurally diverse and 
represent a rich source for discovering new drugs to treat various human 
diseases, including infections and cancer. Bacteria are perhaps the most 
prolific microbial producers of bioactive natural products, which are 
represented by their secondary metabolites [1]. Based on their biosyn-
thetic origin, these secondary metabolites can be classified into four 
groups: polyketides (PKs), non-ribosomal peptides (NRPs), terpenes, and 
indole alkaloids [2]. NRPs, PKs, and their combinations are the most 
common amongst them. Their biosynthetic pathways involve enzymes 
usually encoded by co-regulated genes organized in clusters [3]. 
Non-ribosomal peptide synthetases (NRPS) and polyketide synthases 

(PKS) have been reported in bacteria, cyanobacteria, and fungi [4–6]. 
NRPS/PKS pathways can be used to synthesize several essential human 
medicines, such as vancomycin [7] and bleomycin [8]. The 
non-ribosomal and mixed polyketide families account for more than half 
of all medications used in clinical development [9,10]. 

Numerous PKs and NRPs were identified in bacteria from terrestrial 
environments [11]. According to Molinski et al. [12], the oceans, 
covering more than 70% of the Earth’s surface, possess an extensive 
reserve of valuable natural products. Reddy et al. [13] observed a high 
diversity of bacterial communities in the marine sediment of the Yellow 
Sea. They also noted that the biosynthetic genes responsible for natural 
product production in the ocean differed from those found in soils, 
indicating the potential of the sea for discovering novel natural 
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products. Marine microbes are significant sources of NRPs with various 
biological activities against bacteria, viruses, and parasites, and they 
also act as immunosuppressants and animal growth promoters [14]. 
Specific secondary metabolites in gut bacteria, such as PKs and NRPs, 
influence the adaptation and survival of these microorganisms under 
adverse environmental conditions. Antibiotics, anticancer agents, im-
munosuppressants, toxins, and siderophores are multi-domain mega--
enzymes known as PKS and NRPS [15]. 

The mud crab Scylla serrata is the most extensively distributed spe-
cies in estuaries, coastal areas, habitats, and soft muddy bottoms. The 
microbiota of the digestive system is controlled by genetics, environ-
ment, nutrition, and other factors, and the intestinal flora is vital for 
maintaining host health [16]. Crabs obtain bacteria from the gut 
through water and food. The gut environment provides favorable con-
ditions for the growth of microorganisms [17], which play a significant 
role in immune responses and disease resistance because the bacteria 
synthesize highly resistant peptides against infectious microbes [6]. Gut 
microbiota is vital in host gastrointestinal tract development, nutritional 
status, immune responses, and disease resistance [18,19]. Since PKs and 
NRPs derived from microorganisms exhibited similarities to those 
documented before, it would be an excellent decision to investigate 
animals, like crabs, and their gut microbiome for new bioactive 
substances. 

Detecting NRPS/PKS-positive microorganisms in the gut microbiome 
of invertebrates, especially crabs, is highly appreciated because crabs 
adapt to living in both land and aquatic habitats. As they are exposed to 
extreme environments, it is possible to explore novel bioactive com-
pounds that may exhibit a natural resistance to most pathogens. It has 
been reported that the actual producers of many drug candidates iso-
lated from invertebrates are symbiotic bacteria [20–22]. Since the 
emergence of antibiotic-resistant bacteria has become a significant 
concern in the medical/healthcare sector, mining novel bioactive com-
pounds from natural sources is in great demand. Hence, this study 
focused on detecting natural antimicrobial biosynthetic peptides, such 
as non-ribosomal and polyketide peptides, from the gut-associated 
bacterial community of mud crabs, followed by their antimicrobial 
activities. 

Materials and methods 

Sample collection and isolation of gut-associated bacteria 

Live green mud crabs (n = 3) were purchased from the Kundapura 
fish market in Mangalore, where the wild-caught crabs were locally 
available. Crabs were placed in a perforated plastic basket, sprinkled 
with sterile water, and transported to the institute. Before dissecting the 
crabs in the lab, they were subjected to cryoanesthesia, followed by 
cleaning with sterile water and disinfection with 70% ethanol. The gut 
was aseptically removed using a sterile blade, and portions of the in-
testine were minced into small pieces and transferred into sterile 15 ml 
Falcon tubes. The samples were serially diluted with sterile physiolog-
ical saline after homogenizing the tissues using a mortar and pestle. 10–5 

and 10–6 Dilutions were poured into Petri dishes, adding approximately 
20 ml of molten Zobell marine agar (ZMA; HiMedia, India). The plates 
were incubated at 30◦C for 24–48 h. Morphologically distinct bacterial 
colonies were isolated, purified on ZMA plates, and stored in a refrig-
erator for further use. 

Bacterial crude DNA preparation 

Crude genomic DNA was prepared as described by Divyashree et al. 
[23]. Briefly, single colonies of the respective bacterial cultures were 
inoculated in 5 ml LB broth and incubated for 18 h in a rotary shaker. 
Then, 1 ml of the culture was taken in a 1.5 ml microcentrifuge tube and 
centrifuged at 5000 rpm for 10 min. The supernatant was discarded, and 
the pellet was dissolved in 300μl 1X TE buffer. The tubes were placed in 

a dry bath at 95 ◦C for 10 min and immediately cooled on ice. Next, the 
tubes were spun at 5000 rpm for 5 min, and the freshly collected DNA 
was kept at − 20◦C for PCR. 

Screening of NRPS and PKS genes by PCR 

A thermal cycler (Eppendorf Nexus GX2) was used for PCR with 
gene-specific primers (Table 1) for the NRPS and PKS genes in the gut- 
associated bacterial strains. After PCR, the products were run on a 
1.5% agarose gel with a 100 bp DNA marker, stained with ethidium 
bromide (0.5 mg/ml), and viewed under a gel documentation system 
(Bio-Rad, USA). 

Molecular identification of NRPS/ PKS positive bacterial isolates by 16S 
rRNA gene sequencing 

NRPS/PKS-positive bacterial isolates were subjected to PCR, using 
the 16S rRNA gene primer pairs listed in Table 1. The PCR products were 
purified using a QIAqick PCR Purification Kit (Qiagen, Germany). 
Samples were outsourced for sequencing to Eurofins Genomics India 
Pvt. Ltd., Bangalore, India. 

Phylogenetic tree construction and analysis 

The obtained sequences were aligned and edited using the MultAlin 
online program (http://multalin.toulouse.inra.fr/multalin/). Next, 
sequence similarity and identification were performed using NCBI- 
BLAST to identify the closest GenBank relatives. The evolutionary his-
tory of the identified strains was reconstructed using the neighbor- 
joining method, which is based on the Maximum Composite Likeli-
hood substitution model [28]. Molecular Evolutionary Genetics Analysis 
version 10 (MEGA X) bioinformatics tool was used [29] to generate a 
phylogenetic tree to determine similarities between the query sequence 
and NCBI sequences. 

Antimicrobial assay 

Antimicrobial bioassays were performed using the paper-disk plate 
method with E. coli (ATCC 25922), Staphylococcus aureus (ATCC 29213), 
and Candida albicans (MTCC 227) as reference organisms. Sterile filter 
paper disks (6 mm in diameter; HiMedia, India) were wetted with 50 µl 
of isolate culturesand placed on top of the plate lawned with indicator 
organisms. Plates were observed for 24–72 h for the bacterial indicators 
and C. albicans. The diameter (mm) of the clear inhibition zone around 
each paper disk was measured. 

Exopolysaccharide production 

The bacterial isolates were streaked onto ZMA supplemented with 
5% sucrose as an additional carbon source and incubated at 30◦C for 48 
h. Cultures producing thick mucoid, ropy-like colonies were considered 
exopolysaccharide producers [30]. 

Results and discussion 

Antimicrobial resistance (AMR) is a severe global threat to humans, 
animals, and the environment, mainly because of the emergence, 
spread, and persistence of multidrug-resistant bacteria [31]. The pri-
mary reasons for this resistance are the excessive use of antibiotics in 
food, pets, aquatic animals, and humans; over-the-counter distribution 
of antibiotics; poor sanitation; and the release of non-metabolized an-
tibiotics or their residues into the environment through manure/feces 
[32]. The novel bioactive compounds extracted from the natural sources 
have high antimicrobial activity against multidrug- resistant bacteria 
[33]. Cragg et al. [34] reported that microbial origin accounts for 80% of 
antimicrobial drugs used in the pharmaceutical industry. However, the 
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extracted antimicrobial biosynthetic genes (PKs and NRPs) from 
cultured microbes appear identical. Therefore, it seems significant to 
investigate diverse sources to discover novel natural antimicrobial 
biosynthetic peptides, such as non-ribosomal and polyketide peptides. 

Isolation of gut-associated bacteria and screening of NRPS/ PKS gene 
clusters by PCR 

The gut portion of the crabs was dissected, homogenized, serially 
diluted, and plated onto ZMA plates. After 24 h of incubation, 50 
morphologically distinct colonies were isolated. After purification, only 
36 strains (contaminated ones were discarded) were subjected for PCR 
screening of NRPS/PKS genes, and 12 showed as positive for NRPS and 
PKS genes. Finally, six were selected for sequencing because they 
consistently yielded single bands in the respective gene amplifications 
(Table 2). 

Xie et al. [35] reported that the wild S. paramamosain were found to 
have a greater diversity and bacterial load, revealing the role of envi-
ronmental factors in forming the gut microbiome. Their study identified 
Bacteroidetes, Actinobacteria, Firmicutes, Proteobacteria, and Cyano-
bacteria as the most significant phyla in the S. serrata gut microbiome. 
Fusobacteria and Tenericutes were among the core gut microbiome phyla 
of S. paramamosain. Benny et al. [36] found that because of its sterility, 
the hemolymph of marine crabs is the most promising resource for 
combating pathogens rich in NRPS gene clusters. The study discovered 
that the hemolymph of marine crabs comprises several species, 
including Bacillus albus, Bacillus megaterium, Staphylococcus saprophyti-
cus, S. sciuri, S. haemoliticus and S. arlettae. 

Dong et al. [16] studied the microbial population and expression of 
immune-related genes in the gut of Chinese mitten crabs. They discov-
ered that bacterial diversity is higher in the hindgut, similar to the 
expression of antimicrobial peptides and immune genes, such as 
EsRelish (IMD pathway). They discovered that microbiota and bacterial 
communities in crab digestive tracts are site-specific, and that intestinal 
immunity and microbiota are closely associated. 

Li et al. [37] analyzed the bacterial communities in the intestines of 
wild crabs, pond-raised healthy crabs, and diseased crabs from the 
bacterial populations in the intestines of the mud crab Scylla para-
mamosain and found that those populations were distinguishable. 

Molecular identification of the strains 

The 16S rRNA gene of the six bacterial isolates that showed positive 
for NRPS/ PKS was PCR amplified, and the products (~1500 bp) were 

sequenced. The sequences were edited using the MultAlin interface page 
bioinformatics approach, and the final sequences were analyzed. 
Accession number, query cover, and percentage of similarities with the 
organisms deposited in NCBI were recorded using BLAST. After the 
sequence analysis, three strains, FKP2-4, FKP2-16 and FKP4-1 showed 
maximum coverage with the reference strains in NCBI were chosen for 
further studies and identified as Acinetobacter variabilis, Staphylococcus 
arlettae, and Vagococcus fluvialis, respectively. The evolutionary tree 
exhibited 98–100% similarity to these strain types (Table 3). The NCBI 
accession numbers of the sequences obtained for these organisms were 
OP090353, OP090355, and OP090357, respectively (Supplementary 
files: S3-S8). 

Acinetobacter variabilis has been majorly reported to recover from 
human clinical specimens as well as feces of cattle [38]. There were no 
reports of its presence in the marine environment. Staphylococcus arlettae 
has been isolated from different animals and environments, including 
salt mines, estuaries, fermented foods, and biological safety cabinets. 
Highly salt-tolerant strains of S. arlettae are also reported and are 
commonly found in the marine environment [39,40]. Vagococcus flu-
vialis is found in various environments including mammals, fish, birds, 
rivers, seawater, and sponges [41]. 

A phylogenetic tree (Fig. 1) was constructed using the 16S rRNA gene 
sequences of the three isolates (FKP2–4, FKP2–16, and FKP4–1) and 
other reference bacterial strains available at NCBI. MEGA X was used to 
estimate the evolutionary origin using the Maximum Composite Likeli-
hood method based on the neighbor-joining statistical model. The 
FKP2–4 sequence displayed 98.27% similarity to the query sequences of 
Acinetobacter species, including A. variabilis and A. calcoaceticus. How-
ever, it predominantly resembled A. variabilis, identifying the FKP2–4 
isolate as A. variabilis (Supplementary file S6). Regarding the FKP2–16 
sequence, the first 25 BLAST hits exhibited similarity ranging from 

Table 1 
Primers used for this study.  

Target gene Primer ID Sequence (5′ - 3′) References 

NRPS adenylation domain fragments AD_F/R F-CGCGCGCATGTACTGGACNGGNGAYYT 
R- GGAGTGGCCGCCARNYBRAARAA  

[24] 

NRPS adenylation domain fragments A3F/ A7R F-GCSTACSSYSATSTACACSTCSGG 
R- SASGTCVCCSGTSCGGTAS 

[25] 

Type I polyketide synthase KS domain fragments PK_1F/1R F-GGCAACGCCTACCACATGCANGGNYT 
R- GGTCCGCGGGACGTARTCNARRTC 

[24] 

Type I polyketide synthase KS domain fragments KSDPQQ_F/ KSHGTG_R F-MGNGARGCNNWNSMNATGGAYCCNCARCANMG 
R- GGRTCNCCNARNSWNGTNCCNGTNCCRTG 

[26] 

16S rRNA 27 F/ 1492 R F- AGAGTTTGATCCTGGCTCAG 
R- GGTTACCTTGTTACGACTT 

[27]  

Table 2 
Overall result (PCR, antimicrobial and exopolysaccharide activities).  

Bacterial strains NRPS PKS Resistance to E. coli Resistance to S. aureus Resistance to C. albicans Exopolysaccharide production 

Acinetobacter variabilis + + + + – – 
Vagococcus fluvialis + + + + – – 
Staphylococcus arlettae + – + + – –  

Table 3 
NCBI-BLAST analysis of 16S rRNA gene sequences of the isolates.  

Isolate 
ID 

Closest relative 
sequences of the 
amplicon in NCBI 

Accession 
number 

Identity 
(%) 

GenBank 
number of the 
isolate  

FKP2–4 Acinetobacter variabilis MN932362 98.27 OP090353  

FKP2–16 Staphylococcus arlettae JX188024 98.65 OP090355  

FKP4–1 Vagococcus fluvialis MT103047 100 OP090357  
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98.54% to 98.65% to the query sequences of Staphylococcus arlettae 
(Supplementary file S7). Likewise, for the FKP4–1 sequence, the BLAST 
hits demonstrated a 100% similarity to Vagococcus fluvialis (Supple-
mentary file S8). The tree indicates the division of these sequences into 
two groups. Acinetobacter species were present in one group, and 
Staphylococcus and Vagococcus species belonged to another group. The 
tree visually represents the evolutionary relatedness of these bacterial 
species and provides insights into their genetic connections. 

Apine et al. [42] conducted a study comparing the gut microbiome 
composition, including species richness and abundance, of S. serrata 
from both wild and farmed locations on India’s east and west coasts. 
They found that the water temperature significantly impacted the gut 
microbiome composition, leading to a reduction in microbial diversity 
as the water temperature increased. Additionally, their study suggested 
that farming practices did not significantly impact the gut microbiome 
composition of the crabs compared to wild-caught crabs. 

For the first time, Zote et al. [43] reported the presence of the anti-
microbial biosynthetic genes PKS type II, NRPS, and the CYP pathway in 
crab-associated bacteria. The bacterial population associated with mud 
crabs shows significant antimicrobial activity and the presence of 
various volatile agents, which are potential sources of antimicrobial 
agents. 

In a study conducted by Soundarapandian and Sowmiya [44], the gut 
microbiome of two economically important crabs, Portunus sanguino-
lentus and P. pelagicus, was examined. They discovered the presence of 
both gram-positive and gram-negative bacteria in the gut. It was 
observed that gram-negative bacteria tended to be the predominant 
forms in the gut samples overall. Specifically, Vibrio parahaemolyticus, 
Pseudomonas fluorescens, Staphylococcus aureus, and S. saprophyticus 
were identified as the dominant forms. This study identified different 
strains, specifically, Acinetobacter variabilis, Staphylococcus arlettae, and 
Vagococcus fluvialis in the mud crab gut samples. 

In the present study, the NRPS and PKS- positive bacterial strains in 

the gut of mud crabs consisted of gram-positive and gram-negative 
bacterial species such as Staphylococcus, Vagococcus, and Acinetobacter, 
respectively. In this study, both A. variabilis (gram-negative) and 
V. fluvialis (gram- positive) were positive for both NRPS and PKS. 
Sivasubramanian et al. [17] also reported gram-positive and 
gram-negative bacteria, such as Photobacterium, Vibrio, Flavobacterium, 
Bacillus, Pseudomonas, Aeromonas, Alcaligenes, and Staphylococcus, 
Enterobacter, Micrococcus, Corynebacterium, Flavobacterium, etc. in the 
crab gut. 

Antimicrobial assay 

The antagonistic activities of the test organisms against E. coli and 
S. aureus were observed for 24–48 h, and all test cultures showed zones 
of inhibition around the disks. The clearing zones ranged from 10 to 14 
mm in all tested organisms, compared to the control disks (Table 2; 
Supplementary files: S1 & S2). The bacterial strains tested against 
C. albicans showed no significant activity after 72 h of incubation. 

Antagonistic activity is one microorganism’s ability to inhibit 
another organism’s growth or activity. Marine bacteria can exhibit 
antagonistic activity towards other microorganisms, including bacteria, 
fungi, and viruses. This activity can be attributed to producing various 
secondary metabolites, such as antibiotics, enzymes, and bioactive 
compounds, with potential applications in developing new drugs and 
therapies for multiple diseases. The antimicrobial substances produced 
by microorganisms include organic acids, diacetyl, hydrogen peroxide 
alone or in combination, biocides, probiotics, and sterilants [45,46]. In 
this study, A. variabilis, S. arlettae, and V. fluvialis exhibited antagonistic 
activities against standard E. coli and S. aureus but no activity against the 
fungal pathogen C. albicans. Shtenikov et al. [47]. reported isolating 
three aerobic, spore-forming bacilli of genera Bacillus, Priestia, and 
Paenibacillus from deep-sea bottom sediments of the Black Sea that 
exhibited antagonistic activities against standard strains of E. coli and 

Fig. 1. Neighbor-joining phylogenetic tree of 16S rRNA genes of NRPS- and PKS-positive strains from mud crabs. The sequences used in the present study are boxed 
[FKP2–4_ Acinetobacter variabilis, FKP2–16_ Staphylococcus arlettae, FKP4–1_ Vagococcus fluvialis]. Numbers adjacent to the names of the organisms represent their 
accession numbers, and the numbers near the nodes in the tree represent bootstrap values from 1000 replicates. 
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S. aureus. Patel et al. [48] isolated nine pigment-producing bacterial 
strains from Arabian Sea water samples, and four isolates (NP5, NP6, 
NP8 & NP9) among them showed good antibacterial activity against the 
different bacterial cultures (Bacillus cereus, E. coli, Vibrio cholera, Bacillus 
subtilis, Staphylococcus aureus, and Bacillus megaterium). Among these 
four isolates, NP9 showed the highest antibacterial activity against all 
test cultures and was later identified as Candidatus chryseobacterium 
massiliae. 

Exopolysaccharide production 

The marine organisms surviving in extreme ecological conditions 
develop new adaptive strategies, including synthesizing secondary me-
tabolites, to continue to exist in the surrounding microenvironment [31, 
33,49]. Among these metabolites, exopolysaccharides play essential 
physiological roles in protecting cells from desiccation, predation, os-
motic stress, and antimicrobial effects [50]. As a result, these poly-
saccharides have various industrial applications, including biosorbents, 
binders, coagulants, emulsifiers, stabilizers, gelling agents, thickeners, 
and viscosifiers [51]. 

Microbial exopolysaccharides are biopolymers that are secreted by 
microbial cells as loosely bound slimes associated with the cell surface 
[52]. The quantity and composition of microbial EPS produced depend 
on the species and culture conditions of the organism, as shown by 
several studies [53]. The composition of EPS has a variety of organic and 
inorganic substances with structural variables like either homo-
polysaccharides such as dextran, mutan, and levan or hetero-
polysaccharides [54]. 

Poli et al. [50]., in a review, enlisted exopolysaccharide-producing 
various bacterial species isolated from different marine environments, 
such as microorganisms isolated from marine hot springs and hydro-
thermal vents (species of Pseudoalteromona, Alteromonas, Thermococcus, 
etc.), cold marine environments (species of Pseudoalteromonas, Colwellia 
psychrerythraea etc.), and hypersaline marine environments (species of 
Haloferax, Hahella, Halomonas, etc.). However, in our study, none of the 
cultures showed signs of mucus or slime production on the ZMA plates 
after overnight incubation. In our study, the test strains were streaked 
onto ZMA supplemented with 5% sucrose as an additional carbon source 
and incubated at 30◦C for 24 h. Colonies were well isolated, but none 
exhibited any signs of mucous or slimy nature after overnight 
incubation. 

Conclusion 

The bacterial strains isolated from the gut of mud crab Scylla serrata 
have the potential to produce bioactive secondary metabolites with 
antagonistic, antimicrobial, or biological properties because of the 
presence of antimicrobial biosynthetic gene clusters such as NRPS and 
PKS. To analyze the antagonistic activity against pathogenic microbes, 
the antimicrobial properties of these bacterial strains should be inves-
tigated as they were positive for biosynthetic gene clusters. Hence, the 
NRPS/PKS genes will be cloned for sequencing and characterized those 
genes for their antimicrobial properties using in-silico approaches such 
as the discovery of the domain ’A,’ consisting of conserved motifs. Our 
future goals will be the expression and characterization of these, as there 
has been no definitive research on NRPS/PKS diversity in the gut 
microbiota of crabs. 
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