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Abstract: Background: Fluoropyrimidine is widely used owing to its clinical efficacy, however,
patients with dihydropyrimidine dehydrogenase (DPD) deficiency can experience fluoropyrimidine-
associated toxicity. The dihydropyrimidine dehydrogenase (DPYD) gene encodes DPD, and studies
suggest that DPYD polymorphisms can result in DPD deficiency. Since there is not a complete
consistency of how much the risk of complication is elevated, we aimed to conduct a systematic
literature review and a meta-analysis to provide the risk of fluoropyrimidine-associated toxicity
in patients with DPYD rs1801160 polymorphism. Methods: We searched for qualifying studies
published before October 2021 from PubMed, Web of Science, and EMBASE based on Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Odds ratios
(ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association
between rs1801160 polymorphism and toxicities. A sensitivity analysis using the leave-one-out
method was performed on the overall toxicity. Results: The pooled OR for overall toxicity in the
patients with A allele was elevated 1.73 times higher than those with the GG genotype (95% CI
1.44–2.07). Sensitivity analysis yielded similar results, showing the robustness of the result. Subjects
with variants showed a 2.37-fold increased hematological toxicity (95% CI 1.48–3.81); especially a
1.87-fold increased neutropenia compared to patients with wildtype (95% CI 1.49–2.34). Patients with
A allele revealed 1.22 times higher gastrointestinal toxicity compared to those with GG genotype
(95% CI 0.93–1.61), and among gastrointestinal toxicity, the risk of diarrhea was elevated 1.43 times
higher in those with variants than patients with wildtype (95% CI 1.12–1.83). Conclusions: rs1801160
polymorphism is associated with elevated fluoropyrimidine-associated toxicity. Therefore, rs1801160
can be a potential candidate for DPD deficiency screening prior to fluoropyrimidine-based regimen.

Keywords: fluoropyrimidine; dihydropyrimidine dehydrogenase; DPYD; toxicity; meta-analysis

1. Introduction

For several decades, cancer has remained one of the most devastating diseases in-
flicted on mankind, undoubtedly being one of the leading causes of death. It is expected
that by 2040, the number of cancer-related deaths would exceed a stunning 16 million
cases [1]. Thus, it is natural that scientists around the world have attempted to tackle this
seemingly impregnable ailment, yielding various treatment methods. One such medication
class is fluoropyrimidine, an antimetabolite that has become one of the most frequently
prescribed chemotherapeutic medications [2]. While higher response rates and modest
efficacy have been reported in patients receiving fluoropyrimidine-based regimens [3],
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the existence of post-therapeutic toxic reactions has raised concerns in the medical commu-
nity. Such fluoropyrimidine-induced toxicities include gastrointestinal reaction, mucositis,
nervous system toxicity, and cardiotoxicity. These complications are not extremely common
but may be serious and lead to harmful consequences. Hence, monitoring drug-induced
toxicities in patients taking fluoropyrimidine would be prudent and critical.

The dihydropyrimidine dehydrogenase gene (DPYD) encodes the dihydropyrimi-
dine dehydrogenase (DPD) enzyme, which plays a vital role in the metabolic catabolism
of fluoropyrimidine [4]. Studies have already shown that DPD deficiency can cause se-
vere toxicity in patients receiving fluoropyrimidine-based regimens; failure to degrade
fluoropyrimidine may exacerbate side effects including myelosuppression or hand-foot
syndrome [5,6]. Since genetic variants in the DPYD gene may cause DPD deficiency [7],
researchers have previously proposed the usefulness of genetic screening for DPD defi-
ciency in patients undergoing fluoropyrimidine-based therapy. Although many genetic
variants in the DPYD gene are known to affect DPD activity, specific variants associated
with fluoropyrimidine-induced toxicity are still being investigated.

rs1801160 of DPYD, a missense single nucleotide polymorphism (SNP), is known to
be associated with severe toxicity accompanying fluoropyrimidine-based regimens. Pre-
vious researches have shown the association between rs1801160 polymorphism and the
aforementioned drug-induced complications; however, the results across studies failed to
show consistency. Therefore, the present study aimed to investigate the possible associ-
ation between rs1801160 polymorphism and fluoropyrimidine-induced toxicity through
a systematic literature review and meta-analysis.

2. Methods
2.1. Search Strategy

Two investigators independently performed a systematic search for all studies pub-
lished before 18 October 2021 using PubMed, Web of Science, and EMBASE. The following
search terms were included: (DPYD OR DPD OR (dihydropyrimidine dehydrogenase))
AND (polymorph* OR variant* OR mutation* OR genotyp* OR phenotyp* OR haplotyp*
OR allele* OR SNP* OR pharmacogen* OR rs1801160 OR Val732Ile OR 2194G>A) AND
(toxicity OR adverse OR side-effects OR (adverse effects)). Once duplicates were removed,
initial screening through the titles and abstracts were performed to pinpoint potential
studies for analysis. Subsequently, a full-text review was carried out to finalize studies to
include in this study according to the eligibility criteria.

2.2. Inclusion and Exclusion Criteria

Studies were included if they (1) were randomized controlled trials (RCT) or cohort
studies; (2) included patients receiving fluoropyrimidine-based regimens; (3) evaluated
the association of rs1801160 SNP with toxicity; (4) included applicable data on genotype in
both cases and controls; or (5) published in English. Studies were excluded if they were
(1) reviews, comments, letters, updates, news, editorials, conference or meeting abstracts,
case reports, or case series; (2) in vitro or animal studies; (3) unable to extract genotype;
or (5) unable to provide appropriate data.

2.3. Data Extraction

The following information was collected from each study: the last name of the first
author, year of publication, the number of patients, country, the mean of participants’ age,
percentage of female subjects, cancer type, treatment regimen, the definition of toxicity,
and genotype.

2.4. Quality Assessment

The methodologic quality of the selected studies was evaluated using the Newcastle–
Ottawa Scale (NOS). The NOS contains three components (subject selection; comparabil-
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ity of study groups; and exposure or outcome), and each study can attain a maximum
score of 9.

2.5. Statistical Analysis

The odds ratio (OR) with 95% confidence intervals (CIs) was calculated to evaluate the
association between toxicity and polymorphism. I2 was used for heterogeneity evaluation
among studies. When heterogeneity was high (I2 > 50%), the random-effects model was
applied. If I2 was less than or equal to 50%, the fixed-effects model was applied.

To identify publication bias, both Egger’s and Begg’s regression tests of the funnel
plot were generated. A p-value less than 0.05 was considered statistically significant.
Statistical analyses and publication bias were performed using Review Manager (RevMan)
version 5.4 (The Cochrane Collaboration, Copenhagen, Denmark) and RStudio software
(version 4.0.0; RStudio: Integrated Development for R, Boston, MA). This meta-analysis was
written based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines.

3. Results

A flow diagram of the literature search and selection process is depicted in Figure 1.
A total of 1304 records were initially searched from PubMed (n = 507), Web of Science
(n = 625), and EMBASE (n = 172). After excluding duplicates (n = 473) and irrelevant
studies (n = 768), 63 records were selected for full-text review, and 57 records were excluded
due to the following reasons: not related to toxicity outcome (n = 17), not related to
polymorphisms of rs18001160 (n = 24), pharmacokinetic studies (n = 6), case reports (n = 3),
not involving fluoropyrimidine-based regimens (n = 4), or unable to extract data (n = 3).
Ultimately, six studies were included in this meta-analysis [8–13].
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The baseline characteristics of the included studies are displayed in Table 1. The studies
were published between 2009 and 2019, and all of them were conducted in Europe. Pa-
tients with various cancer types, including colorectal, breast, and gastric cancers, were in-
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cluded in this study. Studies with the fluoropyrimidine-based regimen including FOLFOX4
(5-fluorouracil, leucovorin, and oxaliplatin) were evaluated.

Table 1. Characteristics of studies included.

Authors
Number

of
Patients

Country Age
(Years)

Female
(%) Cancer Type Treatment

Regimen
Definition of

Outcome
Total
NOS

Kleibl,
2009 [8] 124 Czech

Republic N/A N/A

orofacial,
esophageal, gastric,
cololectal, biliary,

pancreatic,
pharyngeal, or
breast cancer

fluoropyrimidine-
based regimens NCI-CTCAE 7

Deenen,
2011 [9] 568 Netherlands median

63 39% advanced
colorectal cancer

fluoropyrimidine-
based regimens

NCI-CTCAE,
version 3.0 7

Boige,
2016 [10] 2559

Multiple
sites in
Europe

median
60 42.40% resected stage III

colorectal cancer

FOLFOX4 every 2
weeks (1 cycle)
with (armB) or

without
(arm A) cetuximab

NCI-CTCAE,
version 3.0 7

Pellicer,
2017 [11] 319 Spain median

65 47.30% colorectal cancer a capecitabine-
containing regimen

NCI-CTCAE,
version 4.0 7

Madi,
2018 [12] 2183 UK and

Ireland N/A N/A advanced
colorectal cancer

fluoropyrimidine-
based regimens N/A 7

Iachetta,
2019 [13] 366 Italy N/A N/A

colon, gastric,
rectum, pancreas,

anus, breast,
esophagus, bile
duct, head and
neck, uterine

cervix,
or valvular cancer

fluoropyrimidine-
based regimens

NCI-CTCAE,
version 4.0 7

UK: United Kingdom; FOLFOX4: 5-fluorouracil, leucovorin, and oxaliplatin; NCI-CTCAE: national cancer
institute-common terminology criteria for adverse events; NOS: Newcastle–Ottawa scale.

Figure 2a shows the ORs with 95% CIs for the association between the rs18001160
polymorphism in the DPYD gene and the risk for overall fluoropyrimidine-associated
toxicity. Overall meta-analysis with six studies indicated that the rs18001160 polymorphism
was associated with increased toxicity (OR 1.73, 95% CI 1.44–2.07, p < 0.001). Since there
was no heterogeneity between the included studies (I2 = 30%), the fixed-effects model
was used to calculate the effect size. The funnel plot was symmetrical (Figure 2b) and
Egger’s and Begg’s tests did not show evidence for publication bias in this meta-analysis
(Egger’s test, p = 0.352; Begg’s test, p = 0.573). The sensitivity analysis showed similar
results, suggesting that no one study predominantly affected the pooled results (Table 2).
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Figure 2. (a). Forest plot of the association between fluoropyrimidine-induced overall toxic-
ity and DPYD polymorphism (b). Funnel plot of fluoropyrimidine-induced overall toxicity and
DPYD polymorphism.

Table 2. Sensitivity analysis by sequentially excluding each study from the meta-analysis.

Excluded Study Heterogeneity I2 (%) Statistical Model Odds Ratio
(95% CI)

None 30 Fixed 1.73 (1.44, 2.07)
Kleibl, 2009 42 Fixed 1.71 [1.42, 2.06]

Deenen, 2011 32 Fixed 1.78 [1.47, 2.14]
Boige, 2016 44 Fixed 1.75 [1.40, 2.19]

Pellicer, 2017 40 Fixed 1.70 [1.41, 2.05]
Madi, 2018 31 Fixed 1.49 [1.09, 2.02]

Iachetta, 2019 0 Fixed 1.62 [1.34, 1.96]
CI: confidence interval.

For specific toxicity analyses, gastrointestinal toxicity, hematological toxicity, neu-
tropenia, and diarrhea were analyzed. As presented in Figure 3, hematological toxicity,
neutropenia, and diarrhea involved three studies and suggested that the rs18001160 poly-
morphism was associated with approximately 2.4-, 1.9-, and 1.4-fold elevated toxicities,
respectively (95% CI 1.48–3.81, 1.49–2.34, and 1.12–1.83, respectively).
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4. Discussion

The main finding of this study is that subjects with the A allele of rs1801160 showed
an approximately 1.72-times elevated risk of fluoropyrimidine-associated overall toxicity
compared to those with the GG genotype (95% CI 1.44–2.07, p < 0.01). Neither Egger’s
test nor Begg’s test showed significant publication bias (Egger’s test, p = 0.352; Begg’s
test, p = 0.573). The sensitivity analysis yielded similar results, indicating that the results
were robust. Specific types of toxicity, including gastrointestinal toxicity, hematological
toxicity, neutropenia, and diarrhea, showed the same trend with ORs of 1.22, 2.37, 1.87,
and 1.43, respectively.

About 1% to 3% of the fluoropyrimidine metabolite is cytotoxic; fluorodeoxyuridine
monophosphate forms a ternary complex with thymidylate synthase and 5,10-methylene
tetrahydrofolate, resulting in the inhibition of DNA synthesis. DPD is known to con-
vert approximately 80% to 85% of fluoropyrimidine into inactive dihydrofluorouracil
(DHFU) through hepatic metabolism [14]; this is the rate-limiting step in fluoropyrimidine
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metabolism. DHFU is then converted to fluoro-β-ureidopropionate by dihydropyrim-
idinease and further changed to fluoro-β-alanine by β-ureidopropionase [15,16]. For those
with DPD deficiency, inadequate metabolism and the subsequently reduced inactivation of
fluoropyrimidine may result in fatal toxicity [17]. Several meta-analyses were conducted to
investigate associations between DPYD polymorphisms and the complications in patients
undergoing fluoropyrimidine-based regimens. For instance, Meulendijks et al. showed
that DPYD polymorphisms rs55886062, rs75017182, and rs56038477 were associated with
an increased risk of fluoropyrimidine-associated toxicity [18]. In addition, Terrazzino et al.
confirmed that polymorphisms rs3918290 and rs67376798 were risk factors for the develop-
ment of complications in patients on fluoropyrimidine-based therapy [19].

The prevalence of partial and complete DPD deficiency range from 3 to 15% and 0.1 to
0.5%, respectively [20]. Currently, there is no mandatory DPD deficiency screening prior to
fluoropyrimidine-based therapy; however, studies including those by the Group of Clinical
Pharmacology in Oncology (GPCO)-UNICANCER and the French Network of Pharmaco-
genetics (RNPGx) recommend screening for DPD deficiency before fluoropyrimidine-based
regimens to prevent the various aforementioned complications [21]. Therefore, it is of
paramount importance to further evaluate the association between SNPs of DPD-related
genes and fluoropyrimidine-induced complications via meta-analyses, increasing the num-
ber of observations and statistical power.

rs1801160 is a missense SNP in the coding region of the DPYD gene which can affect
DPD activity [22]. The minor allele frequencies of rs1801160 are 0.07 in Americans, 0.05 in
Europeans, 0.03 in Africans, and 0.02 in Asians [23,24]. Many studies have examined
the association between the rs1801160 polymorphism in DPYD and fluoropyrimidine-
associated toxicity. However, the risk of overall complications varied from 1.16-fold to
3.64-fold among studies. Li et al. conducted a meta-analysis in 2014 on several SNPs,
including rs1801160; however, only 2 studies with 628 subjects were included for the
analysis. Our meta-analysis updated those results, using 6 studies including more recent
data from a total of 5331 subjects.

This study showed that patients with the A allele had an approximately 2.4- and
1.9-fold increased risk of hematological toxicity and neutropenia, respectively, compared to
those with the GG genotype. Hematological toxicity is one of the reasons for chemother-
apy discontinuation [25], while neutropenia is a fatal complication in chemotherapy [26].
These toxicities can be life-threatening to the patients and may require dose reduction or
treatment delay, resulting in unfavorable clinical outcomes. In this context, this study
provided a pooled estimate of fluoropyrimidine-associated toxicity risk in patients with
the A allele of rs1801160, opening possibilities of clinical modifications based on genotypic
profiles regarding fluoropyrimidine therapy.

This meta-analysis bears several limitations. First, all studies included in this meta-
analysis were conducted in the European population. As the allele frequencies of the
variants in Europeans (5%) are different from the variants in Asians (2%), further investiga-
tion should be assessed to generalize the present results to other ethnic groups. Second,
due to limited data availability, critical toxicities including cardiotoxicity could not be
analyzed. Third, some confounding factors that could affect the risk of toxicities could not
be adjusted for. In general, cancer patients generally take more than one class of medication;
hence, co-medications may have affected the study results. Furthermore, while tests did
not show evidence for publication bias, the possibility cannot be ruled out due to the low
sample size. Nevertheless, this study provided a candidate SNP for screening to prevent
fluoropyrimidine-induced complications through an improved estimate of the effect size of
the association. As a systematic review and meta-analysis on the rs1801160 polymorphism
and fluoropyrimidine-associated toxicity, this analysis may provide clinical evidence for fu-
ture considerations in the treatment and management of fluoropyrimidine-based regimens.
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