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Anticancer peptides are emerging anticancer drug that offers fewer side effects and is more effective than
chemotherapy and targeted therapy. Predicting anticancer peptides from sequence information is one of
the most challenging tasks in immunoinformatics. In the past ten years, machine learning-based
approaches have been proposed for identifying ACP activity from peptide sequences. These methods
include our previous method MLACP (developed in 2017) which made a significant impact on anticancer
research. MLACP tool has been widely used by the research community, however, its robustness must be
improved significantly for its continued practical application. In this study, the first large non-redundant
training and independent datasets were constructed for ACP research. Using the training dataset, the
study explored a wide range of feature encodings and developed their respective models using seven dif-
ferent conventional classifiers. Subsequently, a subset of encoding-based models was selected for each
classifier based on their performance, whose predicted scores were concatenated and trained through
a convolutional neural network (CNN), whose corresponding predictor is named MLACP 2.0. The evalu-
ation of MLACP 2.0 with a very diverse independent dataset showed excellent performance and signifi-
cantly outperformed the recent ACP prediction tools. Additionally, MLACP 2.0 exhibits superior
performance during cross-validation and independent assessment when compared to CNN-based embed-
ding models and conventional single models. Consequently, we anticipate that our proposed MLACP 2.0
will facilitate the design of hypothesis-driven experiments by making it easier to discover novel ACPs.
The MLACP 2.0 is freely available at https://balalab-skku.org/mlacp2.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cancer is one of the prominent threats to human health, and it
is often linked to a higher mortality rate as life expectancy
increases, both in developed and developing countries [1]. In
2018, the World Health Organization (WHO) and the International
Agency for Research on Cancer (IARC) reported that 18.1 million
new cases and 9.6 million deaths were caused by cancer [2]. Cancer
results from the uncontrolled proliferation of abnormal cells which
invade normal tissues and organs and multiply in an uncontrolled
manner [3]. The complexity and heterogeneity of cancer make its
treatment difficult. Hence, cancer therapy must focus primarily
on limiting the proliferation of cancer cells and inhibiting their
spread [4].

With traditional surgery, precise removal of the cancerous part
could not be guaranteed [5]. Radiotherapy, chemotherapy, and tar-
geted therapy are the most common treatment options for cancer.
In spite of this, these therapies are not very precise, as they fail to
differentiate cancer cells from healthy cells and result in both dam-
aging healthy cells and killing cancer cells. However, these thera-
pies are expensive and have negative side effects on patients
[6,7]. Furthermore, cancer cells can develop resistance to
chemotherapy drugs due to the fact that their genomes are chang-
ing dynamically [8]. Consequently, there is an urgent need to
develop a novel cancer treatment that is free of adverse effects,
reduces drug resistance, and specifically targets cancer cells.
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Antimicrobial peptides (AMPs) are a diverse class of bioactive
molecules that provide protection against bacteria, protozoa, fungi,
and viruses [9]. A subset of AMPs exhibiting potential anticancer
properties is referred to as anticancer peptides (ACPs), which are
short peptides whose sequence length does not exceed 50 amino
acid residues [10]. ACPs possess amphiphilic properties due to
the presence of hydrophobic and positive residues that interact
with the anionic membranes of cancer cells, selectively targeting
and killing them [11]. ACPs can target cancer cells based on the
membrane charge that forms an electrostatic interaction between
the membrane and the ACPs, thus leaving normal cells untouched.
This is the major advantage of using ACPs over currently available
approaches in cancer treatment [12,13]. Moreover, ACPs are natu-
rally biological inhibitors, and they are also easy to synthesize,
which makes them an ideal therapeutic agent to treat cancer
[13]. In light of this, peptide-based therapeutics have emerged as
a promising therapeutic agent for treating cancer compared to con-
ventional therapies because they are less toxic, highly specific, cap-
able of penetrating membranes, and easy to modify chemically
[14,15].

Several computational predictors have been proposed for the
identification of ACPs. Many of these methods have been reviewed
in recent literatures [16,17], including our previous method,
MLACP [18]. It was built using an imbalanced dataset, a linear inte-
gration of four different encodings, a support vector machine
(SVM), and a random forest (RF). The MLACP is widely used among
the research community, thus gaining popularity within the ACP
research community. The number of experimentally verified ACPs
is increasing exponentially; therefore, it is high time to update the
previous version utilizing advanced computational techniques,
thus increasing its accuracy and robustness.

The development of MLACP 2.0 involves the following steps: (i)
Created a high-quality non-redundant training dataset and inde-
pendent datasets based on extensive literature/database
searches. (ii) Systematically evaluated 17 different feature encod-
ings (including both conventional encodings and word embed-
dings) and built the corresponding model using seven different
conventional classifiers (RF, gradient boosting (GB), SVM, extreme
gradient boosting (XGB), AdaBoost (AB), light gradient boosting
(LGB), and extremely randomized tree (ERT)). (iii) For each classi-
fier, choose a subset of models based on certain criteria from 17
encoding-based models Matthews Correlation Coefficients (MCC)
greater than the average MCC of 17 encoding-based models. Subse-
quently, the predicted probability of ACPs from the seven classi-
fiers based on a subset of selected models was concatenated and
trained using a convolutional neural network (CNN) for the final
prediction, MLACP 2.0. Extensive benchmark experiments demon-
strate the effectiveness of MLACP 2.0: it achieves a more accurate
and stable performance compared with conventional single-
encoding models and CNN-based one-hot encoding and word
embedding models, on both the basis of cross-validation and inde-
pendent assessment. On an independent test, MLACP 2.0 signifi-
cantly outperformed the existing predictors. Using the proposed
hybrid ensemble model, a user-friendly online predictor of M-
LACP (https://balalab-skku.org/mlacp2/) is implemented.
2. Materials and methods

2.1. Construction of datasets

The objective of this study is to develop a prediction model
using existing methods datasets and to evaluate the proposed
model based on a newly constructed dataset. The training dataset
was constructed by extracting the existing 37 methods’ training
datasets and separating them into ACPs and non-ACPs [16,17].
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Notably, several methods used the same datasets, and therefore
some sequences are redundant. A CD-HIT [19] of 0.8 was applied
among ACPs, which resulted in 1084 peptide sequences. The same
cut-off was applied to non-ACP samples whose sequences overlap-
ping with ACPs resulted in � 7500 sequences. However, we ran-
domly selected 1084 non-ACPs to avoid class bias during the
model building and balanced the ACPs. This is the first time such
a large non-redundant dataset has been used for training or model
building in ACP prediction research.

Independent dataset: ACPs were extracted from the following 11
databases, CancerPPD [20], APD3 [21], PlantPepDB [22], DBAASP
v3.0 [23], SATPdb [24], ADAM (https://bioinformatics.cs.ntou.edu.
tw/ADAM), DRAMP 3.0 [25,26], LAMP [27], Peptipedia [28], DbAMP
[29], and AMPfun [30], resulting in 3725 ACPs. Secondly, a CD-HIT
of 0.80 was applied to the collected ACPs that overlapped with the
training ACP sequences, resulting in 769 sequences. Unlike previ-
ous studies, where random peptides were considered as non-
ACPs, we considered other functional peptides (antihypertensive
and antiviral, etc.), a small portion of random peptides, AMPs,
and non-AMPs, and experimentally confirmed non-
proinflammatory inducing peptides as non-ACPs, resulting 1287
non-redundant non-ACPs. This independent dataset can be used
as a gold standard for evaluating future ACP prediction models.
Furthermore, the supplementary information includes a brief
description of the dataset length distribution and compositional
analysis.
2.2. Feature encodings

The process of exploring different feature encodings on the
same dataset is essential to understand and identify the appropri-
ate encodings. Keeping this in mind, a wide range of features were
used in this study, including 15 conventional encodings (dipeptide
composition (DPC), dipeptide deviation from the expected mean
(DDE), amino acid composition (AAC), composition transition and
distribution (CTDC, CTDT, and CTDD), grouped DPC (GDPC),
enhanced grouped AAC (EGAAC), grouped tripeptide composition
(GTPC), BLOSUM62 (BLOS), enhanced AAC (EAAC), K-spaced con-
joint triad (KSC), quasi sequence order (QSO) composition of k-
spaced amino acid group pairs (CKSAAGP), and Z scale) and two-
word embeddings are one-hot encoding (1OHE) and pretrained
embedding from seq2vec. Among these 17 encodings, 11 encod-
ings (AAC, CKSAAGP, CTDC, CTDD, CTDT, DDE, DPC, KSC, QSO,
1OHE, and seq2vec) are the most important and contributed signif-
icantly to the ACP prediction. Notably, nine of the conventional
encodings contributed to the final prediction, whose encoding
details are extensively described in our previous studies [31].
Using the same procedure AAC, CKSAAGP, CTDC, CTDD, CTDT,
DDE, DPC, KSC, QSO encoded 20, 275, 39, 195, 39, 400, 400, 343,
100 D feature vectors, respectively. Notably, these features have

been normalized as follows: Xnorm ¼ x�minðxÞ
max xð Þ�minðxÞ. A brief descrip-

tion of these word embeddings is as follows:
2.3. 1OHE

The one-hot encoding method is quite popular among binary
encoding techniques. The maximum length of peptides in our data-
set is 50 amino acids. If the residues are<50 amino acids, a dummy
residue X is added to the C-terminus. Therefore, each amino acid is
represented by a 21-dimensional feature vector, where the stan-
dard amino acid is characterized by 1 at various positions and zero
at the remaining 20 positions. Dummy residues, on the other hand,
consist entirely of zeros. This resulted in a 1050-D feature vector.

https://balalab-skku.org/mlacp2/
https://bioinformatics.cs.ntou.edu.tw/ADAM
https://bioinformatics.cs.ntou.edu.tw/ADAM
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2.4. Seq2vec

We utilized seq2vec’s pretrained embeddings to achieve the
concept of transfer learning. Heinzinger et al. developed pretrained
embeddings by training the ELMo model using millions of protein
sequences extracted from UniRef50. For this study, we used the
same pretrained embeddings that provide a 1024 D feature vector
for a given peptide sequence.
2.5. MLACP 2.0 framework

The MLACP 2.0 framework (Fig. 1) was developed using the
training dataset and feature encodings mentioned above, and it
consists of constructing baseline models and developing a meta-
predictor.

Construction of baseline models: We utilized seven different clas-
sifiers (RF, ERT, SVM GB, AB, LGB, and XGB) that have been exten-
sively applied in Bioinformatics and computational biology [32–
37]. For each classifier, there are a set of hyperparameters that
determine the performance of the model during cross-validation.
We optimized the hyperparameters using a grid search approach
and 10-fold cross-validation. To construct each baseline model,
10-fold cross-validation was repeated five times with random por-
tioning of the training samples, and the median parameters were
taken as the final optimal values. These values were then used to
construct the final baseline model. The hyperparameters search
range for each classifier is as follows: (i) LGB seven hyperparame-
ters are: num_leaves 2 ½ 50 to 1000] with an interval of 20, max_-
bins 2 [200 to 400] with an interval of 10, n_estimators 2 [100 to
Fig. 1. Overview of MLACP 2.0. The process consists of three stages: preprocessing of
different classifiers, and the creation of the final meta-model.
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2000] with an interval of 10, min_child_samples 2[30 to 400] with
an interval of 10, max_depth 2[5 to 12] with an interval of 1, learn-
ing_rate 2 [10-6 to 10-1], and bagging fraction is 0.8. (ii) RF and ERT
have the same hyperparameters with different model construction
procedures, whose search ranges are: n_estimators 2 [50, 75, . . .,
3000], max_features 2 [1, 2, . . .,20], and min_samples_split 2 [2,

3, . . .,10]. (iii) SVM two hyperparameters are C 2 2�15;215
h i

with

a step size of 2 and c 2 2�15;23
h i

with a step size of 2-1. (iv) AB

three hyperparameters are: n_estimators 2 [10, 20, . . ., 500], max_-
depth 2 [1, 2, . . ., 11], and learning_rate 2 [1, 0.5, 0.25, 0.1, 0.05,
0.01]. (v) GB hyperparameters search ranges are n_estimators 2
[10, 20, . . ., 500], learning_rate 2 [1, 0.5, 0.25, 0.1, 0.05, 0.01], and
max_features 2 [1, 2, . . .,10]. (vi) four XGB hyperparameters are:
n_estimators 2 [10, 20, . . ., 2000], max_depth 2 [1, 2, . . ., 11]; learn-
ing_rate 2 [1.0, 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.2, 0.3], and
eta 2 [0.0001, 0.001, 0.002, 0.01, 0.02, 0.05, 1.0]. Notably, the
names of hyperparameters are derived from those given in their
corresponding package. This work implemented the scikit-learn
version 0.24.2 [38] library for five classifiers (SVM, RF, GB, AB,
and ERT) lightGBM version 3.3.0 [39], and XGBoost version 0.82
python package to carry out the classification task.

Finally, a total of 119 baseline models were generated, and a set
of models was selected based on the following criteria: (i) com-
puted cumulative score (CS) of Mathews correlation coefficient,
accuracy (ACC), and area under the ROC curve (AUC) for each base-
line model. (ii) selected a set of baseline models for each classifier,
whose CS is greater than the mean CS. Consequently, this filtering
resulted in 67 baseline models. The predicted probability values of
the data, feature extraction and the construction of a baseline model using seven
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the selected models (67D) are used for the development of the
meta predictor.

Construction of meta-predictor: A similar CNN network architec-
ture was adopted based on recent studies [40,41]. However, we
optimized four filters, epochs, and batch size using 10-fold cross-
validation. Specifically, the predicted probability of 67D feature
vector input to four 1D convolutional layers. The kernel sizes asso-
ciated with these layers are 4, 5, 6, and 7, with corresponding filters
of 20, 8, 32, and 8, respectively. After the convolutional operation,
the activation function of the rectified linear unit (ReLU) was
applied, which can be described as follows:

ReLu xð Þ ¼ max 0; xð Þ ¼ x if x > 0
0 else

�
ð1Þ

For each of the four 1D convolutional layers, 20, 8, 32, and 8 fea-
ture maps were generated. Following each 1D convolutional layer,
a 1D Global Max Pooling layer was applied, whose purpose was to
find the maximum values from the feature maps that were con-
verted to univariate feature vectors and concatenated subse-
quently. Additionally, a dropout rate of 0.5 is used for the
independent component layer. Then, three dense layers of 32, 16,
and 8 neurons, respectively, were applied with the ReLU activation
function. Finally, a dense layer composed of a single neuron with a
sigmoid function is applied, which produces a value between 0 and
1. If the value is greater than 0.5, the peptide belongs to ACP, other-
wise non-ACP. Adam optimization was used to update the network
weights. Notably, CNNwas implemented using Keras deep learning
library [42].

Sigmoid xð Þ ¼ 1
1þ e�x

ð2Þ
2.6. Model evaluation

Furthermore, we considered the commonly used six evaluation
metrics to evaluate the model performance [16,43], including MCC,
Sensitivity (Sn), Specificity (Sp), ACC, and AUC. The definition of the
metrics is as follows:

Sn ¼ TP
TPþFN

Sp ¼ TN
TNþFP

ACC ¼ TPþTN
TPþTNþFNþFP

MCC ¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFNÞðTPþFPÞðTNþFPÞðTNþFNÞ

p

8>>>>><
>>>>>:

ð3Þ

where TP, TN, FP, FN, respectively denote true positives, true nega-
tives, false positives, and false negatives. Furthermore, ROC curves
and AUC values were used to assess overall performance.

3. Results and discussion

3.1. Construction of baseline models

This study utilized 17 different encodings (QSO, seq2vec, AAC,
DPC, CTDC, CTDD, CTDT, CKSAAGP, KSC, DDE, 1OHE, EAAC, GTPC,
BLOS, ZSC, GPDC, and EGAAC) that mostly covered composition,
physicochemical properties, evolutionary information, word
embedding, and position-specific information. The discriminative
ability of each of these encodings was evaluated by seven different
conventional classifiers (RF, ERT, GB, AB, SVM, LGB, and XGB).
Table S1-S7 shows the performances of these encodings to each
classifier. Result shows that RF, ERT, GB, XGB, LGB, AB, and SVM
have ACC ranges of 72.0–83.0 %, 72.0–83.1 %, 71.3–83.5 %, 70.6–
82.5 %, 70.0–83.0 %, 71.7–82.8 %, 71.1–83.1 %, respectively. We
observed that roughly 10 % ACC gap between 17 baseline models
produced by each classifier. The QSO encoding achieved the best
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performance based on four classifiers and the seq2vec encoding
achieved the best performance based on two classifiers (XGB and
LGB). Generally, most ACP predictors demonstrated high accuracy
of >90.0 % in training datasets that contained homologous
sequences with high similarity [44,45]. While the best baseline
model (QSO-GB) achieved the maximum ACC of 83.5 %, it indicates
a drop in performance due to the highly non-redundant training
dataset, which may limit the overestimation of model
performance.

3.2. Construction of MLACP 2.0

It is likely that considering the 119 baseline models (17 baseline
models � 7 classifiers) for the final model construction is not
appropriate due to the performance gap of (�10 %) for each classi-
fier among 17 baseline models. Therefore, we calculated the aver-
age MCC from 17 baseline models for each classifier and then
considered only models whose performance was above average
MCC, resulting in 10 baseline models respectively from RF, GB,
LGB, and XGB, and 9 respectively from ERT, SVM, and AB. In total,
we obtained 67 baseline models, whose performance is shown in
Fig. 2, whose ACC is in the range of 0.800–0.835. Next, we exam-
ined how many unique encodings contributed to the 67 baseline
models. Out of 17 encodings, only 11 encodings (AAC, CKSAAGP,
CTDC, CTDD, CTDT, DDE, DPC, KSC, QSO, seq2vec, and 1OHE) con-
tributed to the selected baseline models, which are mostly
composition-based and word embeddings. The remaining six
encodings (EAAC, EGAAC, GTPC, GDPC, ZSC, and BLOS) based mod-
els were excluded because of their relatively lower performance
during the training. Based upon the selected baseline models, the
prediction probability of ACPs is concatenated and treated as a
novel feature vector, which is then trained with CNN to develop
the final prediction model. Notably, we also tested with the other
seven classifiers employed for the baseline model construction,
but CNN has the edge in terms of robustness (Figure S8). Hence,
we selected CNN for the meta-model construction, named MLACP
2.0. It achieved MCC, ACC, Sn, Sp, and AUC of 0.694, 0.846, 0.815,
0.876, and 0.915, respectively.

3.3. Comparison of MLACP 2.0 with different approaches to training
dataset

For the purpose of illustrating the advantages of using proba-
bilistic features in MLACP 2.0, we have also developed CNN-
based word embedding models, namely seq2vec-CNN and 1OHE-
CNN, as well as a CNN model based on hybrid features (a linear
integration of eleven encodings). Fig. 3 compares the performance
of MLACP 2.0 with the top five baseline models, CNN-based word
embeddings, and hybrid feature models. Compared to the best five
baseline models, the CNN-hybrid model performs similarly to the
best five baseline models, and significantly better than the CNN-
word embedding model, indicating that automated word embed-
ding features are not as effective as feature engineering in ACP pre-
diction. MLACP 2.0 outperforms the best five baseline models as
well as CNN-based models. More specifically, the improvements
of MLACP 2.0 are 2.3–10.3 % in MCC, 1.1–5.2 % in ACC, and 0.5–
4.8 % in AUC, demonstrating that a systematic approach to evaluat-
ing multiple encodings in tandem with the selection of a set of
baseline models utilized for meta-model construction led to
improved performance.

3.4. Evaluation of MLACP 2.0 and the state-of-the-art methods on an
independent dataset

The independent dataset was used to evaluate MLACP 2.0 along
with the previous version and the two best ACP predictors



Fig. 2. Performance comparison of the baseline models selected for each classifier. (A) random forest (RF), (B) gradient boosting (GB), (C) extremely randomized tree (ERT),
(D) light gradient boosting (LGB), (E) extreme gradient boosting (XGB), (F) AdaBoost (AB), and (G) support vector machine (SVM).

Fig. 3. Performance comparison of MLACP 2.0 with the top five baseline models and with other approaches based on the training dataset.
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(mACPpred and ACPpredStackL) [16,46]. Notably, two of the meth-
ods were reported to be the best predictors in previous studies by
unbiased evaluations. In contrast to the routine independent data-
sets used in previous studies, a challenging dataset was created.
Independent datasets have the following important characteris-
tics: (i) none of the ACPs share >80 % sequence identity with the
training dataset; and (ii) the non-ACPs were constructed consider-
ing several practical scenarios, including other functional peptides
and experimentally characterized negative examples. According to
Table 1, MLACP 2.0 achieves MCC, ACC, Sn, Sp, and AUC values of
0.513, 0.765, 0.750, and 0.773, and 0.817, respectively. In particu-
lar, MLACP 2.0 improved the MCC of 16.2–28.0 %, the ACC of 0.8–
Table 1
Performance of different methods on independent datasets.

Methods MCC Accuracy Sensiti

MLACP 2.0 0.513 0.765 0.750
MLACP 0.256 0.677 0.283
mACPpred 0.351 0.677 0.700
ACPredStackL 0.233 0.628 0.588
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13.7 %, and the AUC of 7.3–17.7 % compared to the existing predic-
tors. Furthermore, MLACP 2.0 predictor performance is more bal-
anced (low difference between Sn and Sp) when compared to the
existing predictors, demonstrating that MLACP 2.0 performs well
on unseen data and is better suited for practical applications.

It is difficult to obtain statistical estimates from the threshold-
based comparison described above. Consequently, we compared
two AUC values of different methods using ROC and calculated
the P value for observed differences based on the results of a
two-tailed test [47]. According to Fig. 4 and Table 1, the MLACP
2.0 outperformed the existing predictors on the independent data-
set by a significant amount. One limitation of the proposed method
vity Specificity AUC P-value

0.773 0.817
0.911 0.744 0.000003
0.663 0.704 <0.000001
0.651 0.640 <0.000001



Fig. 4. Comparison of binormal receiver operating characteristics (ROC) curves for
ACPs prediction using different methods on an independent dataset.
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is that it cannot predict peptides with more than 50 amino acid
residues.

3.5. Model interpretation

MLACP 2.0 was trained using the optimal probabilistic feature
vector. As a result, it performed better and more competitively
than the previous predictors. The contribution and directionality
of the probabilistic features contributed to the meta-model are
unknown. Based on a series of recent studies, we have conducted
a model interpretation analysis using SHapley Additive exPlana-
tion (SHAP) [48], in order to illustrate the most significant features
and their relationship with the outcomes of MLACP 2.0. Fig. 4
shows that MLACP 2.0 generates predictions in the form of line
charts above the heatmap matrix (f(x)), each feature’s global
importance is illustrated in the form of bar graphs on the right-
hand side of the heatmap, and the top 20 most important features
Fig. 5. A heatmap plot of the SHAP values for the top 20 probabilis
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are listed in order of their global importance. As shown in Fig. 5, we
observed that six baseline models based on QSO encoding, and
three baseline models based on 1OHE, CTDD, seq2vec, and
CKSAAGP encoding respectively contributed two baseline models,
four encodings (DDE, CTDC, KSC, and AAC) based their respective
model contributed the most in the final MLACP 2.0 prediction.
The importance of physicochemical properties has been high-
lighted in previous studies [49,50]. Our analysis also indicates that
CKSAAGP is one of the influential features in MLACP 2.0 perfor-
mance. Among the baseline model comparisons, QSOs had the best
performances compared to other encodings (Fig. 2). Therefore, it is
not surprising that these models contributed the most to MLACP
2.0. It is interesting to note that the SHAP analysis accurately iden-
tifies this phenomenon.

Moreover, t-Distributed Stochastic Neighbor Embedding (t-SNE)
was applied to reduce the multidimensional features to two-
dimensional plots to understand the relationship between two
classes for different encodings. As shown in Fig. 6, QSO and seq2vec
encodings (achieved superior performance among baseline mod-
els), where ACPs and non-ACPs overlap substantially. It is interest-
ing to note that such overlaps were significantly reduced in the
probabilistic features (Fig. 6). The pattern observed in the training
was the same on the independent dataset, although non-ACPs are
extremely diverse, demonstrating the robustness of our approach.
3.6. Webserver implementation

In order to make the MLACP 2.0 algorithm widely accessible to
users, a webserver has been developed, which can be found at
https://balalab-skku.org/mlacp2. The web server was built using
Django, Python, CSS, HTML, and JavaScript programming lan-
guages, as well as a PostgreSQL database for storage and retrieval
of job results. Users can find instructions on how to use MLACP
2.0 on the home page and it also includes links to the curated data-
sets used in the study. The user may upload a file containing mul-
tiple FASTA sequences or paste one or more query sequences in
FASTA format for prediction. The results of a successful job are dis-
played in a separate interface, where they can also be downloaded
in CSV format for later use. On the submission page, users can view
the results of previously completed jobs by entering the job ID into
the ’find job’ option.
tic features based on the training dataset for identifying ACPs.

https://balalab-skku.org/mlacp2


Fig. 6. The t-SNE distribution of the ACPs and non-ACPs in two-dimensional space. The pink and limegreen represent ACPs and non-ACPs, respectively. A–C represents the
QSO, seq2vec, and probabilistic features (67D) based on the training dataset. (D-F) show the corresponding distribution for the independent dataset. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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4. Conclusion

In this study, we developed an improved version of our previous
ACP predictor, named MLACP 2.0, based on peptide sequence infor-
mation. For the development of the second-generation tool, we
first constructed non-redundant training and independent datasets
based on extensive database and literature searches. It is notewor-
thy that this is the first study to use such a large non-redundant
dataset for modeling or training. Second, 17 different feature
encodings and seven different classifiers were employed to
develop a pool of baseline models. In the next step, a set of baseline
models was manually identified whose predicted ACP values were
integrated and trained with CNN to yield the final model.

Several factors contribute to the improved performance of
MLACP 2.0, including (i) a reduced training dataset coupled with
a meta-model approach; (ii) the predicted probabilistic features
have a high intrinsic discriminatory ability on both datasets, result-
ing in improved performance. Interestingly, this approach can be
extended to predict other peptide therapeutic functions [51–54].
Despite its promising performance, MLACP 2.0 also has room for
improvement. (i) A novel sequence-based encoding system that
is independent of composition and physicochemical properties
are expected to be developed and applied in the future. (ii) The
use of feature selection techniques [55–59] might help quantify
the contribution of each encoding to distinguishing ACPs and
non-ACPs. (iii) It may also be possible to develop ensemble deep
learning models or hybrid models (conventional and deep learning
models) [60] to improve the performance of ACPs when additional
datasets become available in the future.
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