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Abstract

Error-driven learning rules have received considerable attention because of their close relationships to both optimal theory
and neurobiological mechanisms. However, basic forms of these rules are effective under only a restricted set of conditions
in which the environment is stable. Recent studies have defined optimal solutions to learning problems in more general,
potentially unstable, environments, but the relevance of these complex mathematical solutions to how the brain solves
these problems remains unclear. Here, we show that one such Bayesian solution can be approximated by a computationally
straightforward mixture of simple error-driven ‘Delta’ rules. This simpler model can make effective inferences in a dynamic
environment and matches human performance on a predictive-inference task using a mixture of a small number of Delta
rules. This model represents an important conceptual advance in our understanding of how the brain can use relatively
simple computations to make nearly optimal inferences in a dynamic world.
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Introduction

Decisions are often guided by beliefs about the probability and

utility of potential outcomes. These beliefs are learned through

past experiences that, in stable environments, can be used to

generate accurate predictions. However, in dynamic environ-

ments, changes can occur that render past experiences irrelevant

for predicting future outcomes. For example, after a change in

government, historical tax rates may no longer be a reliable

predictor of future tax rates. Thus, an important challenge faced

by a decision-maker is to identify and respond to environmental

change-points, corresponding to when previous beliefs should be

abandoned and new beliefs should be formed.

A toy example of such a situation is shown in figure 1A, where

we plot the price of a fictional stock over time. In this example, the

stock price on a given day (red dots) is generated by sampling from

a Gaussian distribution with variance $1 and a mean (dashed black

line) that starts at $10 before changing abruptly to $20 at a change-

point, perhaps caused by the favorable resolution of a court case. A

trader only sees the stock price and not the underlying mean but

has to make predictions about the stock price on the next day.

One common strategy for computing this prediction is based on

the Delta rule:

dt ~xt{mt

mtz1~mtzadt

ð1Þ

According to this rule, an observation, xt, is used to update an

existing prediction, mt, based on the learning rate, a and the

prediction error, dt. Despite its simplicity, this learning rule can

provide effective solutions to a wide range of machine-learning

problems [1,2]. In certain forms, it can also account for numerous

behavioral findings that are thought to depend on prediction-error

signals represented in brainstem dopaminergic neurons, their

inputs from the lateral habenula, and their targets in the basal

ganglia and the anterior cingulate cortex [3–15].

Unfortunately, this rule does not perform particularly well in the

presence of change-points. We illustrate this problem with a toy

example in figure 1B and C. In panel B, we plot the predictions of

this model for the toy data set when a is set to 0.2. In this case, the

algorithm does an excellent job of computing the mean stock value

before the change-point. However, it takes a long time to adjust its

predictions after the change-point, undervaluing the stock for

several days. In figure 1C, we plot the predictions of the model

when a~0:8. In this case, the model responds rapidly to the

change-point but has larger errors during periods of stability.

One way around this problem is to dynamically update the

learning rate on a trial-by-trial basis between zero, indicating that

no weight is given to the last observed outcome, and one,

indicating that the prediction is equal to the last outcome [16,17].

During periods of stability, a decreasing learning rate can match

the current belief to the average outcome. After change-points, a

high learning rate shifts beliefs away from historical data and

towards more recent, and more relevant, outcomes.

These adaptive dynamics are captured by Bayesian ideal-

observer models that determine the rate of learning based on the

statistics of change-points and the observed data [18–20]. An

example of the behavior of the Bayesian model is shown in

figure 1D. In this case, the model uses a low learning rate in

periods of stability to make predictions that are very close to the
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mean, then changes to a high learning rate after a change-point to

adapt more quickly to the new circumstances.

Recent experimental work has shown that human subjects

adaptively adjust learning rates in dynamic environments in a

manner that is qualitatively consistent with these algorithms

[16,17,21]. However, it is unlikely that subjects are basing

these adjustments on a direct neural implementation of the

Bayesian algorithms, which are complex and computationally

demanding. Thus, in this paper we ask two questions: 1) Is

there a simpler, general algorithm capable of adaptively

adjusting its learning rate in the presence of change-points?

And 2) Does the new model better explain human behavioral

data than either the full Bayesian model or a simple Delta rule?

We address these questions by developing a simple approxi-

mation to the full Bayesian model. In contrast to earlier work

that used a single Delta rule with an adaptive learning rate

[17,21], our model uses a mixture of biologically plausible

Delta rules, each with its own, fixed learning rate, to adapt its

behavior in the presence of change-points. We show that the

model provides a better match to human performance than the

other models. We conclude with a discussion of the biological

plausibility of our model, which we propose as a general model

of human learning.

Methods

Ethics statement
Human subject protocols were approved by the University of

Pennsylvania internal review board. Informed consent was given

by all participants prior to taking part in the study.

Change-point processes
To familiarize readers with change-point processes and the

Bayesian model, we first review these topics in some detail and

then turn our attention to the reduced model.

In this paper we are concerned with data generated from

change-point processes. An example of such a process generating

Gaussian data is given in figure 2. We start by defining a hazard

rate, h, that in the general case can be variable over time but for

our purposes is assumed to be constant. Change-point locations

are then generated by sampling from a Bernoulli distribution with

this hazard rate, such that the probability of a change-point

occurring at time t is h (figure 2A). In between change-points, in

periods we term ‘epochs,’ the generative parameters of the data

are constant. Within each epoch, the values of the generative

parameters, g, are sampled from a prior distribution p(gDvp,xp), for

some hyper-parameters vp and xp that will be described in more

detail in the following sections. For the Gaussian example, g is

simply the mean of the Gaussian at each time point. We generate

this mean for each epoch (figure 2B) by sampling from the prior

distribution shown in figure 2C. Finally, we sample the data points

at each time t, xt from the generative distribution p(xtDg) (figure 2D

and E).

Full Bayesian model
The goal of the full Bayesian model [18,19] is to make accurate

predictions in the presence of change-points. This model infers the

predictive distribution, p(xtz1Dx1:t), over the next data point, xtz1,

given the data observed up to time t, x1:t~ x1,x2,:::,xtf g.
In the case where the change-point locations are known,

computing the predictive distribution is straightforward. In

particular, because the parameters of the generative distribution

are resampled independently at a change-point (more technically,

the change-points separate the data into product partitions [22])

only data seen since the last change-point are relevant for

predicting the future. Therefore, if we define the run-length at

time t, rt, as the number of time steps since the last change-point,

we can write

p(xtz1Dx1:t)~p(xtz1Dxtz1{rtz1:t)~p(xtz1Drtz1) ð2Þ

where we have introduced the shorthand p(xtz1Drtz1) to denote

the predictive distribution given the last rtz1 time points.

Assuming that our generative distribution is parameterized by

parameters g, then p(xtz1Drtz1) is straightforward to write down

(at least formally) as the marginal over g

p(xtz1Drtz1)~

ð
p(xtz1Dg)p(gDrtz1)dg ð3Þ

where p(gDrt)~p(gDxt{rtz1:t) is the inferred distribution over g

given the last rt time points, and p(xtDg) is the likelihood of the

data given the generative parameters.

When the change-point locations are unknown the situation is

more complex. In particular we need to compute a probability

distribution over all possible values for the run-length given the

observed data. This distribution is called the run-length distribu-

tion p(rtDx1:t). Once we have the run-length distribution, we can

compute the predictive distribution in the following way. First we

compute the expected run-length on the next trial, tz1; i.e.,

p(rtz1Dx1:t)~
Xt

rt~1

p(rtz1Drt)p(rtDx1:t) ð4Þ

where the sum is over all possible values of the run-length at time t

and p(rtz1Drt) is the change-point prior that describes the

dynamics of the run-length over time. In particular, because the

run-length either increases by one, with probability 1{h in

between change-points, or decreases to zero, with probability h at

a change-point, the change-point prior, p(rtz1Drt), takes the

following form

Author Summary

The ability to make accurate predictions is important to
thrive in a dynamic world. Many predictions, like those
made by a stock picker, are based, at least in part, on
historical data thought also to reflect future trends.
However, when unexpected changes occur, like an abrupt
change in the value of a company that affects its stock
price, the past can become irrelevant and we must rapidly
update our beliefs. Previous research has shown that,
under certain conditions, human predictions are similar to
those of mathematical, ideal-observer models that make
accurate predictions in the presence of change-points.
Despite this progress, these models require superhuman
feats of memory and computation and thus are unlikely to
be implemented directly in the brain. In this work, we
address this conundrum by developing an approximation
to the ideal-observer model that drastically reduces the
computational load with only a minimal cost in perfor-
mance. We show that this model better explains human
behavior than other models, including the optimal model,
and suggest it as a biologically plausible model for
learning and prediction.

Approximate Inference in Change-Point Problems
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Figure 1. An example change-point problem. (A) This example has a single change-point at time 20. (B) The Delta rule model with learning rate
parameter a~0:2 performs well before the change-point but poorly immediately afterwards. (C) The Delta rule model with learning rate a~0:8
responds quickly to the change-point but has noisier estimates overall. (D) The full Bayesian model dynamically adapts its learning rate to minimize
error overall. (E) Our approximate model shows similar performance to the Bayesian model but is implemented at a fraction of the computational
cost and in a biologically plausible manner.
doi:10.1371/journal.pcbi.1003150.g001

Approximate Inference in Change-Point Problems
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p(rtz1Drt)~

1{h if rtz1~rtz1

h if rtz1~0

0 otherwise

8><
>: ð5Þ

Given the distribution p(rtz1Dx1:t), we can then compute the

predictive distribution of the data on the next trial, p(xtz1Dx1:t) in

the following manner,

p(xtz1Dx1:t)~
Xtz1

rtz1~1

p(xtz1Drtz1)p(rtz1Dx1:t) ð6Þ

where the sum is over all possible values of the run-length at time

tz1.

All that then remains is to compute the run-length distribution

itself, which can be done recursively using Bayes’ rule

p(rtDx1:t) !p(xtDrt)p(rtDx1:t{1)

~p(xtDrt)
Pt{1

rt{1~1

p(rtDrt{1)p(rt{1Dx1:t{1)
ð7Þ

Substituting in the form of the change-point prior for p(rtDrt{1) we

get

p(rtDx1:t)!
(1{h)p(xtDrt)p(rt{1~rt{1Dx1:t{1) if rtw0

hp(xtD0) if rt~0

�
ð8Þ

Thus for each value of the run-length, all but two of the of the

terms in equation 7 vanish and the algorithm has complexity of

O(t) computations per timestep. Unfortunately, although this is a

substantial improvement compared to O(2t) complexity of a more

naı̈ve change-point model, this computation is still quite demand-

Figure 2. An example of the generative process behind a change-point data set with Gaussian data. (A) First, the change-point locations
(grey lines) are sampled from a Bernoulli process with known hazard rate h (in this case, h~0:05). (B) Next, the mean of the Gaussian distribution, g, is
sampled from the prior distribution defined by parameters vp and xp , p(gDvp,xp), (C) for each epoch between change-points (in this case, vp~0:1 and

xp~1). (D) Finally, the data points at each time step (xt) are sampled from a Gaussian distribution with the current mean and a variance of 1, p(xtDg),

shown in (E) for the mean of the last epoch.
doi:10.1371/journal.pcbi.1003150.g002
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ing. In principle, the total number of run-lengths we must consider

is infinite, because we must allow for the possibility that a change-

point occurred at any time in the past. In practice, however, it is

usual to introduce a maximum run-length, rmax, and define the

change-point prior here to be

p(rtz1Drt~rmax)~

1{h if rtz1~rmax

h if rtz1~0

0 otherwise

8><
>: ð9Þ

With this procedure, the complexity of the computation is

bounded but still can remain dauntingly high.

Efficient solution for exponential families. This inference

algorithm is particularly well suited to problems that involve

exponential family distributions (such as the Gaussian, Bernoulli,

or Laplace distributions) with a conjugate prior [23]. For these

cases, the predictive distribution given the run-length, p(xtDrt), can

be represented with a finite number of parameters, called sufficient

statistics, that are easily updated when new data arrive.

Specifically, we assume that xt is sampled from a distribution

with parameters g, p(xtDg), which can be related to p(xtDrt) as

p(xtDrt)~

ð
dgp(xtDg)p(gDrt) ð10Þ

If p(xtDg) is an exponential family distribution and we assume a

conjugate prior, then this equation is relatively straightforward to

compute. Specifically we assume that p(xtDg) has the form

p(xDg)~H(x) exp gT U(x){A(g)
� �

ð11Þ

where the forms of g, H(x), U(x) and A(g) determine the specific

type of exponential family distribution. For example, for a Gaussian

distribution with unknown mean, m, and known variance s, we have

g~
m

s2
; H(x)~

1ffiffiffiffiffiffi
2p
p

s
exp {

x2

2s2

� �
;

U(x)~x; A(g)~
m2

2s2

ð12Þ

We further assume that the generative parameters, g, are resampled

at each change-point from a conjugate prior distribution of the form

p(gDvp,xp)~ ~HH(g)exp gT xp{vpA(g){~AA(vp,xp)
� �

ð13Þ

where xp and vp are the prior hyperparameters and the forms of

~HH(g) and ~AA(vp,xp) determine the nature of the prior distribution.

For example, for a Gaussian prior distribution over g with

standard deviation s=
ffiffiffiffiffi
vp
p

and mean xp=vp, we set

~HH(g)~
1ffiffiffiffiffiffi
2p
p ; ~AA(vp,xp)~log

sffiffiffiffiffi
vp
p

 !
{

x2
p

2vps2
; ð14Þ

With this conjugate prior, the posterior distribution over the

parameters given the last rt data points, p(gDrt), has the same form

as the prior, p(gDvp,xp) and we can write

p(gDrt)~p(gDvrt
t ,x

rt
t )

~ ~HH(g)exp gT x
rt
t {v

rt
t A(g){~AA(x

rt
t ,v

rt
t )

� � ð15Þ

This posterior distribution, p(gDrt) (and thus also the likelihood

p(xtDrt) by equation 10), is parameterized by the sufficient statistics

v
rt
t and x

rt
t . Crucially, these statistics are straightforward to

compute, as follows

v
rt
t ~rtzvp ð16Þ

and

x
rt
t ~xpz

Pt
i~t{rtz1

U(xi) ð17Þ

Thus, v
rt
t is constant for a given run-length, and x

rt
t computes a

running sum of the most recent rt data points (transformed by

function U ).

It is useful to write the equation for xrt
t as an update rule; that is,

in terms of the sufficient statistics at an earlier time point. In

particular, for rtw1, we can write the update in terms of the

sufficient statistic at the previous time point and run-length; i.e.,

x
rt
t ~x

rt{1
t{1 zU(xt) ð18Þ

Dividing through by v
rt
t gives a Delta-rule update for the mean,

m
rt
t ~x

rt
t =v

rt
t :

m
rt
t ~m

rt{1
t{1 z

1

v
rt{1
t{1 z1

(U(xt){m
rt{1
t{1 ) ð19Þ

Note that in this case the learning rate, 1=(v
rt{1
t{1 z1), decays as the

run-length increases.

Graphical interpretation. The previous sections showed

that, for conjugate exponential distributions, the Bayesian

model needs to keep track of only the run-length distribution,

p(rtDx1:t), and the sufficient statistics, vrt
t and xrt

t , for each run-

length to fully compute the predictive distribution, p(xtz1Dx1:t).
This algorithm also has an intuitive interpretation in terms of

message passing on a graph (Figure 3A). Each node in this

graph represents a run-length, ri, with two properties: 1) the

sufficient statistics, vrt
t and xrt

t , associated with that run-length,

and 2) a ‘weight’ representing the probability that the run-

length at time t is ri; i.e., p(rt~ri Dx1:t). The weights of the

nodes are computed by passing messages along the edges of the

graph. Specifically, each node, ri, sends out two messages: an

‘increasing’ message to node riz1 that corresponds to an

increase in run-length if no change-point occurred,

(1{h)p(rtDx1:t), and 2) a ‘change-point’ message, to r1,

corresponding to a decrease in run-length at a change-point,

hp(rtDx1:t). The weight of node ri is then updated by summing

all of the incoming messages and multiplying it by p(xtz1Dri),
which implements equation 8.

Reduced model
Despite the elegance of the full Bayesian algorithm, it is

complex, requiring a memory of a large number (rmax) of

different run-lengths, which, in the worst case, is equivalent to

keeping track of all the past data. Thus, it seems an unlikely

model of human cognition, and a key question is whether

comparable predictive performance can be achieved with a

simpler, more biologically plausible algorithm. Here we

introduce an approximation to the full model that addresses

these issues. First we reduce the model’s complexity by

Approximate Inference in Change-Point Problems
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removing nodes from the update graph (Figure 3). Then we

transform the update equation for xrt
t into a Delta-rule update

equation in which the sufficient statistic on each node updates

independently of the other nodes. The resulting algorithm is a

biologically plausible mixture of Delta-rules that is able to

flexibly adapt its overall learning rate in the presence of change-

points and whose performance is comparable with that of the

full Bayesian model at a fraction of the computational cost.

Below we derive new update equations for the sufficient statistics

and the weights of each new node for this reduced model.

To more easily distinguish the full and reduced models, we use l
to denote run-length in the reduced model and r to denote run-

length in the full model. Thus, the reduced model has N nodes,

where node i has run-length li. The set of run-lengths, flig, are

ordered such that li{1vlivliz1. Unlike the full model, the run-

lengths in the reduced model can take on non-integer values,

which allows greater flexibility.

The first step in our approximation is to remove nodes from the

update graph. This step reduces the memory demands of the

algorithm but also requires us to change the update rule for the

sufficient statistic and the form of the change-point prior.

Consider a node with run-length li. In the full Bayesian model,

the sufficient statistic for this node would be

x
li
t ~xpz

Xt

t’~t{liz1

U(xt’)~x
li{1

t{1 zU(xt) ð20Þ

Note that this form of the update relies on having computed x
li{1

t{1 ,

which is the sufficient statistic at run length li{1. In the full

Bayesian model, this procedure is straightforward because all

possible run-lengths are represented. In contrast, the reduced

model includes only a subset of possible run-lengths, and thus a

node with run-length li{1 will not exist for some values of li.

Therefore, the reduced model must include a new method for

updating the sufficient statistic and a new form of the change-point

prior.

We first note that another way of writing the update for xli
t is as

x
li
t ~x

li
t{1zU(xt){U(xt{li

) ð21Þ

Figure 3. Schematic of algorithms. (A) Full Bayesian model. (B) Approximate model.
doi:10.1371/journal.pcbi.1003150.g003

Approximate Inference in Change-Point Problems
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This sliding-window update equation depends only on information

available at node li and thus does not rely on knowing the

sufficient statistic at node li{1. However, this update also has a

high memory demand because, to update the sliding window, we

have to subtract U(xt{li
), which we can only do if we keep track

of the previous li data points on each node.

In our model, we remove the dependence on xt{li , and hence

the additional memory demands, by taking the average of

equation 21. This procedure leads to a memoryless (yet

approximate) form of the update equation for each node. In

particular, if we take the average of equation 21 with respect to

xt{li , we have

vx
li
t wxt{li

~vx
li
t{1wxt{li

zU(xt){vU(xt{li
)wxt{li

&x̂x
li
t{1zU(xt){m

li
t{1

ð22Þ

where we have introduced x̂x
li
t &vx

li
t wxt{li

as the Delta-rule’s

approximation to the mean sufficient statistic and

m
li
t ~

x̂x
li
t

lizvp

ð23Þ

as the mean of the node. Dividing equation 21 by lizvp gives us

the following form of the update for the mean

m
li
t ~m

li
t{1z

1

lizvp

U(xt){m
li
t{1

� 	
ð24Þ

Note that this equation for the update of m
li
t is a Delta rule, just like

equation 1, with a fixed learning rate, ai~1=(lizvp). Thus, the

reduced model simply has to keep track of m
li
t for each node and

update it using only the most recent data point. This form of

update rule also allows us to interpret non-integer values of the

run-length, li, in terms of changes in the learning rate of the Delta

rule on a continuum. In figure 4 we show the effect of this

approximation on the extent to which past data points are used to

compute the mean of each node. The sliding window rule

computes the average across the last li data points, ignoring all

previous data. In contrast, the Delta rule computes a weighted

average using an exponential that decays over time, which tends to

slightly under-emphasize the contributions of recent data and

over-emphasize the contributions of distant data relative to the

sliding window.

Reducing the number of nodes in the model also requires us to

change how we update the weights of each node. In particular the

update for the weights, p(li Dx1:t), is given as

p(li Dx1:t)!p(xtDli)
PN
j~1

p(li Dlj)p(lj Dx1:t{1) ð25Þ

This equation is similar to equation 7 but differs in the number of

run-lengths available. Crucially, this difference requires an

adjustment to the change-point prior. The adjusted prior should

approximate the full change-point prior (Eq. 5) as closely as

possible. Recall that the full prior captures the fact that the run-

length either decreases to zero if there is a change-point (with prior

probability h) or increases by one if there is no change-point (with

prior probability 1{h).

To see how to compute this adjusted prior in the reduced

model, we first decompose the change-point prior into two terms

corresponding to the possibility that a change-point will occur or

not; i.e.,

p(li Dlj)~hp(li Dlj , change)z(1{h)p(li Dlj , no change) ð26Þ

where p(li Dlj , change) is the probability that the run-length is li
given that there was a change-point and that the previous run-

length was lj . Similarly p(li Dlj , no change) is the probability that

the run-length is li given that the previous run-length was lj and

there was not a change-point.

The change-point case is straightforward, because a change-

point always results in a transition to the shortest run-length; i.e.,

p(li Dlj , change) is zero, except when i~1 when it takes value 1.

The no change-point case, however, is more difficult. In the full

model the run-length increases by 1 when there is no change-

point, thus we would like to have

p(li Dlj , no change)~
1 if li~ljz1

0 otherwise

�
ð27Þ

However, because the nodes have variable spacing in the reduced

model, this form is not possible as there may be no node with a

run-length li~ljz1. We thus seek an approximation such that the

prior defines an average increase in run-length of 1 if there is not a

change-point. That is, we require

E(li Dlj , no change)~
XN

i~1

lip(li Dlj , no change)~ljz1 ð28Þ

For liwljz1 we can match this expectation exactly by setting

p(li Dlj , no change)~

ljz1{lj{1

ljz1{lj
if i~j

1
ljz1{lj

if i~jz1

0 otherwise

8>>><
>>>:

ð29Þ

For livljz1 we approximate p(li Dlj , no change) using

p(li Dlj , no change)~

0 if i~j

1 if i~jz1

0 otherwise

8><
>: ð30Þ

In this case we do not match the expected increase in run-length.

For the final node, j~N, it is impossible to transition to a longer

run-length and so we simply have a self transition with probability

1; i.e.,

p(li DlN , no change)~
1 if i~N

0 otherwise

�
ð31Þ

Taken together with equation 26, equations 29, 30 and 31 define

the change-point prior in the reduced model.

Like the full Bayesian model, our reduced model also has a

graphical interpretation. Again each node, li, keeps track of

two quantities: 1) the mean mli
t , computed according to

equation 24, and 2) the weight p(lt~li Dx1:t). As in the full

model, the weights are computed by passing messages along

the edge of the graph. However, the structure of the graph is

slightly different, with no increasing message being sent by

node lN and an extra ‘self’ message from li to itself. The

Approximate Inference in Change-Point Problems
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increasing message has weight

1
li{li{1

(1{h)p(li Dx1:t) for liwli{1z1

(1{h)p(li Dx1:t) otherwise
ð32Þ

the self message has weight

li{li{1{1

li{li{1
(1{h)p(li Dx1:t) (1{h)p(li Dx1:t) for liwli{1z1

(1{h)p(li Dx1:t) otherwise
ð33Þ

and the change-point message has weight

hp(li Dx1:t) ð34Þ

Finally the new weight for each node is computed by summing

all of the incoming messages to implement equation 25.

Results

In this section we present the results of simple simulations

comparing the reduced and full models, investigate the error

between the reduced model’s predictions and the ground truth and

use our model to fit human behavior on a simple prediction task

with change-points.

Simulations
First we consider the simplest cases of one and two nodes with

Gaussian data. These cases have particularly simple update rules,

and their output is easy to understand. We then consider the more

general case of many nodes to show how the reduced model

retains many of the useful properties of the full model, such as

keeping track of an approximate run-length distribution and being

able to handle different kinds of data.

One and two nodes. To better understand the model it is

useful to consider the special cases of one and two nodes with

Gaussian data. When there is only one node, the model has only

one run-length, l1. The update for the mean of this single node is

given by

m
l1
t ~m

l1
t{1z

1
l1zvp

(U(xt){m
l1
t{1)

~m
l1
t{1z

1
l1zvp

(xt{m
l1
t{1)

ð35Þ

where we have used the fact that, for Gaussian data with a known

variance, s2, we have U(xt)~xt. This update rule is, of course,

equivalent to a simple Delta rule with a fixed learning rate.

Figure 4. Comparison of the extent to which the sliding window and Delta rule updates weigh past information for different run-
lengths. (A) li~2, (B) li~6 and (C) li~9.
doi:10.1371/journal.pcbi.1003150.g004
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Because there is only one node, computing the run-length

distribution is trivial, as p(l1Dx1:t)~1 for all t and thus the

predictions of this model are simply the mean of the single Delta

rule.

In the two-node case the model has two nodes with run-lengths

l1 and l2. The means of these nodes update according to

independent Delta rules

m
l1
t ~m

l1
t{1z

1
l1zvp

(U(xt){m
l1
t{1)

m
l2
t ~m

l2
t{1z

1
l2zvp

(U(xt){m
l2
t{1)

ð36Þ

The prediction of the two-node model is given as the weighted

sum of these two nodes

mt~p(l1Dx1:t)m
l1
t zp(l2Dx1:t)m

l2
t ð37Þ

where the weights, p(l1Dx1:t) and p(l2Dx1:t), are the components of

the run-length distribution that update according to equation 25.

For node 1, p(l1Dx1:t) updates as

p(l1Dx1:t)!p(xtDl1) p(l1Dl1)p(l1Dx1:t{1)zp(l1Dl2)p(l2Dx1:t{1)ð Þ
~p(xtDl1) hp(l1Dx1:t{1)zhp(l2Dx1:t{1)ð Þ
~hp(xtDl1)

ð38Þ

where we have used the fact that p(l1Dx1:t{1)zp(l2Dx1:t{1)~1
because the run-length distribution is normalized. For node 2,

p(l2Dx1:t) updates as

p(l2Dx1:t)!p(xtDl2) p(l2Dl1)p(l1Dx1:t{1)zp(l2Dl2)p(l2Dx1:t{1)ð Þ
~p(xtDl2) (1{h)p(l1Dx1:t{1)z(1{h)p(l2Dx1:t{1)ð Þ
~(1{h)p(xtDl2)

ð39Þ

Thus, for the two-node case, the run-length distribution is closely

tied to the likelihood of the data for each of the nodes, p(xtDl1) and

p(xtDl2). These likelihoods are computed in a straightforward

manner given the mean and run-length of each node. For

Gaussian data these likelihoods take the form

p(xtDli)~
1

s

ffiffiffiffiffiffi
li

2p

r
exp {

li xt{m
li
t

� 	2

2s2

0
B@

1
CA ð40Þ

An illustration of the output of the one and two node models is

shown in figure 5A. This figure shows the predictions of one- and

two-node models when faced with a relatively simple change-point

task. To generate this figure, the one-node model had a single run-

length, l1~5, whereas the two-node model had two run-lengths,

l1~1:5 and l2~5. The hazard rate in each model was set to 0.1,

and the noise standard deviation, s, was set at 0.5. The two-node

model is much better able to adapt to the change-point than the

one-node model. Figure 5B shows the evolving weights of the two

nodes, determined from the run-length distribution. Before the

change-point, the model has a high weight on the l2 node and a

low weight on the l1 node. At the change-point, this trend reverses

abruptly but then returns after the model stabilizes to the mean of

the new data.

Many nodes. Here we illustrate the utility of the approximate

algorithm to solve simulated change-point problems using three

different types of generative distribution. The first is a Bernoulli

process with a piecewise constant rate, m, (Figure 6A) in which the

generative distribution takes the following exponential family form

g~m; H(x)~1; U(x)~x; A(g)~log(1{m) ð41Þ

and with a uniform prior distribution defined by vp~2 and xp~1.

The second is a Gaussian distribution with known standard

deviation, s = 5, but unknown mean (Figure 6B). In this case, the

generative distribution takes on the following exponential family

form

g~
m

s2
; H(x)~

1ffiffiffiffiffiffi
2p
p exp {

x2

2s2

� �
; U(x)~x; A(g)~

m2

2s2
ð42Þ

with prior hyperparameters vp~1 and xp~0.

The third is a Gaussian distribution with a known mean, m = 0,

and a changing standard deviation s (Figure 6C). In this case, the

generative distribution takes on the following exponential family

form

g~
1

s2
; H(x)~

1ffiffiffiffiffiffi
2p
p ; U(x)~{

(x{m)2

2
; A(s)~log s ð43Þ

with prior hyper parameters vp~1 and xp~{1.

For all three cases, both the full and reduced models used a

fixed hazard rate (equal to 0.05 for the first and third cases, 0.025

for the second case). The reduced models used as initial sufficient

statistics xli ~li=2 for case 1 and 2 and xli ~{li=2 in case 3, and

had 18 nodes spaced logarithmically between 1 and 100.

In figure 6, the top row shows the true value of the parameter of

interest for the generative process (the Bernoulli rate in panel A,

the mean in panel B, and the standard deviation in panel C), the

generated data, and the inferred value of the parameter from the

full (blue) and reduced (red) models. For all three cases, there is a

close correspondence between the values inferred by the full and

reduced models. For the Bernoulli case, the full model has an

average mean squared error (relative to ground truth) of 0.037

versus 0.041 for the reduced model. For the Gaussian case with

known variance the mean squared errors are 13.9 for the full

model and 16.4 for the reduced model. For the Gaussian case with

known variance the errors are 4.3 and 6.2 respectively. We also

show the run-length distributions inferred by both models (middle

and bottom rows), which are more sparsely sampled by the

reduced models but still pick up the major trends seen in the full

model.

For these examples, we used more nodes in the reduced model

than were necessary to solve these problems effectively, because

this approach allowed us to better visualize the run-length

distribution in the reduced model and to facilitate comparison

with the full model. In the next section, we explore the relationship

between the effectiveness of the reduced model and its number of

nodes in more detail.

Performance of the reduced model relative to ground
truth

Here we derive an approximate, but analytic, expression for the

average discrepancy between the predictions made by the reduced

model and the ground truth generative parameters. We then use

this result to compute approximately optimal node arrangements

for a variety of conditions and investigate how the error varies as a

function of the parameters in the model.

Approximate Inference in Change-Point Problems

PLOS Computational Biology | www.ploscompbiol.org 9 July 2013 | Volume 9 | Issue 7 | e1003150



Analytic expression for error. Although there are many

measures we could use to quantify the error between the

approximation and the ground truth, for reasons of analytic

tractability, we focus here on the squared error. More specifically,

we compute the expected value, over data and time, of the squared

error between the predictive mean of the reduced model, mt, and

the ground truth mean on the next time step, mG
tz1; i.e.,

E2~v(mt{mG
tz1)2

w ð44Þ

Because our model is a mixture model, the mean mt is given by

mt~
X

li

m
li
t p(li Dx1:t{1) ð45Þ

For notational convenience we drop the t subscripts and refer to

node li simply by its subscript i, and we write m
li
t ~mi and

p(li Dx1:t{1)~pi. We also refer to the learning rate of node i,
ai~1=(vpzli). Finally, we refer to the set of nodes in the reduced

model as A, such that the above equation, in our new notation,

becomes

m~
X
i[A

mipi ð46Þ

Substituting this expression into equation 44 for the error we get

E2~
P
i[A

P
j[A

vpipjmimjw{2
P
i[A

vpimim
G
wzv mG

� �2
w

&
P
i[A

P
j[A

vpiwvpjwvmimjw{2
P
i[A

vpiwvmim
G
w

zv mG
� �2

w

ð47Þ

Here we have made a mean-field approximation along the lines of

vpipjmimjw~vpiwvpjwvmimjw ð48Þ

where vpiw is the average run-length distribution over the

reduced model. This assumption is clearly not strictly true, because

the weights of the two nodes are driven by at least some of the

same data points. Accordingly, this approximation breaks down

under certain conditions. For example, when change-point

Figure 5. Output of one- and two- node models on a simple change-point task. (A) Predictions from the one- and two-node models. (B)
Evolution of the node weights for the two-node model.
doi:10.1371/journal.pcbi.1003150.g005
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locations are known exactly, pi and pj are strongly correlated,

because if pi~1, then pj is necessarily zero. Thus, under these

conditions, vpipjmimjw is only non-zero when i~j, which is not

true in the approximation. However, in noisy environments,

change-point locations are rarely known exactly and this

approximation is far less problematic. As we show below, the

approximation provided a reasonably close match to the actual

squared error measured from simulations for both Bernoulli and

Gaussian data.

Equations 47 and 48 imply that, to compute the error, we need

to compute four quantities: the averages over vmimjw,

vmim
G
w, and v mG

� �2
w, in addition to the expected run-

length distribution, vpiw. A full derivation of these terms is

presented in the Supplementary Material; here we focus on

presenting how this error varies with model parameters in the

specific cases of Bernoulli and Gaussian data. To facilitate

comparison between these two different data types, we compute

the error relative to the variance of the prior distribution over the

data,

E2
0~

ð
x2p(xDvp,xp)dx{

ð
xp(xDvp,xp)dx

� �2

ð49Þ

where p(xDvp,xp) is the prior over the data given byÐ
p(xDg)p(gDvp,xp)dg. E2

0 is the mean squared error if the algorithm

simply predicted the mean of the prior distribution at each time

step. Thus the ‘relative error,’ E2=E2
0 , takes a value of one when

the algorithm picks the mean of the prior distribution, which is the

limiting case as the learning rate approaches zero.

Error for one node. We first consider how the relative error

varies as a function of hazard rate and learning rate for a model

with just one node (figure 7). The one-node case is useful because

we can easily visualize the results and, because in this case the run-

length distribution has only one non-zero term, pA1~1, the

Figure 6. Examples comparing estimates and run-length distributions from the full Bayesian model and our reduced
approximation. These comparisons are made for Bernoulli data (A, D, G), Gaussian data with unknown mean (B,E,F) and Gaussian data with a
constant mean but unknown variance (C, F, I). (A, B, C) input data (grey), model estimates (blue: full model; red: reduced model), and the ground truth
generative parameter (mean for A and B, standard deviation in C; dashed black line). Run-length distributions computed for the full model (D, E, F)
and reduced model (G, H, I) are shown for each of the examples.
doi:10.1371/journal.pcbi.1003150.g006
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expression for the error is exact. Figures 7A and B consider

Bernoulli data with a uniform prior (vp~2, xp = 1). For different

settings of the hazard rate, there is a unique learning rate (which is

bounded between 0 and 1) that minimizes the error. The value of

this optimal learning rate tends to increase as a function of

increasing hazard rate, except at high hazard rates when it

decreases to near zero. This decrease at high hazard rates is due to

the fact that when a change happens on nearly every trial, the best

guess is the mean of the prior distribution, p(xDvp,xp), which is

better learned with a smaller learning rate that averages over

multiple change-points.

Figure 7C and D consider a Gaussian distribution with

unknown mean and known variance (using parameters that

match the experimental setup: standard deviation = 10, prior

parameters vp~0:01 and xp~1:5). These plots show the same

qualitative pattern as the Bernoulli case, except that the

relative error is smaller and the optimal learning rate varies

over a wider range. This variability results from the fact that

the costs involved in making a wrong prediction can be much

higher in the Gaussian case (because of the larger variance)

than the Bernoulli case, in which the maximal error is between

21 and 1.

Error for multiple nodes. Next we consider the case of

multiple nodes. Figure 8 shows the optimal learning rates as a

function of hazard rate for the reduced model with 1–3 nodes for

Bernoulli (panels A–C) and Gaussian (panels D–F) data. In the

Bernoulli case, going to two nodes adds a second, larger learning

rate that shows the same non-monotonic dependence on hazard

rate as with one node. However, the hazard rate at which the

smaller learning rate goes to zero is lower than in the one-node

case. For three nodes, the relationship between optimal learning

rate and hazard rate is more complicated. We see numerical

instability in the optimization procedure at low hazard rate,

caused by the presence of several distinct local minima. We also

see complex behavior at higher hazard rates, hw0:1 as the

smallest learning rate goes to zero, the behavior of the other two

learning rates changes dramatically. Similar results were obtained

for the Gaussian case except that for three nodes, the optimal node

positions become degenerate as the highest two learning rates

converge for intermediate values of the hazard rate.

In figure 9 we show the relative error as a function of hazard

rate at the optimal learning rate settings computed both from

simulation and our analytic expression. The close agreement

between theory and simulation provides some justification for the

approximations we used. More generally, we see that the relative

error increases with hazard rate and decreases slightly with more

nodes. The biggest improvement in performance comes from

increasing from one to two nodes.

Figure 7. Error and optimal learning rates from the one-node model. (A, B) Bernoulli data, (C, D) Gaussian data. (A, C) Error (normalized by
the variance of the prior, E2

0 ) as a function of learning rate for four different hazard rates, as indicated. (B, D) Optimal learning rate, corresponding to
the lowest relative error, as a function of hazard rate.
doi:10.1371/journal.pcbi.1003150.g007
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Fits to experimental data
In this section, we ask how well our model describes human

behavior by fitting versions of the model to behavioral data from a

predictive-inference task [24]. Briefly, in this task, 30 human

subjects (19 female, 11 male) were shown a sequence of numbers

between 0 and 300 that were generated by a Gaussian change-

point process. This process had a mean that was randomly

sampled at every change-point and a standard deviation that was

constant (set to either 5 or 10) for blocks of 200 trials. Samples

were constrained to be between 0 and 300 by keeping the

generative means away from these bounds (the generative means

were sampled from uniform distribution [from 40 to 260]) and

resampling the small fraction of samples outside of this range until

they lay within the range. The hazard rate was set at 0.1 except for

the first three trials following a change-point, in which case the

hazard rate was zero.

The subjects were required to predict the next number in the

sequence and obtained more reward the closer their predictions

were to the actual outcome. In particular, subjects were required

to minimize the mean absolute error between prediction and

outcome, which we denote S. Because prediction errors depended

substantially on the specific sequence of numbers generated for the

given session, the exact conversion between error and monetary

reward was computed by comparing performance with two

benchmarks: a lower benchmark (LB) and an higher benchmark

(HB). The LB was computed as the mean absolute difference

between sequential generated numbers. The HB was the mean

difference between mean of the generative distribution on the

previous trial and the generated number. Payout was then

computed as follows:

SwLB $8

LBwSw
2
3

LBz 1
3

HB $10

2
3

LBz 1
3

HBwSw
1
2

(LBzHB) $12

1
2

(LBzHB)wS $15

ð50Þ

A benefit of this task design is that the effective learning rates

used by subjects on a trial-by-trial basis can be computed in terms

of their predictions following each observed outcome, using the

relationships in equation 1. Our previous studies indicated that

these learning rates varied systematically as a function of

properties of the generative process, including its standard

deviation and the occurrence of change-points [17,24].

To better understand the computational basis for these

behavioral findings, we compared five different inference models:

the full Bayesian model (‘full’), the reduced model with 1 to 3

nodes and the approximately Bayesian model of Nassar et al [17].

The Nassar et al model instantiates an alternative hypothesis to the

mixture of fixed Delta rules by using a single Delta rule with a

single, adaptive learning rate to approximate Bayesian inference.

On each trial, each of these models, M, produces a prediction

mM
t about the location of the next data point. To simulate the

effects of decision noise, we assume that the subjects’ reported

predictions, cM
t , are subject to noise, such that

Figure 8. Optimal learning rates. These learning rates correspond to the lowest relative error (see figure 7), as a function of hazard rate and
number of nodes. (A–C), Bernoulli case with 1 (A), 2 (B), or 3 (C) nodes. (D–F), Gaussian case with 1 (D), 2 (E), or 3 (F) nodes.
doi:10.1371/journal.pcbi.1003150.g008
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cM
t ~mM

t ze ð51Þ

where e is sampled from a Gaussian distribution with mean 0 and

standard deviation sdecision that we fit as a free parameter for all

models.

In addition to this noise parameter, we fit the following free

parameters for each model: The full model and the model of Nassar

et al. have a hazard rate as their only other parameter, the one-node

model has a single learning rate and the remaining models with N
nodes (Nw1) have a hazard rate as well as the N learning rates.

Our fits identified the model parameters that maximized the log

likelihood of the observed human predictions, cH
t , given each of

the models, log p(cH
1:tDM), which is given by

log p(cH
1:T DM)~

XT

t~1

(cH
t {mM

t )2

2s2
decision

{T log sdecision{
T

2
log 2p ð52Þ

We used the maximum likelihood value to approximate the log

Bayesian evidence, log EM for each model using the standard

Bayesian information criterion (BIC) approximation [25], which

takes into account the different numbers of parameters in the

different models; i.e.,

EM~
1

2
BICM~log(p(cH

1:T DM)){
kM

2
log T ð53Þ

where kM is the number of free parameters in model M.

Models were then compared at the group level using the

Bayesian method of Stephan et al. [26]. Briefly, this method

aggregates the evidence from each of the models for each of the

subjects to estimate two measures of model fit. The first, which we

refer to as the ‘model probability’, is an estimate of how likely it is

that a given model generated the data from a randomly chosen

subject. The second, termed the ‘exceedance probability’, is the

probability that one model is more likely than any of the others to

have generated the behavior of all of the subjects.

An important question when interpreting the model fits is the

extent to which the different models are identifiable using these

analyses. In particular we are interested in the extent to which

different models can be separated on the basis of their behavior

and the accuracy with which the parameters of each model can be

fit.

The question of model identifiability is addressed in figure 10,

where we plot two confusion matrices showing the model

probability (A) and the exceedance probability (B) for simulated

data. These matrices were generated using simulations that

matched the human-subjects experiments, with the same values

of the observed stimuli, the same number of trials per experiment

and the same parameter settings as found by fitting the human

data. Ideally, both confusion matrices should be the identity

matrix, indicating that data fit to model M is always generated by

model M and never by any other model (e.g., [27]). However,

because of noise in the data and the limited number of trials in the

experiment, it is often the case that not all of the models are

completely separable. In the present case, there is good separation

for the Nassar et al., full, 1-node, and 2-node models and

Figure 9. Error (normalized by the variance of the prior, E2
0 ) as a function of hazard rate for the reduced model at the optimal

parameter settings. The solid black lines correspond to the approximate error computed using the theory, the grey dots correspond to the
average error computed from simulations. (A–C), Bernoulli case with 1 (A), 2 (B), or 3 (C) nodes. (D–F), Gaussian case with 1 (D), 2 (E), or 3 (F) nodes.
doi:10.1371/journal.pcbi.1003150.g009
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reasonable separation between the 3-node model and others.

When we extended this analysis to include 4- and 5-node models,

we found that they were indistinguishable from the 3-node model.

Thus, these models are not included in our analyses, and we

consider the ‘3-node model’ to represent a model with 3 or more

nodes. Note that the confusion matrix showing the exceedance

probability (figure 10B) is closer to diagonal than the model

probability confusion matrix (figure 10A). This result reflects the

fact that exceedance probability is computed at the group level

(i.e., that all the simulated data sets were generated by model M),

whereas model probability computes the chance that any given

simulation is best by model M.

To address the question of parameter estimability, we computed

correlations between the simulated parameters and the parameter

values recovered by the fitting procedure for each of the models.

There was strong correspondence between the simulated and fit

parameter values for all of the models and all correlations were

significant (see supplementary table S1).

The 3-node model most effectively describes the human data

(Figure 11), producing slightly better fits than the model of Nassar

et al. at the group level. Figure 11A shows model probability, the

estimated probability that any given subject is best fit by each of

the models. This measure showed a slight preference for the 3-

node model over the model of Nassar et al. Figure 11B shows the

exceedance probability for each of the models, the probability that

each of the models best fits the data at the group level. Because this

measure aggregates across the group it magnifies the differences

between the models and showed a clearer preference for the 3-

node model. Table 1 reports the means of the corresponding fit

parameters for each of the models (see also supplementary figure

S1 for plots of the full distributions of the fit parameters).

Consistent with the optimal parameters derived in the previous

section (figure 9E), for the 2- and 3-node models, the learning rate

of the 1st node is close to one (mean ,0.95).

Discussion

The world is an ever-changing place. Humans and animals

must recognize these changes to make accurate predictions and

good decisions. In this paper, we considered dynamic worlds in

which periods of stability are interrupted by abrupt change-points

that render the past irrelevant for predicting the future. Previous

experimental work has shown that humans modulate their

behavior in the presence of such change-points in a way that is

qualitatively consistent with Bayesian models of change-point

detection. However, these models appear to be too computation-

ally demanding to be implemented directly in the brain. Thus we

asked two questions: 1) Is there a simple and general algorithm

capable of making good predictions in the presence of change-

points? And 2) Does this algorithm explain human behavior? In

this section we discuss the extent to which we have answered these

questions, followed by a discussion of the question that motivated

this work: Is this algorithm biologically plausible? Throughout we

consider the broader implications of our answers and potential

avenues for future research.

Does the reduced model make good predictions?
To address this question, we derived an approximation to the

Bayesian model based on a mixture of Delta rules, each

implemented in a separate ‘node’ of a connected graph. In this

reduced model, each Delta rule has its own, fixed learning rate.

The overall prediction is generated by computing a weighted sum

of the predictions from each node. Because only a small number of

nodes are required, the model is substantially less complex than

the full Bayesian model. Qualitatively, the outputs of the reduced

and full Bayesian models share many features, including the ability

to quickly increase the learning rate following a change-point and

reduce it during periods of stability. These features were apparent

for the reduced model even with a small number of (2 or 3) nodes.

Thus, effective solutions to change-point problems can be

achieved with minimal computational cost.

For future work, it would be interesting to consider other

generative distributions, such as a Gaussian with unknown mean

and variance or multidimensional data (e.g., multidimensional

Gaussians) to better assess the generality of this solution. In

principle, these extensions should be straightforward to deal with

in the current model, which would simply require the sufficient

statistic x to be a vector instead of a scalar. Another obvious

extension would be to consider generative parameters that drift

over time (perhaps in addition to abrupt changes at change-points)

or a hazard rate that changes as a function of run-length and/or

time.

Does the reduced model explain human behavior?
To address this question, we used a model-based analysis of

human behavior on a prediction task with change-points. The

reduced model fit the behavioral data better than either the full

Figure 10. Confusion matrices. (A) The confusion matrix of model probability, the estimated fraction of data simulated according to one model
that is fit to each of the models. (B) The confusion matrix of exceedance probability, the estimated probability at the group level that a given model
has generated all the data.
doi:10.1371/journal.pcbi.1003150.g010
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Bayesian model or a single learning-rate Delta rule. Our fits also

suggest that a three-node model can in many cases be sufficient to

explain human performance on the task. However, our experi-

ment did not have the power to distinguish models with more that

three nodes. Thus, although the results imply that the three-node

model is better than the other models we tested, we cannot rule

out the possibility that humans use significantly more that three

learning rates.

Despite this qualification, it is an intriguing idea that the brain

might use just a handful of learning rates. Our theoretical analysis

suggests that this scheme would yield only a small cost in

performance for the variety of different problems considered here.

In this regard, our model can be seen as complementary to recent

work showing that in many probabilistic-inference problems faced

by humans [28] and pigeons [29], as few as just one sample from

the posterior can be enough to generate good solutions.

It is also interesting to note that, for models with more than one

node, the fastest learning rate was always close to one. Such a high

learning rate corresponds to a Delta rule that does not integrate

any information over time and simply uses the last outcome to

form a prediction. This qualitative difference in the behavior of the

fastest node could indicate a very different underlying process such

as working memory for the last trial as is proposed in [30,31].

One situation in which many nodes would be advantageous is

the case in which the hazard rate changes as a function of run-

length. In this case, only having a few run-lengths available would

be problematic, because the changing hazard rate would be

difficult to represent. Experiments designed to measure the effects

of variable hazard rates on the ability to make predictions might

therefore be able to distinguish whether multiple Delta rules are

indeed present.

Is the reduced model biologically plausible?
The question of biological plausibility is always difficult to

answer in computational neuroscience. This difficulty is especially

true when the focus of the model is at the algorithmic level and is

not directly tied to a specific neural architecture, like in this study.

Nevertheless, one useful approach to help guide an answer to this

question is to associate key components of the algorithm to known

neurobiological mechanisms. Here we support the biological

plausibility of our reduced model by showing that signatures of all

the elements necessary to implement it have been observed in

neural data.

In the reduced model, the update of each node uses a simple

Delta rule with a fixed learning rate. The ‘Delta’ of such an update

rule corresponds to a prediction error, correlates of which have

been found throughout the brain, including notably brainstem

dopaminergic neurons and their targets, and have been used

extensively to model behavioral data [3–15].

More recently, several studies have also shown evidence for

representations of different learning rates, as required by the

model. Human subjects performing a statistical-learning task used

a pair of learning rates, one fast and one slow, that were associated

with BOLD activity in two different brain areas, with the

hippocampus responsible for slow learning and the striatum for

fast learning [32]. A related fMRI study showed different temporal

integration in one network of brain areas including the amygdala

versus another, more sensory network [33]. Complementary work

at the neural level found a reservoir of many different learning

rates in three brain regions (anterior cingulate cortex, dorsolateral

prefrontal cortex, and the lateral intraparietal area) of monkeys

performing a competitive game [34]. Likewise, neural correlates of

different learning rates have been identified in each of the ventral

tegmental area and habenula [35]. Finally, outside of the reward

Figure 11. Results of the model-fitting procedure. (A) The model probability for each of the five models. This measure reports the estimated
probability that a given subject will be best fit by each of the models. (B) The exceedance probability for each of the five models. This measure
reports the probability that each of the models best explains the data from all subjects.
doi:10.1371/journal.pcbi.1003150.g011

Table 1. Table of mean fit parameter values for all models 6

s.e.m.

Model hazard rate, h decision noise, sd learning rate(s), a

Nassar et al. 0.4560.04 8.3560.87

full 0.0460.01 20.2260.53

1 node 8.760.72 0.8860.01

2 nodes 0.2760.04 7.2660.66 0.9460.01

0.5360.03

3 nodes 0.1260.03 6.9760.66 0.9660.01

0.8260.03

0.5260.03

doi:10.1371/journal.pcbi.1003150.t001

Approximate Inference in Change-Point Problems

PLOS Computational Biology | www.ploscompbiol.org 16 July 2013 | Volume 9 | Issue 7 | e1003150



system, other fMRI studies using scrambled movies have found

evidence for temporal receptive fields of increasingly long time

scales (equivalent to decreasingly small learning rates) up the

sensory processing hierarchy [36].

Applied to our model, these results suggest that each node is

implemented in a distinct, although not necessarily anatomically

separated, population of neurons. For our task and the above-

referenced studies, in which trials last on the order of seconds, we

speculate that the mean of a node is encoded in persistent firing of

neurons. Alternatively, for tasks requiring learning over longer

timescales, other mechanisms such as changes in synaptic weights

might play key roles in these computations.

Our model also depends on the run-length distribution,

p(li Dx1:t). Functionally, this distribution serves as a weighting

function, determining how each of the different nodes (corre-

sponding to different run lengths) contributes to the final

prediction. In this regard, the run-length distribution can be

thought of as an attentional filter, similar to mechanisms of spatial

or feature-based attention, evident in multiple brain regions that

enhance the output of certain signals and suppress others. For

longer timescales, this kind of weighting process might have

analogies to certain mechanisms of perceptual decision-making

that involve the readout of appropriate sensory neurons [37].

Intriguingly, these readout mechanisms are thought to be shaped

by experience – governed by a Delta-rule learning process – to

ultimately enhance the most reliable sensory outputs and suppress

the others [38,39]. We speculate that a similar process might help

select, from a reservoir of nodes with different learning rates, those

that can most effectively solve a particular task.

The brain must also solve another challenge to directly

implement the run-length distribution in our model. In particular,

the update equation for the weights (Eq. 25) includes a constant of

proportionality that serves to normalize the probability distribu-

tion. On a computer, ensuring that the run-length distribution is

normalized is relatively straightforward: after the update we just

divide by the sum of the node weights. In the brain, this procedure

requires some kind of global divisive normalization among all

areas coding different nodes. While such divisive normalization is

thought to occur in the brain [40], it may be more difficult to

implement over different brain regions that are far apart.
Mixture of Delta rules versus direct modulation of

learning rate. An alternative account of variability in learning

rates is that the brain uses a single Delta rule whose learning rate is

modulated directly. This kind of model has been used previously to

explain certain behavioral and imaging results in the context of

change-point tasks [17,21]. A leading candidate for this role is the

neuromodulator norepinephrine (NE), which is released from the

locus coeruleus (LC) and has been proposed to encode the

unexpected uncertainty associated with change-points [41]. The

wide-ranging projections of LC, which include most cortical and

subcortical structures, and the neuromodulatory properties of NE,

which adapts the gain of neural response functions [42], make this

system ideally suited to deliver a global signal such as the learning

rate. Control of LC could come from top-down projections from

anterior cingulate cortex [16], amygdala [43], and posterior

cingulate cortex [44], all of which have been proposed to encode

learning rate.

Indirect evidence for this account comes from putative

correlates of LC activity such as pupil dilation [43] and skin

conductance response [43] that have been found to correlate with

observed learning rate. However, such results are also consistent

with our model if we assume that LC signals shifts in attentional

focus to Delta rules with shorter learning rates, or a modified

version of our model in which the learning rates of the different

nodes adapt.

Our model-based analysis of behavioral data provides some

evidence in favor of the present model over the fixed learning rate

model of Nassar et al. However, because the experiment was not

specifically designed to tease apart these two alternatives, and we

did not consider every possible implementation of a variable

learning rate model, the result should be treated with caution. To

fully distinguish between these two accounts will require careful

experimentation to determine whether the learning rate of

individual neurons (using recordings from animals) or whole brain

areas (using fMRI in humans) are variable or are fixed.
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