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SUMMARY
Homologous recombination DNA-repair deficiency (HRD) is becoming a well-recognized marker of platinum
salt and polyADP-ribose polymerase inhibitor chemotherapies in ovarian and breast cancers. While large-
scale screening for HRD using genomic markers is logistically and economically challenging, stained tissue
slides are routinely acquired in clinical practice. With the objectives of providing a robust deep-learning
method for HRD prediction from tissue slides and identifying related morphological phenotypes, we first
show that digital pathology workflows are sensitive to potential biases in the training set, then we propose
a method to overcome the influence of these biases, and we develop an interpretation method capable of
identifying complex phenotypes. Application to our carefully curated in-house dataset allows us to predict
HRDwith high accuracy (area under the receiver-operator characteristics curve 0.86) and to identify morpho-
logical phenotypes related to HRD. In particular, the presence of laminated fibrosis and clear tumor cells
associated with HRD open new hypotheses regarding its phenotypic impact.
INTRODUCTION

Worldwide, 2.1million women are newly diagnosed per year with

breast cancer (BC), which is a leading cause of cancer-related

death. Improvement of metastatic BC treatment is therefore of

highest priority. BC is a heterogeneous disease with four major

molecular classes (luminal A and B, HER2 enriched, and triple-

negative breast cancer [TNBC]) benefiting from different thera-

peutic approaches. If early BC patients have an overall survival

of 70%–80%, metastatic disease is incurable with a short dura-

tion of survival.1 Homologous recombination (HR) is a major and

high-fidelity repair pathway of DNA double-strand breaks. Its

deficiency, HRD, results in high genomic instability2 and occurs

through diverse mechanisms, including germline or acquired so-
Cell Repor
This is an open access article under the CC BY-N
matic mutations in DNA-repair genes, most frequently BRCA1,

BRCA2, or PALB2, or through epigenetic alterations of BRCA1

or RAD51C. Importantly, HRD leads to high sensitivity to poly-

ADP-ribose polymerase inhibitors (PARPi) in vitro,3,4 a treatment

that has been shown to improve metastatic BC progression-free

survival.5,6 HRDs induced by BRCA1 and BRCA2 mutations are

known predictive markers for response to PARPi2,6 and platinum

salt,7 and somatic HRD has been more recently recognized as a

predictive marker for PARPi in ovarian cancer2 and BC.8

Several methods have been developed to detect HRD,

including genomic instability profiling, mutational signatures, or

integrating structural and mutational signatures.9–13 Today,

HRD is diagnosed in clinical practice by DNA-repair gene

sequencing, germinal in BCs and somatic in ovarian cancers,
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respectively. For ovarian cancers, HRD is also assessed by

genomic instability tests such as the HRD MyChoice CDx test

(Myriad Genetics).

Themajority of hereditary BRCA1 cancers are TNBC and up to

60%–69% of sporadic TNBCs harbor a genomic profile of

HRD.8,9,14 In contrast, the majority of hereditary BRCA2 cancers

are luminal,15 and HRD also exists in sporadic luminal B8,16 or in

HER2 tumors.17,18 Of note, germline or sporadic alterations of

BRCA harbor indistinguishable genomic alterations in triple-

negative or luminal tumors.16,19 Also, the recent results of the

Olympia trial emphasize the need for an efficient method of

screening for BRCA1 and BRCA2 mutations across all BC

phenotypes.6

In this context, it seems appropriate to systematically screen

for HRD induced by BRCA1 and BRCA2 mutations not only for

TNBC (18% of all BCs), but also for luminal B tumors (35% of

all BCs). This, however, would represent a real challenge in clin-

ical practice, both economically and logistically. To overcome

these challenges, we hypothesized that HRD might be predict-

able from its phenotypic consequences visible in stained tissue

slides acquired in clinical practice. On the other hand, no specific

routinely assessed phenotype has been reported to indicate the

presence of HRD. For this reason, we set out to predict HRD

from whole slide images (WSIs) by deep learning and to identify

the underlying morphological patterns.

Deep learning has revolutionized biomedical image analysis

and in particular digital pathology. Traditionally, the majority of

methods developed in this field were dedicated to computer-

aided diagnosis, whereby the objective is to partially automatize

human interpretation of slides in order to help pathologists in

their diagnostic task, e.g., the detection of mitoses20 or the iden-

tification of metastatic axillary lymph nodes.21,22 Beyond the

automatization of manual inspection, deep learning has also

been successfully applied to prediction of patient variables,

such as outcome,23 and molecular features, such as gene muta-

tions,24,25 expression levels,26 or genetic signatures.24,27 How-

ever, one of the major drawbacks of deep-learning algorithms

is their black-box character: because deep learning relies on

automatically generated rather than predefined features with a

clear biological interpretation, it is difficult to know how a deci-

sion wasmade. This has twomajor consequences: first, it is diffi-

cult to identify potential confounders, i.e., variables that correlate

with the output because of the composition of the dataset and

that are predicted instead of the intended output variable. Sec-

ond, even in the absence of statistical artifacts, understanding

how the decision was generated in the first place can point to

interesting mechanistic hypotheses and to patterns in the image

that have so far been overlooked.

Oneway to overcome the latter problem is to use hand-crafted

biologically meaningful features.27 This, however, requires an

extraordinary effort in terms of annotation. Here, we take a

conceptually different approach. Instead of working in a pan-

cancer setting on a large number of signatures, we concentrate

on one single medically highly relevant signature in one cancer

type in a controlled dataset, where we can investigate and cor-

rect for potential biases. To understand how the deep-learning

decision is generated and which morphological patterns are

related to the output variable, we propose a visualization tech-
2 Cell Reports Medicine 3, 100872, December 20, 2022
nique that overcomes limitations of current approaches in the

presence of complex phenotypes. This paves the way to ‘‘ma-

chine teaching,’’ i.e., a data-driven approach to identify pheno-

typic patterns related to genomic signatures that is capable of

pointing to new mechanistic hypotheses.

In this study, we present an image-based approach to predict

HR status from WSIs stained with hematoxylin and eosin (H&E)

using deep learning from a large retrospective series of luminal

and triple-negative breast carcinomas with a genomically

defined HR status from a single cancer center. Furthermore,

we identify the morphological patterns associated with HRD.

For this we have to tackle two important methodological chal-

lenges: the identification and correction of biases in the training

data and the identification of morphological patterns linked to

the output variable in the presence of complex pleiotropic phe-

notypes. Application of these methods to our curated

dataset allows us to predict HRD with high accuracy and allows

the discovery of decisive, previously unknown morphological

patterns related to HRD, leading to new hypotheses on dis-

ease-relevant genotype-phenotype relationships.
RESULTS

A deep-learning architecture to predict HRD fromwhole
slide images
We scanned the most representative H&E-stained tissue section

of the surgical resection specimens of BC from 714 patients with

known HR status. The series was composed of 309 homologous

recombination proficient (HRP) tumors and 406 HRD tumors

(Table S4).

Because of their enormous size, analysis of WSIs typically re-

lies on the multiple instance learning (MIL) paradigm.28–31 MIL

techniques only require slide-level annotations and share the

overall architecture (Figure 1), consisting of fourmain steps: tiling

and encoding, tile scoring, aggregation, and decision.

The WSI is divided into tile images (dimensions: 224 3 224

pixels) arranged in a grid. Background tiles are removed and tis-

sue tiles are encoded into a feature vector. Instead of using rep-

resentations trained on natural image databases and unlikemost

studies in this domain, we used the self-supervised technique

momentum contrast (MoCo;32 see STARMethods). This method

consists in training a neural network (NN) to recognize images af-

ter transformations, such as geometric transformations, noise

addition, and color changes. By choosing the type and strength

of transformations, we can impose invariance classes, i.e., vari-

ations in the input that do not result in significantly different rep-

resentations. After tile encoding, the feature vector of each tile is

thenmapped to an attention score by an NN. The slide represen-

tation is obtained by the sum of the individual tile representa-

tions, weighted by the learned attention scores.28 Finally, the

slide representation is classified by the decision module (Fig-

ure 1). We optimized hyperparameters by a systematic random

search strategy (see STAR Methods). For hyperparameter

setting and performance estimation, we used nested 5-fold

cross-validation, which allowed us to obtain realistic perfor-

mance estimations. All reported performance results are aver-

aged over five independent test folds (see STAR Methods).
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Figure 1. From WSI to prediction

Four major components are used in this end-to-end pipeline. First, the WSIs (x) are tiled, the tissue parts are automatically selected, and the resulting tiles are

embedded into a low-dimensional space (block 1). The embedded tiles are then scored through the attention module (2). An aggregation module outputs the

slide-level vector representative (3) that is finally fed to a decision module (4), which outputs the final prediction. When training, the binary cross-entropy loss

between the ground truth y and the prediction by is computed and back-propagated to update the parameters of the modules. Both the decision module and the

attentionmodule aremultilayer perceptrons, the encoder is a ResNet18, and the aggregationmodule consists of aweighted sumof the tiles, theweights being the

attention scores.
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HRD prediction with correction for potential biases
Prediction results obtained without bias correction

We applied this method to predict HRD from theWSI in The Can-

cer Genome Atlas (TCGA) cohort and obtained results (area un-

der the receiver-operator characteristics curve [AUC] = 0.71,

Figure 2C) in line with previous reports.27,33–35 While TCGA is

an invaluable resource for pan-cancer studies in genomics and

histopathology, it is often seen rather as a starting point whose

results need to be corroborated by other cohorts.36 Furthermore,

TCGA contains images frommany centers around the world with

potentially different sample preparation and image-acquisition

protocols. While this technical variability might reflect to some

degreewhat could be expected in clinical practice formultiple in-

stitutions, we hypothesized that to prove the predictability of

HRD independently of potential technical and biological biases,

as well as in an in-depth study of morphological patterns related

to HRD, it might be advantageous to work on a more homoge-

neous dataset where we can carefully control for potential tech-

nical and biological confounders. We thus turned to our in-house

dataset, hereafter referred to as the Curie dataset (see STAR

Methods), with data from 714 patients.

We trained an NN to predict HRD on this carefully curated da-

taset, and we observed a prediction performance largely supe-

rior to the best reported to date, trained and tested on TCGA

(AUC = 0.88, Figure 2C).

Identification and correction of biases

As the cohort was generated over 25 years, two experimental

variables representing changes in experimental protocols have

been identified as potential confounders (c1 corresponding to

the fixation protocol and c2 to the impregnation protocol, see

STAR Methods).
To measure the confounding effects of these variables on the

model predictions, we developed a bias score (see STAR

Methods). This score is close to zero in the unbiased case and

increases with increasing bias. We found that model predictions

were indeed biased by these two confounders (Figure 2A).

We then devised a sampling strategy that mitigates biasing

during training. Bias mitigation is an increasingly important line

of research in machine learning. For instance, it is a well-known

problem in training predictive models for functional MRI data,

where the age of the patient has been shown to be an important

confounder.37 While several techniques for bias mitigation

exist,38–41 a recent comparison42 indicates that strategic sam-

pling is the method of choice if the distribution is not too imbal-

anced. Strategic sampling aims at ensuring that irrespective of

the composition of the training set, each batch presented to

the NN is composed of roughly the same number of samples

for each value combination of output and confounding variable.

Correcting for c1 and c2 resulted in a 4-fold reduction of the bias

score in comparison with the uncorrected model and a slightly

lower accuracy (AUC = 0.86, Figure 2C). These results are

corroborated using the bias-amplification (BA)measure, ametric

widely used in themachine learning fairness literature:39,42 on the

in-house dataset, correcting for c1 and c2 lowers the BA from

�0.02 to�0.05; on TCGA dataset, the subtype correction lowers

the BA from �0.06 to �0.15.

In addition to these technical confounders, we identified the

molecular subtype of the tumor to be a potential biological

confounder. Successful correction of this biological confounder

in TCGA (Figure 2B) led, however, to a dramatic drop in perfor-

mance (AUC = 0.63). This result suggests that NN trained on

the entire BC subset of TCGA for HRD prediction without
Cell Reports Medicine 3, 100872, December 20, 2022 3
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Figure 2. Bias corrections and prediction performances

(A and B) Estimation of the bias score of two technical confounders (c1; c2) and one biological confounder (c3) for the Curie dataset (A) and the bias score of the

confounder c3 for TCGA dataset (B) for different correction strategies. A Mann-Whitney-Wilcoxon test, two-sided with Bonferroni correction, is performed for

each pair of correction strategies. As detailed in STAR Methods, for each correction strategy a series of 30 unbiased subtest sets are sampled on which the

model’s bias is evaluated. Error bars indicate standard deviations over the subtest sets. The significance test is performed on this distribution of 30 estimations.

The bias score of a model is the average of this distribution. ns, not significant (p > 0.05); *p < 0.05, **p < 0.01, ***p < 1 3 10�3, ****p < 1 3 10�4.

(C) Receiver-operating characteristic curves. The name of each model indicates the origin of its training set. Indices indicate the correction applied through

strategic sampling (Curiec1 has been debiased with respect to c1). Curieluminals corresponds to the model trained on a subset containing only luminal tumors.
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stratification or bias correction might actually predict to a large

extent the molecular subtype, which is also a predictable vari-

able (AUC = 0.89). This shows that the molecular subtype is

indeed a biological confounder. In our in-house dataset, we

decided to build a subtype-specific NN that specifically predicts

HRD for luminal BC instead of applying bias mitigation. The

reason for this decision was 3-fold: first, we argued that a data-

set focusing on only one molecular subtype was more likely to

reveal the underlying patterns exclusively related to HRD; sec-

ond, HRD prediction in luminal BC is of particular importance

for clinical practice, as very few morphological patterns are

known to be related to HRD in luminal BC, the most frequent

BC phenotype; and third, the relatively low number of TNBCs
4 Cell Reports Medicine 3, 100872, December 20, 2022
in our dataset made strategic sampling on three confounding

variables challenging. Therefore, we composed a dataset con-

taining only luminal BC and setting both technical confounders,

leading us to keep 251 BC WSIs (188 HRD tumors and 63 HRP

tumors). We obtained a good, albeit slightly lower performance

of this bias-corrected NN (AUC = 0.83; Figure 2C and Table 1).

The trainedmodel carefully freed from both technical and biolog-

ical biases and validated with respect to cross-dataset perfor-

mance (Table S3) was then used for the identification of morpho-

logical patterns described in the next section. We additionally

performed benchmarking experiments to evaluate the influence

of the tile encoder network and the MIL algorithm on the classi-

fication performances (Tables S1 and S2).



Table 1. Classification performances

AUC BAcc

Mean SDQ11 Mean SD

TCGAraw 0.71 0.10 0.59 0.08

TCGA c3 0.63 0.08 0.54 0.02

Curieraw 0.88 0.03 0.81 0.02

Curie c1 + c2 0.86 0.03 0.78 0.04

Curieluminals 0.83 0.07 0.72 0.06

Summary of performance metrics. Mean and standard deviation (SD) are

computed over the five test sets of the cross-validation. The name of

each model indicates the origin of its training set. Indices indicate the

correction applied through strategic sampling (Curiec1 has been de-

biased with respect to c1). Curieluminals corresponds to the model trained

on a subset containing only luminal tumors. We provide an in-depth

benchmark of the algorithm in Tables S1 and S2 and cross-dataset ex-

periments in Table S3. AUC, area under the (receiver-operating charac-

teristics) curve; BAcc, balanced accuracy.
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Visualization reveals HRD-specific tissue patterns
Visualization of attention scores can be misleading

To understand which phenotypic patterns are related to HRD on

theWSI, we turned to visualization techniques for NNs. The used

MIL framework is equipped with an inherent visualization mech-

anism: the secondmodule of the algorithm, the tile-scoringmod-

ule, is in fact an attention module that assigns to each tile an

attention score that determines how much a given tile will

contribute to the slide representation (and thus to the decision).

Attention scores are often used for visualization in the field of dig-

ital pathology,22,43–45 in the form of either heatmaps to localize

the origin of the relevant signals or galleries of tiles of interest

(tiles with highest attention scores). However, attention scores

do not per se extract the tiles that are related to a certain output

variable; they simply reflect that the tile has been taken into

consideration in the decision. In particular, in the case of genetic

signatures, where we would expect that the output variables can

be related to several morphological patterns, analyzing only the

attention scores might thus be limited. Figure S2 illustrates the

results obtained by attention-based explanation: while we

observe one specific cluster for HRP, most attended tiles seem

to be present in both HRD and HRP slides. A possible explana-

tion is that the HRD/HRP decision might be related to the fre-

quency of certain tissue phenotypes rather than to their mere

presence.

The decision-based visualization technique provides a

global explanation of the model

Given these limitations, we propose a visualization protocol that

allows us to extract the tiles that are directly associated with a

particular slide-level label. As the slide representation is the

weighted sumof the tile representations, we applied the decision

module, specifically trained to classify slide representations be-

tween HRD and HRP, to the individual tile representations. This

gives us a score for each tile that can be interpreted as the

(tile) probability of being HRD or HRP (see STARMethods for de-

tails). Selecting the tiles with the highest posterior probability for

HRD and HRP, respectively, and projecting the tile representa-

tions of this selection to a low-dimensional space leads to the

emergence of distinct clusters corresponding to different tumor
tissue patterns with a clear relation to HRD or HRP and therefore

providing a morphological map of HRD (Figure 3).

Two expert pathologists labeled these clusters. The HRD

signal relied on several clusters: HRD tumors present a high tu-

mor cell density, with a high nucleus/cytoplasm ratio and con-

spicuous nucleoli. They also show regions of hemorrhagic suf-

fusion associated with necrotic tissue. In the stroma, the HRD

signal revealed the presence of striking laminated fibrosis

and, as expected, high content of tumor-infiltrating lympho-

cytes (TILs). Lastly, one large cluster contained a continuum

of several phenotypes, namely adipose tissue intermingled

with scattered and clear tumor cells, histiocytes, and plasma

cells. In contrast, the HRP signal was mostly carried by one

cluster characterized by low tumor cell density, the cells being

moderately atypical, and tumor cell nests separated from the

stroma by clear spaces. Notably, it included a few invasive

lobular carcinomas (all of the tiles per cluster are available in

Figures S6–S8).

Validation of the morphological patterns

Some of these patterns, namely high-grade and TIL, had been

previously associated with phenotypic hallmarks of HRD in

TNBCs.48 To validate these results in the luminal BC cohort,

TIL density and nuclear grade were evaluated for each luminal

tumor of the in-house dataset by an expert pathologist. As pre-

dicted by our algorithm, TILs and nuclear grade were positively

associated with the HR status of the tumor in the luminal subset

(mean TIL HRD, 29; mean TIL HRP, 17; t test p value, 0.017;

mean nuclear grade HRD, 2.7; mean nuclear grade HRP, 2.3;

c2 p value, 1.2 3 10�6). Moreover, a logistic regression trained

on the components of the grade (architecture grade, atypia

grade, and mitosis grade) and on the TIL count estimation has

an average AUC of 0.76 (5-fold cross-validation).

To further validate the association of these morphological

patterns with HRD, we turned to the independent TCGA

cohort. Despite the modest prediction accuracy after bias

correction, we found that a NN trained on TCGA-extracted

morphological patterns strikingly similar to those obtained

from our in-house dataset (Figure S3), with the exception of

cluster 4 (Figure 3). Regarding HRP, we were able to validate

all patterns related to HRP, but artifact classes were also

identified, which is unsurprising given the limited slide quality

and heterogeneity of TCGA dataset and may explain the poor

classification performance.

To test the subtype specificity of the morphological patterns,

we trained a network on the small TNBC subset of TCGA (129

slides). While classification performances remain poor (AUC =

0.62), because of the small size and large heterogeneity of the

dataset, the extracted patterns explaining the predictions are

in line with the literature (Figure S4), suggesting that HRD for

TNBC is characterized by high content of TILs and necrosis,

while the retraction figures are still an explanation of the HRP

signal. This result further confirms the specificity of our extracted

morphological patterns and suggests that there are indeedHRD-

related morphological patterns specific to the luminal subtype.

Our NNworks with different internal representations. While the

tile representations provided by MoCo permit the emergence of

phenotypic similarity clusters (Figure 3), internal representations

closer to the decision module encode information relevant for
Cell Reports Medicine 3, 100872, December 20, 2022 5
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Figure 3. Decision-based visualization
(A) Mechanism of the decision-based visualization. 1: each tile in the whole dataset is scored by the attention module. 2: per slides, the 300 best scoring tiles are

selected as candidate tiles. 3: the selected tiles are presented to the decision module, and the logit of the probability of each of these tiles being HRD or HRP

(yellow or green) is kept. 4: finally, the K tiles with maximal probability for either HRD/HRP are selected.

(B) Morphological map of the HR status in the luminal BC cohort. Each dot is the uniform manifold approximation and projection (UMAP) of a tile extracted by the

decision-based visualization method. Crosses (circles) are tiles with high HRD (HRP) logit. Each cluster has been linked to a morphological phenotype by two

expert pathologists. We identified six different morphological phenotypes associated with the HRD and two associated with the HRP. The exhibited tiles have

been randomly sampled among each cluster. 228 slides contributed to the HRP clusters and 232 to the HRD cluster. In total, 249 among 251 slides contributed to

the whole figure. The same protocol has been applied to the public datasets TCGA breast invasive carcinoma (BRCA), TCGA BRCA-TNBC, and TCGA ovarian

cancer (see Figures S3, S4, and S5, respectively). Scale bars, 100 mm.

(C) Pathological interpretation of the clusters presented in (B).
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HRD. The representation in the penultimate layer can therefore

be interpreted as encoding ‘‘HRD-ness’’ of the tiles. Figure 4 il-

lustrates a low-dimensional representation of this HRD-ness

for the same tiles as those present in Figure 3, where point color

represents the HRD score (tile probability to be classified as

HRD). From there, we extracted two tile trajectories going from

low HRD-ness to high HRD-ness. The magenta trajectory illus-

trates the successive visual changes corresponding to an in-

crease in tumor cells or inflammatory cell density (from low-den-

sity tiles to high-density tiles with large nuclei, nuclear atypia, and

infiltrative lymphocytes). The blue trajectory shows, conversely,

a decrease in tumor cell density replaced successively by an in-

flammatory reaction and apoptotic cells, loose fibrosis, and

hemorrhagic suffusion associated with necrosis. These different

trajectories illustrate the manifestations of HRD and show the

pleiotropic character of the induced phenotypes. Moreover,

the highlighted gradation of these phenotypes opens the path

to a possible reading grid of WSIs for pathologists.
6 Cell Reports Medicine 3, 100872, December 20, 2022
DISCUSSION

In this study, we set out to predict the HR status in BC fromH&E-

stained WSIs and to analyze the phenotypic patterns related to

HRD. The prediction of HRD is an important challenge in clinical

practice. The use of PARPi for BC patients was initiated for met-

astatic TNBC patients with germline mutations of BRCA1 or

BRCA2. However, BRCA2, as well as PALB2 and a minority of

BRCA1 cancer patients, develop luminal tumors. The necessity

of predicting HRD is therefore not limited to TNBC but extends

also to luminal BC. On the other hand, luminal BCs represent a

far more frequent group than TNBC. For this reason, systematic

screening of HR gene alterations for luminal cancerswill be prob-

lematic and, in many countries, even unfeasible due to both eco-

nomic and logistic issues. Therefore, preselection of patients

with a high probability of being HR deficient by analysis of

WSIs is a cost-efficient strategy that has so far only been

hampered by the lack of knowledge about HRD-specific
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A Figure 4. Illustration of two phenotypic HRD-

ness trajectories

(A) UMAP projection of the HR status-specific rep-

resentation of the meaningful tiles relative to the

HRD. HRD-ness is the score given to each tile by the

HRD output neuron. Two tile trajectories have been

extracted (blue and magenta) starting from the

same low HRD-ness region, each leading to a

different high HRD-ness region.

(B and C) Tiles sampled along each of the trajec-

tories. These are ordered from low HRD-ness to

high HRD-ness and read from left to right and from

top to bottom. Scale bars, 100 mm. (B) Magenta

trajectory, toward densely cellular tumors or in-

flammatory cells. (C) Blue trajectory, toward fi-

broinflammatory tumor changes and hemorrhagic

suffusions.
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morphological patterns in luminals. Indeed, only high grades and

to a lower extent pushingmargins have previously been reported

to be associated with HRD. In this context, the identification of

HRD fromWSIs by deep learning and the identification of related

morphological patterns could both facilitate the preselection of

BCs for molecular determination of HRD, which is particularly

important for luminal cancers.

TCGA provides a precious dataset from which to train models

for the prediction of genetic signatures fromH&E data.24,27While

we obtained promising results for the prediction of HRD on

TCGA dataset in line with previous reports, we found that this

result was partly due to the fact that the molecular subtype

acts as a biological confounder. This was particularly problem-

atic, as we wanted to investigate the morphological signature

of HRD. Of note, the existence of biological and technical con-

founders is presumably not limited to HRD prediction but may

concern many genetic signatures. The use of carefully curated

datasets where technical and biological confounders can be

controlled for is, thus, an important step in investigating the pre-

dictability of genetic signatures as well as the identification of

their morphological counterparts.

In most cases, such in-house datasets also contain technical

and biological biases due to the long period during which the da-

taset is acquired. This motivated us to propose a method to miti-

gate bias in computational pathology workflows, based on stra-

tegic sampling. Such strategies are already used in other fields

of medical imaging but have so far, to the best of our knowledge,

not been used in computational pathology. We have shown that

this approach can successfully mitigate or even eliminate bias.

In a larger perspective, it is essential to investigate potential con-

founding variables in the dataset when applying deep-learning-

based methods for the prediction of slide-level variables. Biased
Cell Reports
datasets can lead to false expectations

and misinterpretation. For this reason, we

expect proper treatment of such variables

to become a standard in the field.

While bias correction on TCGA led to a

drop in AUC to 0.63, we found that HRD

was predictable in our in-house dataset

of 251 luminal BC patients with an AUC
of 0.83. While homogeneous datasets do not reflect the vari-

ability between centers and thus limit direct applicability of the

trained networks, they allow for controlled feasibility studies,

which now need to be complemented by multicenter studies.

In addition, wewill validate this algorithm in a prospective neoad-

juvant clinical trial for which patients’ HRD status will be as-

sessed with the MyChoice CDx test (Myriad Genetics).

Homogeneous datasets are well suited for the identification of

underlying phenotypic patterns, even in cases where no or few

such patterns are known a priori, such as in the case for HRD.

To identify a phenotypic signature related to an output variable

(here HRD), either we can use biologically meaningful encodings,

also known as human interpretable features (HIF), and infer the

most relevant features by analyzing the weights in the predictive

model,27 or we can turn to network introspection. The HIF

approach relies on detailed and exhaustive annotations of a

large number of WSIs, for instance,27 leverage annotations pro-

vided by hundreds of pathologists consisting of hundreds of

thousands of manual cell and tissue classifications. Here, we

provide a new network introspection scheme relying on the

powerful MoCo encodings, trained without supervision directly

on histopathology data, and a decision-based tile selection

that allows us to automatically cluster tiles and to relate these

clusters to the output variable. Interestingly, while our approach

confirms the recently published finding that necrosis is a hall-

mark of HRD27 and identifies morphological features common

to HRD in TNBC and luminal BC, such as necrosis, high density

in TILs, and high nuclear anisokaryosis,46 it also points to more

specific patterns that have so far been overlooked. For instance,

we found tiles enriched in carcinomatous cells with clear cyto-

plasm, suggesting activation of specific metabolic processes

in these cells. Moreover, we found intratumoral laminated
Medicine 3, 100872, December 20, 2022 7
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fibrosis as an HRD-related pattern. Also, wewere able to validate

most of these patterns on TCGA. This leads to the hypothesis

that cancer-associated fibroblasts (CAFs) within the stroma of

HRD luminal tumors may play a role in the viability and fate of tu-

mor cells. Furthermore, the presence of adipose tissue within the

tumor suggests first, a different tumor cell density and second, a

specific balance between CAFs and adipocytes in the context of

a luminal HRD tumor. The molecular mechanisms achieving

these patterns remain to be determined by in vitro models.

Similar to what we have shown here with respect to HRD, the

visualization framework we have developed is versatile and can

in principle be applied in the context of other genetic signatures.

In particular, our visualization scheme overcomes the limitations

of the thus far predominating technique of visualizing attention

scores alone. Indeed, attention scores were used previously to

identify tumor regions under weak supervision. However, if the

output variable depends on the quantity of several morpholog-

ical patterns in contrast to the presence/absence of a single tis-

sue phenotype, attention scores might not provide a suitable tile

selection and visualization tool and might thus be ill suited to

investigate the underlying morphological phenotypes. Because

the algorithm is fully automated, using the MIL algorithm and

the proposed visualization method can constitute a useful tool

for the discovery of morphological features related to the pre-

dicted genetic signatures. This has the potential to generate

new biological hypotheses about the phenotypic impact of these

genetic disorders. Tomaximize the benefit for the scientific com-

munity, we release the code to train MIL models on WSIs and

create morphological maps as well as tile trajectories publicly

and free of charge, and provide detailed documentation.

Altogether, this study provides new and versatile tools for the

prediction and phenotypic dissection of genetic signatures from

histopathology data. Application to luminal BCs allowed us to

show that HRD is predictable from WSIs and to shed light on

the phenotypic consequences of HRD. These tools have the po-

tential to impact BC patient care.

Limitations of the study
Our study involves a homogeneous, carefully controlled cohort

that allowed us to train a network for HRD prediction with high

accuracy and correction for technical and biological con-

founders. We could thus convincingly show that HRD is predict-

able from WSIs. However, the study was not designed for the

demonstration of clinical applicability. To use HRD prediction

in clinical practice, we will need to validate the workflow on

larger, multicenter cohorts.

Furthermore, we have identified morphological patterns

related to HRD. While our validation results obtained from

TCGA suggest that the method works robustly and that these

patterns are truly linked to HRD, we will need to validate these

findings in a larger independent cohort. In addition, the develop-

ment and demonstration of a mechanistic model explaining

these morphological phenotypes will be a challenging and

exciting perspective. Finally, it will be important to further explore

the variability of the morphological patterns in different cancer

types.

At a methodological level, we have proposed strategic sam-

pling as a method to mitigate biases in digital pathology data-
8 Cell Reports Medicine 3, 100872, December 20, 2022
sets. While wewere able to show that this method is highly effec-

tive, it must be noted that it is limited by the number of variables

we can correct for as well as by the class imbalance it can

handle. In some cases, stratification might therefore be prefer-

able. Furthermore, we have proposed a method to improve the

interpretability of the MIL approach for HRD prediction. Howev-

er, it is still difficult to precisely understand how the identified tiles

impact the prediction. For instance, themethod does not give in-

formation on a potential hierarchical relation between the

morphological clusters. Also, the current strategy does not allow

us to assess whether the tiles of a given cluster influence the de-

cision by their proportion on the slide, their mere presence, or the

simultaneous presence of tiles from other clusters. A promising

methodological perspective is therefore the improvement of

these visualization techniques.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to the lead contact, Anne Salomon (anne.salomon@curie.fr).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All of the TCGA47 dataset is available at https://portal.gdc.cancer.gov/.

The in-house dataset consists of confidential medical data not open to the public.

All original code has been deposited at github (https://github.com/trislaz/wsi_mil) and is publicly available as of the date of pub-

lication. DOI is available in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

In-house dataset (Institut Curie)
We retrospectively retrieved a series of 715 patients with HE slides of surgical resections specimens of untreated breast cancer and a

genomically known HR status (Table S4). The series is composed of 309 Homologous Recombination Proficient tumors (HRP) and

406Homologous Recombination Deficient tumors (HRD). The HRD status was either identified by the presence of a germlineBRCA1/

2 (gBRCA1/2) mutation or assessed by LST genomic signature according to Popova et al.9 for the sporadic triple-negative and

luminal cancers.

All patients have been treated and followed at the Institut Curie between 1995 and 2020. The patient agreed for the use of tumor

samples from their surgical resection specimens for research according to the law. Ethical approval from the Institutional Review

Board (Institut Curie breast cancer study group N�DATA190031) was obtained for the use of all specimens. Clinical data have

been retrieved from the Institut Curie electronic medical records and saved using Research electronic data capture (REDCap) tools

hosted at the Institut Curie.

Public dataset (TCGA)
This public dataset is composed of 815WSI of breast cancer fixed in formalin (FFPE) and stained in H&E. They are available at https://

portal.gdc.cancer.gov/. Low-resolution WSI, WSI containing artifacts such as large pen marks, tissue-folds and blurred WSI were

removed. The final dataset encompasses 673WSIs. TheHR status of the corresponding tumors was obtained using the LST genomic

signature.

Architecture and optimization parameters
Hyperparameters have been set thanks to a random search evaluated through 5-fold nested cross-validation. The benchmark task is

the prediction of the molecular class of the TCGA WSIs. Both the decision module and the tile-scoring module are multi-layer
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perceptrons with batch normalization48 after each hidden layer. The decision module has 3 hidden layers of 512 neurons, the tile-

scoring module has 1 hidden layer of 256 neurons.

Dropout has been fixed at 0.4, the optimizer is ADAM49 with a learning rate of 3e-3. A batch consists of 16 samples of WSI. A sam-

ple of WSI corresponds to a uniform sampling of 300 of its composing tiles. In fact, we observed that this uniform subsampling of the

WSIs regularized training as well as diminishes its computational workload. Finally, training is performed during 200 epochs.

Training and performance evaluation are done in a 5-fold nested cross-validation framework.

Each dataset is split into 5 independent folds. For each of these folds, a validation set is randomly sampled in the complementary

4/5th. A model is trained on the remaining dataset (= 4/5 * 4/5 th of the total dataset). This process is repeated 10 times for each test

fold, then the 3 best models are selected according to their validation performances, ensembled and finally tested on their test set.

This process of model selection and ensembling drives itself a net improvement of the performances (see Figure S1).

Each test and validation set preserves the stratification of the whole dataset with respect to the target variable as well as the con-

founding variables in case we correct for them. The final performance estimation of themodel is the performance averaged over the 5

test performances. During inference time, all the tiles of each WSI are processed.

Strategic sampling
Strategic sampling is used both for balancing the training dataset with respect to the output variable ðTðXÞ ˛ ft1; t2;.; tmgÞ and to

correct for biases ðBðXÞ ˛ fb1; b2; .; bngÞ.
If X is a givenWSI sampled from the dataset, then TðXÞ andBðXÞ are respectively the target value and the bias value of X . We note

jtk j the total number of slides in the dataset labeledwith tk , and jbij the total number of slides for which the bias variable takes the value

i. jtk& bij is the total number of slides with label value tk and bias value bi.

For achieving both balancing with respect to the output and correcting for biases, we sample the WSIs X in each batch in a dis-

tribution P under which

PðTðXÞ = tkÞ = PðTðXÞ = tk0 Þ for all ksk0.
And.

PðfTðXÞ = tkgXfBðXÞ = bi gÞ = PðfTðXÞ = tk0 gXfBðXÞ = bigÞ for all i and ksk0.
That is, we sample the slide X depending on its target and bias value with probability:

PðX jfTðXÞ = tkgXfBðXÞ = bigjÞ f jbi j
jtk & bi j

for each i % n , k % n

Strategic sampling is performed on the fly when building the batches.

When correcting for several confounders simultaneously, B ˛ fb1; b2; .; bn1g and C ˛ fc1; c2; .; cn2g, we simply correct for a

new confounder variable that takes values in all combinations of bi and cj.

Bias score
We introduce the following notation: for aWSI XD, sampled in a datasetD under the distribution PD, TðXDÞ is the label of XD andBðXDÞ
is the candidate confounder value of XD (for instance bouin).

We want to measure the bias of a predictive algorithm m that outputs, for each XD, a prediction mðXDÞ. We moreover define the

accuracy Accm of m as: Accm = E ð1fmðXDÞ = TðXDÞgÞ
The mutual information MIðBðXDÞ;mðXDÞÞ between BðXDÞ and mðXDÞ measures the mutual dependence between B and m and

highlights the bias of a model.

The idea of the bias score is to compute how far away the predictions of a model are from a perfectly unbiased case.

To simulate this perfectly unbiased case, we subsample (with strategic sampling) a dataset Di such thatMIðBðXDi
Þ; TðXDi

ÞÞ = 0,

i.e. such that the target variable and the confounder variable are statistically independent in this dataset.

If m is unbiased, then we should observe that MIðBðXDi
Þ; mðXDi

ÞÞ = 0 too.

In contrast, the more m is biased, the more MIðBðXDi
Þ; mðXDi

ÞÞR 0 will be far away from 0.

In order to obtain a more accurate estimation of the bias score, we iterate this measure over several unbiased datasets fDigi% 30.

The bias score BSðB; mÞ is then the average of MIðBðXDi
Þ; mðXDi

ÞÞ over i.
Because by construction, BSðB; mÞ is non-negative, we build an unbiased reference m� such that Pðm�ðXÞ = TðXÞÞ = Accm,

and compute its bias-score as a reference value.

Learning MoCo representations
For learning MoCo-v250 representation we used the MoCo repository available at https://github.com/facebookresearch/moco.

We randomly used the following transformations: Gaussian blur, crop and resize, color jitter, grayscale, horizontal and vertical sym-

metries, and a color augmentation in the Hematoxylin and Eosin specific space.51

The training dataset is composed of 5.3e6 images of size 224x 224 pixels, or half the Curie dataset at magnification 20x

(0.46 mm.px)

We used a Resnet18 and trained it from scratch for 60 epochs on 4 GPU Nvidia Tesla V100 SXM2 32 Go.

We used the SGD optimizer with a momentum of 0.9, a weight decay of 1e-4, a learning rate of 3e-3 and a batch size of 512. We

used a cosine scheduler with a warm restart on the learning rate.
e2 Cell Reports Medicine 3, 100872, December 20, 2022
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Visualization methods
Themodel used to extract the visualizations has been trained on the luminal subset of the Curie dataset (251WSI). To benefit from the

biggest dataset possible, the model has been trained on the whole dataset, without using early stopping nor testing, during 200

epochs.

To generate the attention-based visualization, the highest ranked tile with respect to the attention score is extracted, for eachWSI.

The selected tiles are then labeled according to the label of their WSI of origin.

Concerning the decision-based visualization, for each WSI the 300 highest ranked tiles with respect to the attention score are

selected. Among this pool of tiles, the 2000 highest ranking tiles with respect to the logit of the posterior probability for HRD and

HRP are selected. In order to promote diversity in the extracted images, no more than 20 tiles per slide can be selected.

Computation resources
All computations have been done on the GENCI HPC cluster of Jean-Zay.

QUANTIFICATION AND STATISTICAL ANALYSIS

Technical biases in the Curie dataset
Both technical confounders are related to technical protocols that were modified over time with an unbalanced representation be-

tween the HRD and HRP cohorts:

- c2 corresponds to a change of fixative agent. c2 ˛ fBouin; AFAg
- c1 corresponds to a change of impregnation technique. c1 ˛ fEthanol; Ethyleneg .
We performed the exact Fisher test to test for a correlation between:

1. HRD - C1(impregnation): test-statistic 12; p value 3.9e-30

2. HRD - C2 (fixation): test-statistic 31; p value 2.8e-78

Showing the statistical relationship between both confounders and our target variable, the HR status.

Fisher test was performed with the scipy package.52

Manual validation of the morphological patterns
The t-test and the Xi2 test performed respectively to test the difference of TILs count and nuclear grade between HRD and HRP tu-

mors were done with the scipy package.

The logistic regression used to predict HRD from the grade and TILs count was implemented with scikit-learn53 package, with a

parameter C = 10, all other parameters set to their default values.

Bias metric significance test
TheMann-Whitney-Wilcoxon test two-sidedwith Bonferroni correction appearing in the legend of Figure 2 has been performed using

the scipy package. The two compared distribution correspond to the mutual information measure iterated over the 30 sub-datasets,

as described in the bias score method subsection.
Cell Reports Medicine 3, 100872, December 20, 2022 e3
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