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Abstract
Objective
To describe the respiratory trajectories and their correlation with motor function in an international
pediatric cohort of patients with type 2 and nonambulant type 3 spinal muscular atrophy (SMA).

Methods
This was an 8-year retrospective observational study of patients in the International SMA Con-
sortium (iSMAc) natural history study. We retrieved anthropometrics, forced vital capacity (FVC)
absolute, FVC percent predicted (FVC%P), and noninvasive ventilation (NIV) requirement.
Hammersmith Functional Motor Scale (HFMS) and revised Performance of Upper Limb (RULM)
scores were correlated with respiratory function. We excluded patients in interventional clinical
trials and on nusinersen commercial therapy.

Results
There were 437 patients with SMA: 348 with type 2 and 89 with nonambulant type 3. Mean age at first
visit was 6.9 (±4.4) and 11.1 (±4) years. In SMA type 2, FVC%P declined by 4.2%/y from 5 to 13 years,
followed by a slower decline (1.0%/y). In type 3, FVC%P declined by 6.3%/y between 8 and 13 years,
followed by a slower decline (0.9%/y). Thirty-nine percent with SMA type 2% and 9% with type 3
required NIV at a median age 5.0 (1.8–16.6) and 15.1 (13.8–16.3) years. Eighty-four percent with SMA
type 2% and 80% with type 3 had scoliosis; 54% and 46% required surgery, which did not significantly
affect respiratory decline. FVC%P positively correlated with HFMS and RULM scores in both subtypes.

Conclusions
In SMA type 2 and nonambulant type 3, lung function declines differently, with a common leveling after
age 13 years. Lung andmotor function correlated in both subtypes.Our data further define themilder SMA
phenotypes and provide information to benchmark the long-term efficacy of new treatments for SMA.
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Spinal muscular atrophy (SMA) is an autosomal recessive
neurodegenerative disorder characterized by progressive
muscle wasting due to motor neuron degeneration, secondary
to mutations in the survival motor neuron 1 (SMN1) gene.1

SMA is classified according to age at onset andmaximal motor
functional status achieved: weak infants unable to sit un-
supported (type 1), nonambulant patients (type 2), and
ambulant patients with childhood (type 3) and adult (type 4)
onset.2,3

Respiratory impairment is the most frequent nonneurologic
complication and the leading cause of mortality in SMA.4

Patients with SMA present with variable severity of chest wall
distortion, paradoxical breathing, and impaired airway clear-
ance and cough, compounded by bulbar muscle weakness.5,6

The assessment of respiratory function has gained interest in
infants with SMA type 17,8 because recently available treat-
ments have improved patients’ motor function and life
expectancy.9–11 In contrast, very few studies have focused on
the long-term respiratory progression in SMA types 2 and
3.12–14 The correlation between respiratory and motor func-
tion in these milder subtypes is interesting in light of the new
therapeutic options.15–18 Intrathecal nusinersen and adeno-
associated viral vector gene replacement therapy are com-
mercially available (the latter currently only for patients
<2 years of age). Both small molecules orally adminis-
tered (NCT02908685)19 and intrathecal gene replacement
(NCT03381729) are currently in clinical trials.

The aim of our work is to describe the respiratory features of
pediatric patients with SMA type 2 and nonambulant SMA
type 3 and their correlation with motor function in a multi-
center international cohort.

Methods
Standard Protocol Approvals, Registrations,
and Patient Consents
The study was approved by the Institutional Review Board
(Ethics Committee) at each participating study site. Writ-
ten informed consent was obtained from all participants
(or guardians of participants) in the study (consent for
research).

Study Population
This was an 8-year (June 2010–September 2018) retrospective
observational study of pediatric patients with SMA type 2 and
nonambulant SMA type 3 (age <18 years). The data used in this

study are part of the International SMAConsortium (iSMAc)20

composed of the SMA REACH-UK (NCT03520179), Italian
SMA, and US Pediatric Neuromuscular Clinical Research
Networks and additional centers: UK SMARTNET and C.
Mondino and C. Besta Neurological Institutes (Italy).

Patients with SMA type 2 were classified as sitters and non-
sitters (those who lost the ability to sit unsupported) at each
recorded visit. Only patients with nonambulant SMA type 3
were included in this study in order to compare homogeneous
respiratory trajectories not affected by changes in ambulatory
status.

We subsequently excluded patients recruited in any interven-
tional clinical trials or receiving nusinersen or onasemnogene
abeparvovec, either commercially available or within the Ex-
panded Access Programme. SMN1 gene mutations and SMN2
copies were recorded. Anthropometrics were collected. Either
arm span or recumbent or ulnar length was used as a surrogate
for height in forced vital capacity (FVC) percent predicted
(FVC%P) calculation.21 Comorbid conditions affecting lung
function such as aspiration, identified either clinically or by
videofluoroscopy, were collected. Patients’ nutritional status
was postulated by body mass index (BMI) expressed as kilo-
grams per meter squared. Patients’ feeding status (oral nutri-
tion, nasogastric tube or gastrostomy) was recorded. Scoliosis
was defined as Cobb angle >10°. Scoliosis surgery technique
was collected.

Respiratory Function
Spirometry was performed at each site by either physio-
therapists or respiratory physiologists who had received
appropriate training and certification in the context of clin-
ical trials. The best of 3 efforts deemed reliable by the op-
erator was recorded according to international guidelines.22

FVC absolute (liters), FVC%P, peak expiratory flow (PEF)
absolute (liters per minute), and PEF percent predicted
(PEF%P) with the patient tested in a sitting position were
collected.

Ventilation requirement, either noninvasive (NIV) or invasive
(tracheostomy), and the use of assisted airway clearance were
recorded.

Motor Function
Motor function outcomes, namely Hammersmith Func-
tional Motor Scale (HFMS) and revised Performance of
Upper Limb (RULM) scores, were collected. HFMS was
developed to assess the physical abilities of SMA type 2 and

Glossary
BMI = body mass index; CI = confidence interval; FVC = forced vital capacity; FVC%P = FVC percent predicted; HFMS =
Hammersmith Functional Motor Scale; IQR = interquartile range; iSMAc = International SMA Consortium; NIV =
noninvasive ventilation; PEF = peak expiratory flow; PEF%P = PEF percent predicted; RULM = revised Performance of Upper
Limb; SMA = spinal muscular atrophy; SMN = survival motor neuron; ULM = Upper Limb Module.
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type 3 with limited ambulation. It is composed of 20 items
with a maximal score of 40.23 The Upper Limb Module
(ULM) was the first tool to assess the upper limb function in
nonambulant SMA. It was created and validated in 2011 for
nonambulant children from 30 months of age to adults.24 In
2017, ULM was critically re-evaluated, and the RULM was
developed to tackle the ceiling effect observed with the ULM
in nonambulant patients. RULM detects changes in upper
limb function in a wide spectrum of weak and strong SMA.
The RULM has a total of 19 items plus an entry item not
included in the total score that serves as functional class
identification. Its maximum total score is 37.25 A higher
score on the HFMS, ULM, and RULM represents a higher
level of function.

Statistical Analysis
The primary outcome was the annual variation of FVC%P in
SMA type 2 and nonambulant type 3 patients. Secondary
outcome was the correlation between respiratory (FVC%P)
and motor function (HFMS and/or RULM). The FVC%P
trajectories before and after scoliosis surgery and the annual
variations of FVC absolute, PEF%P, and PEF absolute were
also analyzed.

The population characteristics are presented as mean (SD),
median (range or interquartile range) for skewed data, and
frequency (percentage) for categorical data.

For FVC%P, FVC absolute, and PEF%P, we estimated the
mean annual change using mixed-effects regression models,
accounting for the longitudinal data and age at baseline.
Results are presented as mean annual change, or difference
in mean annual change between subgroups, with 95% con-
fidence intervals (CIs). Because the change in these out-
comes was not linear over the full age range, we used linear
splines to estimate and compare the relationships before and
after 8 (SMA type 3) and 13 years of age. Using Kaplan-
Meier and Cox regression analyses, we estimated the median
age when FVC%P fell below 60%, 40%, and 20%; scoliosis
surgery occurred; and gastrostomy was placed.

Correlation between respiratory (FVC%P) and motor func-
tion (HMFS and/or RULM score) was performed for both
patients with SMA type 2 and those with type 3 by Spearman
rank correlation. We reported the correlation between FVC%
P and each motor functional score at the first available visit
because the correlation factor was not different from that
obtained when correlating FVC%P and motor function
throughout the study period.

All analyses were conducted in Stata version 15 (StataCorp,
College Station, TX) with a significance level of p < 0.05.

Data Availability
The data that support the findings of this study are owned by
the iSMAC academic consortium and available from the
corresponding author on reasonable request.

Results
Study Population
Data were available for 437 patients. There were 348 (80%)
with SMA type 2. At first visit, 278 were sitters and 32 were
nonsitters; sitting status was not available in 38. Fourteen pa-
tients who were sitters at the first visit lost their ability to sit
independently during the follow-up. Eighty-nine (20%) had
nonambulant SMA type 3 (figure 1). In both SMA type 2
subgroups, most patients had 3 copies of SMN2: they accoun-
ted for 89% and 67% of the available data in sitters and non-
sitters, respectively. Patients with 2 copies of SMN2 accounted
for 9% and 33% of the available data in sitters and nonsitters.

Mean age at first visit was 6.9 (±4.4) years for SMA type 2 and
11.1 (±4) years for SMA type 3.Median follow-upwas 1.2 years
(interquartile range [IQR] 0–3.3 years, range 0–12.5 years).

Median BMI at first visit was 15.8 (14.0–19.1) kg/m2 in SMA
type 2 and 18.1 (16.6–22.0) kg/m2 in type 3. BMI and FVC
absolute at first visit positively correlated in both SMA type 2
(r = 0.5, p < 0.05) and type 3 (r = 0.6, p < 0.01). Throughout
the study period, 9 patients with SMA type 2 and none of the
patients with SMA type 3 required nasogastric tube. Only
patients with SMA type 2 required gastrostomy (62/278),
25% of them by 12 years of age (table 1 and efigure 1).

Respiratory Progression and
Respiratory Support
Data on FVC%Pwere available for 260 patients. Over the 8-year
observation, the annual rate of decline of FVC%P between 5

Figure 1 CONSORT Flowchart of Patients Included in the
Final Analysis According to Inclusion and Exclu-
sion Criteria

Data were available for 673 patients in the whole cohort. Patients >18 years
of age, patients enrolled in interventional clinical trial, and patients with
spinal muscle atrophy (SMA) type 3 ambulant at the first recorded visit were
excluded. The breakdown of patients (n = 437) included in the analysis refers
to first visit. CONSORT = Consolidated Standards of Reporting Trials.
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and 18 years was 3.6% in SMA type 2 (95%CI −4.2% to −2.9%)
and 3.5% in SMA type 3 (95% CI −5.6% to −1.4%). However,
the trajectory of FVC%P progressed differently in the 2 SMA
subgroups in the age range of 5 to 13 years, followed by a similar
plateau phase after the age of 13 years.

Indeed, in SMA type 2, FVC%P (n = 200) declined by 4.2%/y
(95% CI −4.8%/y to −3.7%/y) from 5 to 13 years of age,
followed by a significantly slower (p < 0.001) decline of 1.0%/y
(95% CI −2.1%/y to 0.2%/y). When SMA type 2 was sub-
divided into sitters and nonsitters, SMA type 2 sitters (n = 165)
had an annual decline of FVC%P of 4.1% (95% CI −4.7% to

−3.5%) from 5 to 13 years, followed by a slower (p < 0.001)
progression of 1.3% (95% CI −2.5% to −0.04%). A similar
decline (p = 0.15 vs sitters, adjusted for age) was observed in
SMA type 2 nonsitters (n = 17). Their FVC%P from 5 to 13
years declined annually by 6.0% (95% CI −8.0% to −4.0%),
followed by a slower progression.

Nonambulant SMA type 3 (n = 59) had a 3-phase respiratory
progression characterized by a mild increase of FVC%P from
5 to 8 years, followed by a steeper decline from 8 to 13 years
and a leveling thereafter. In detail, in the age range of 5 to 8
years, FVC%P increased annually by 11.8% (95% CI

Table 1 Baseline Characteristics of the Study Population (n = 437)

SMA 2 (n = 348) SMA 3 (n = 89) p Value

Male, n (%) 163 (47) 46 (52) 0.99

Mean age first visit (±SD), y 6.9 (±4.4) 11.1 (±4.0) <0.001

Mean age last visit (±SD), y 9.2 (±4.9) 12.4 (±4.1) <0.001

Median visits (min, max) 3 (1, 21) 2 (1, 11) <0.01

Median follow-up (min, max), y 1.4 (0, 12.5) 0.5 (0, 6.7)

SMA 2 sitters at first visit 278

Mean age first visit (±SD), y 7.0 (±4.4)

Median follow-up (min, max), y 1.7 (0, 12.5)

SMA 2 nonsitters at first visit 32

Mean age first visit (±SD), y 7.6 (±5.0)

Median follow-up (min, max), y 2.0 (0, 11.3)

SMN2 copies, n

1 1 0

2 21 0

3 148 28

4 1 12

Scoliosis, n (%) 180/215 (84) 39/49 (80)

Scoliosis surgery, n (%) 70/145 (48) 11/35 (31)

Growing rods 25 0

Spinal Fusion 31 10

Magnetic growing rods 1 0

VEPTR 13 1

BMI at first visit, n 147 41

Median BMI (IQR), kg/m2 15.8 (14.0–19.1) 18.1 (16.6–22.0)

Swallowing impairment, n (%) 85/280 (30) 1/69 (1)

Nasogastric tube, n (%) 9/278 (3) 0/69 (0)

Gastrostomy tube, n (%) 62/278 (22) 0/69 (0)

Abbreviations: BMI = body mass index; IQR = interquartile range; max = maximum; min= minimum; SMA = spinal muscular atrophy; VEPTR = vertical
expandable prosthetic titanium rod.
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(4.5%–19.1%); from age 8 to 13 years, FVC%P declined by
6.3% (95% CI −8.7% to −3.8%); and after 13 years, FVC%P
declined significantly more slowly (p = 0.01) by 0.9% (95%CI
−3.1% to 1.4%) (figure 2). The mild improvement in pul-
monary function observed in the age range of 5 to 8 years is
interesting and is reminiscent of improvement noticed in
other outcome measures, although firm conclusions cannot
be drawn due to the small sample size in that age window.

After 13 years of age, FVC%P stabilized, and its annual decline
became similar in SMA type 2 sitters, nonsitters, and those
with nonambulant SMA type 3. However, the estimated FVC
%P was higher in SMA type 3 (65.8%, 95% CI 68.2%–83.4%)
than in SMA type 2 sitters (41.0%, 95% CI 35.2%–46.9%) (p
< 0.001) and nonsitters (32.1%, 95% CI 14.1%–50.1%) (p <
0.001). No differences were found between SMA type 2 sitters
and nonsitters (p = 0.36).

Three significant lung function thresholds were evaluated in
relation to the increased risk of sleep disordered breathing
(FVC%P <60% and FVC%P <40%) and the development of
diurnal respiratory failure (FVC%P <20%). One hundred
eleven patients with SMA type 2 and 51 with type 3 had FVC
%P >60%. The median (50%) age at FVC%P <60% was 12.8
years in patients with SMA type 2, while in <25% with SMA
type 3, FVC%P fell below 60% (p < 0.001). One hundred fifty
patients with SMA type 2 and 58 with SMA type 3 had FVC%
P >40% at their first visit. At the age of 13.4 years, 25% with
SMA type 2 had FVC%P <40%, while in those with SMA type
3, FVC%P fell below 40% in <25% (p < 0.01). Fewer than
25% of the 189 with SMA type 2 and none of the 60 with SMA
type 3 in our cohort reached FVC%P <20% (figure 3).

Absolute FVC in SMA type 2 increased by 0.03 L/y (95% CI
0.02–0.05) with a stability between 10 and 14 years. There was

Figure 2 Rate of Decline of FVC%P in SMA Type 2, SMA Type 2 Sitters, and SMA Type 3

(A) Spinal muscle atrophy (SMA) type 2 (632 observations from 200 patients). The slope of forced vital capacity (FVC) percent predicted (FVC%P) at age 5 to 13
years was −4.2 (95% confidence interval [CI] −4.8 to −3.7, p < 0.01) and after age 13 years was −1.0 (95% CI −2.1 to 0.2, p = 0.1). The 2 slopes were significantly
different (p < 0.001). (B) SMA type 2 sitters (565 observation from 165 patients). The slope of FVC%P at age 5 to 13 years was −4.1%/y (95% CI −4.7 to −3.5,
p < 0.001) and after age 13 years was −1.3 (95% CI −2.5 to −0.04, p = 0.04). The 2 slopes were significantly different (p < 0.001). (C) SMA type 3 nonambulant
(151 observations from 59 patients). FVC%P improvedmildly from age 5 to 8 years by 11.8 (95% CI 4.5–19.1, p = 0.002) before declining from age 8 to 13 years
by 6.3 (95% CI −8.7 to −3.8, p < 0.001). After age 13 years, FVC%P slope declined by 0.9 (95% CI −3.1 to 1.4, p = 0.46). The slopes for 5 to 8 and 8 to 13 years were
significantly different (p < 0.001 and p < 0.01).
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no difference between SMA type 2 sitters and nonsitters (p =
0.54). In SMA type 3, absolute FVC steadily increased from age
5 to 18 years by 0.10 L/y (95% CI 0.04–0.16) (efigure 2).

Absolute PEF and PEF%P trajectories were available only in
SMA type 2 (n = 63). PEF%P annually declined from 5 years
of age by 4.1% (95% CI −6.2% to −1.9%). Absolute PEF
increased by 7.3 L/min per year (95%CI 2.6–12.1) (efigure 3).
The progression of absolute PEF stabilized between 10 and 14
years, similar to absolute FVC.

One hundred thirty-six of 298 (46%) patients with SMA type
2 whose data at latest visit were available required NIV. Of
those, 98 of 256 (38%) were sitters, 28 of 46 (61%) were
nonsitters, and 10 were missing sitting ability. Eight of 71
(11%) patients with SMA type 3 required NIV. For those who
had started NIV, median (range) age was 5.0 (1.8–16.6) years
in SMA type 2 and 15.1 (13.8–16.3) years in SMA type 3.
FVC%P at start of NIV was 44% (IQR 28.5–57) in SMA type
2 (n = 55). Thirteen (24%) had FVC%P >60%; 19 (35%) had
FVC%P of 40% to 60%; 14 (25%) had FVC%P of 20% to

40%; and 9 (16%) had FVC%P <20%. Table 2 provides de-
tails on NIV establishment and requirement per day.

Correlation Between Respiratory and
Motor Function
HFMS score positively correlated with FVC%P in patients with
SMA type 2 (n = 76) (r = 0.67 p< 0.001) and nonambulant type
3 (n = 28) (r = 0.68, p < 0.001). RULM score positively cor-
relatedwith FVC%P in SMA type 2 (n = 32) (r= 0.61 p< 0.001)
and in SMA type 3 (n = 21) (r = 0.61, p < 0.01) (figure 5).

HFMS score was available at NIV establishment in 39 patients
with SMA type 2. Thirty-one (79%) had an HFMS score <10,
and 24 (62%) had an HFMS score <6. HFMS score at NIV
establishment in SMA type 3 and RULM score in SMA types 2
and 3were available for only a fewpatients andwere not analyzed.

Respiratory Function and Scoliosis
One hundred eighty of 215 (84%) patients with SMA types 2
and 39 of 49 (80%) with nonambulant SMA type 3 whose
information was available at latest visit had scoliosis. Seventy of

Figure 3 Age at Clinically Meaningful Thresholds of FVC%P (60%, 40%, 20%) in SMA Type 2 and 3.

(A) At age 9.5 years, 25%of patients with spinalmuscle atrophy (SMA) type 2 had forced vital capacity percent predicted (FVC%P) below 60%.Median (50%) age
at FVC%P <60% was 12.8 years for SMA type 2. Fewer than 25% of patients with SMA type 3 had FVC%P below 60% (p < 0.001). (B) At age 13.4 years, 25% of
patients with SMA type 2 and <20%of patients with SMA type 3 had FVC%P below 40%predicted (p < 0.01). (C) Fewer than 25%of patients with SMA type 2 and
none of those with SMA type 3 had FVC%P below 20%.
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145 with SMA type 2 (48%) and 11 of 35 (31%) with SMA
type 3 underwent scoliosis surgery. Details on the different
surgical techniques, ranging from the use of growing rods in the
younger children to full fixation in the older population, are
shown in table 1.Median (IQR) age at surgery was 11 (8–14.4)
years in SMA type 2. Sixty-five were sitters and had surgery at a
median (IQR) age of 11 (8–13.2) years; 11 were nonsitters and
had surgery at a median (IQR) age of 9.8 (8.2–16.1) years.
Median age (IQR) at surgery in SMA type 3 was 11.7
(10.8–15.9) years (n = 16), similar to SMA type 2 (p = 0.12).

A worsening trend of FVC%P was observed in the whole
population after spinal surgery, going from −2.7%/y to −3.6%/
y, although this change was not significant (p = 0.22). SMA type
2 nonsitters had the largest difference in respiratory function
after surgery, going from 2.4%/y to −5.2%/y. This difference
was not significant (p = 0.19). In SMA type 2 sitters, FVC%P
slope went from −2.8%/y to −3.4%/y (p = 0.49). In SMA type
3, it went from −1.3% to −4.2% (p = 0.48) (figure 4). Similarly,
FVC absolute yearly slope was not different before and after
surgery in SMA type 2 (overall and subtypes) and type 3.

Discussion
In the last decade, the availability of new treatments has
prompted the need for a precise understanding of the natural
history of ambulant and nonambulant patients with SMA, from
the most severe to the milder subtypes. Most of the emphasis
has been devoted to the careful analysis of the progression of
motor function because this was often the main outcome

measure in clinical trials. Recently, the description of the nat-
ural history of motor function in SMA types 2 and 3 has
identified that, in the early years after diagnosis, an improve-
ment in SMA type 2 can occur, followed by a subsequent
decline.26 This information is essential when planning clinical
trials and assessing the efficacy of intervention in a broad
population. However, very few studies have focused on re-
spiratory function, and none examined the correlation between
respiratory and motor function in a real-world broad pop-
ulation of intermediate SMA.

Recent long-term data from patients with SMA types 2 and 3
enrolled in the nusinersen clinical trials showed remarkable
results on motor function (improvement of HFMSE and
RULM score)16 but with incomplete data on respiratory
outcomes. As nusinersen has become commercially available
for all types of SMA in some countries, real-world data on
motor and respiratory function are becoming available.

In this scenario, the phenotyping of motor and respiratory
function in SMA subtypes and age range is crucial to establish
the actual efficacy of nusinersen and other new treatments.

Our work adds long-term respiratory data from a large in-
ternational cohort (n = 437) of patients with SMA type 2 and
nonambulant type 3 followed up over 8 years. Similar to
motor function,26,27 the decline of FVC%P in SMA type 2 and
type 3 followed different trajectories across age ranges. In
both subtypes, FVC%P declined more steeply from 5 to 13
years (≈4%/y in SMA type 2 and ≈3%/y in type 3), followed
by a slower annual progression after 13 years of age (1% in
SMA type 2 and 0.9% in type 3). However, in type 3, the FVC
%P decline was more obvious after the age of 8 years (rather
than 5 years as observed in type 2), with a pattern similar to
the slopes of the 6-minute walk test. The rate of decline
significantly changed after 13 years in both SMA types. The
FVC%P declined to a stable level after 13 years and remained
higher in type 3 (≈66%) than in type 2 (41% sitters, 32%
nonsitters). It is of interest that although nonsitters generally
have a more severe phenotype, there was no significant dif-
ference in the rate of decline between sitters and nonsitters.

The annual decline of FVC%P had been reported as being
2.9% in 79 children and young adults with SMA type 2 and
type 3 over 36 months. Patients with SMA type 2 declined
faster than those with type 3; however, the relatively small
sample size did not allow further conclusions.13 In a separate
retrospective study on 31 patients with SMA types 2 and 3
(age range 3–21 years), themedian decline of the FVC%Pwas
7.9% in SMA type 2 and 2.8% in type 3.14 The results cannot
be easily compared because of the different sizes of the 2
populations studied and because the previous study, as op-
posed to ours, also included ambulant type 3. Our consider-
ably larger population and the longer observation period
allowed the identification of age-specific trajectories of pul-
monary function selectively for SMA types 2 and 3. We ex-
plored the potential use of the PEF as a surrogate of expiratory

Table 2 NIV and Invasive (Tracheostomy) Ventilation
Requirement and Use of Cough Assistance in
Study Population (n = 437)

SMA 2
(n = 348)

Nonambulant
SMA 3 (n = 89)

NIV, n (%) 136/298 (46) 8/71 (11)

Reason for NIV start, n

Recurrent respiratory infections 15 1

Hypoventilation 10 1

Sleep apnea 7 0

FVC%P at start of NIV, median (IQR) 44 (28.5–57) NA

NIV use, n

Overnight only 57 7

Overnight + daytime 9 0

As needed 11 0

Cough assistance, n (%) 78/152 (51) 6/37 (16)

Tracheostomy, n (%) 4/306 (1) 0/8 (0)

Abbreviations: FVC%P = forced vital capacity percent predicted; NA = not
applicable; NIV = noninvasive ventilation; SMA = spinal muscular atrophy.
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muscle function in SMA type 2. In other neuromuscular
disorders such as Duchenne muscular dystrophy, PEF cap-
tured respiratory decline earlier than FVC%.28 In patients
with SMA, our findings showed that PEF%P declined con-
sistently with FVC%P, confirming its potential utility as a
measure of pulmonary function in SMA.

According to the most recent standard of care, FVC%P <60%
and FVC%P <40% are associated with the increased risk of
REM-related and non–REM-related sleep disordered breath-
ing, respectively.4,29 In SMA type 2, FVC%P fell below 60% at a

median age of 12.8 years, and at the age of 13.4 years, 25% with
SMA type 2 had FVC%P <40%. In our cohort, 39% of those
with SMA type 2 had started NIV at a median FVC%P of 44%
(28.5%–57%) at a median age of 5 (1.8–16.6) years. Despite
>75% of patients with SMA type 3 in our cohort maintaining a
FVC%P >60% at 18 years, 9% of patients with SMA type 3
required NIV at a median age of 15.1 (13.8–16.3) years. NIV
was started more frequently to treat acute respiratory de-
compensation during chest infections. Given the relatively in-
complete information on the main reason to start NIV, it was
not possible to retrospectively assess whether, for example,

Figure 5 Correlation Between Respiratory and Motor Function in SMA Types 2 and 3 at First Available Visit

(A) Correlation between forced vital capacity (FVC) percent predicted (FVC%P) and Hammersmith Functional Motor Scale (HFMS) score in spinal muscle
atrophy (SMA) type 2 (r = 0.67, p < 0.001) and SMA type 3 nonambulant (r = 0.68, p < 0.001). (B) Correlation between FVC%P and revised Upper Limb Module
(RULM) score in SMA type 2 (r = 0.61 p < 0.001) and SMA type 3 nonambulant (r = 0.61, p < 0.01).

Figure 4 Slope of FVC%P Before and After Spinal Surgery in SMA Types 2 and 3

(A) Overall population. Forced vital capacity percent predicted (FVC%P) declined yearly by 2.7% before scoliosis surgery and declined by 3.6% afterward (p =
0.22). (B) Spinalmuscle atrophy (SMA) type 2nonsitters. FVC%P increasedby 2.4%/y before scoliosis surgery anddeclined by 5.2%afterward (p = 0.19). (C) SMA
2 sitters. FVC%Pdeclined yearly by 2.8%before scoliosis surgery anddeclined by 3.4% afterward (p = 0.49). (D) SMA 3nonambulant. FVC%P declined by 1.3%/y
before scoliosis surgery and declined by 4.2% afterward (p = 0.48).
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chest infections occurred more frequently in patients not using
cough assistance. Similarly, details on the frequency that NIV
support was used as needed during acute decompensations
only as opposed to chronic use were not available. Our results
confirm that a reduced FVC%P (≈40%) and an increased
number of respiratory infections are strongly associated with
NIV requirement, as recently reported in a cross-sectional
study of pediatric SMA types 1, 2, and 3.30 The revised
standard-of-care guidelines promote the early adoption of
cough assist devices and a proactive early respiratory workup to
identify the need for NIV establishment. Our study did not
contain information on whether the adoption of such pulmo-
nary measures reduced the number of respiratory infections, an
important consideration for future studies. We acknowledge,
however, that the more proactive use of cough assistance and
NIV in recent years could act as a confounding factor in the
analysis of long-term respiratory function.

Although functional motor data were limited because some of
the tools used such as the RULM became available only re-
cently, our data suggest that FVC%P positively correlates with
HFMS and RULM scores. In an attempt to translate this into
clinically meaningful thresholds, we found that at the time
when NIV was started, 31 of 39 with SMA type 2 had an
HFMS score ≤10 and 24 had an HFMS score ≤6.

Scoliosis was a common feature of both SMA type 2 (84%) and
nonambulant SMA type 3 (80%), in keeping with previous
data.31 Median (IQR) age at surgery was 11 (8–13.3) years in
SMA type 2 and 11.7 (10.8–15.9) years in SMA type 3. We
evaluated whether the surgical correction of scoliosis could
influence the respiratory progression. A few studies have cross-
sectionally evaluated the pulmonary function before and after
scoliosis with controversial results.32–34 We have compared the
annual decline of FVC%P and absolute FVC. Their trajectories
after surgery were steeper than before surgery, even though the
difference was not significant (p = 0.22). The steep decline of
pulmonary function occurring in the year after surgery possibly
contributes to this negative results35; in addition, different
surgical techniques were used in this group of patients, ranging
from different types of growing rods to full spinal fusion,
contributing to the heterogeneity of the outcome. Because
respiratory and motor functions correlate, we confirm the data
of a recent report on 17 patients with SMA types 2 and 3
suggesting that motor function (HFMSE score) significantly
and permanently worsened after surgery.36

Patients’ nutritional status expressed as BMI and respiratory
function expressed as FVC correlated in both SMA types 2
and 3. This finding suggests that the regular body growth and
a wider rib cage allow the expansion of the lungs and are
positively associated with higher lung volumes. In patients
with SMA, an adequate nutritional intake should be moni-
tored and promoted.37

To the best of our knowledge, this is the largest observational
study on long-term respiratory function in SMA type 2 and

nonambulant type 3 reported to date. It provides data on
respiratory function measures in addition to FVC%P, along
with data on the correlation with motor function and the
requirement for NIV. The breakdown of severity within SMA
type 3 (i.e., types 3A and 3B) was beyond the purposes of the
current work because we decided to exclude ambulant SMA
type 3. The identification of thresholds of pulmonary function
associated with clinically meaningful events such as sleep
disordered breathing, use of NIV, or recurrent respiratory
infections was limited by the retrospective nature of our study
and missing data. While we acknowledge that the retrospec-
tive design was the main limitation of our study, our registry is
systematically promoted in each of the 3 participating net-
works that have been contributing to real-world data collec-
tion since 2010.

These data should be confirmed in larger prospective studies,
which may allow the establishment of more precise thresholds
of motor function scores associated with different levels of
respiratory function. The upcoming setup of a unique cus-
tomized platform within iSMAc20 will allow more robust data
collection for prospective longitudinal study of respiratory
function in intermediate SMA types and the effect of new
treatments.

Our work adds long-term respiratory data from a large in-
ternational cohort (n = 437) of patients with SMA type 2 and
nonambulant type 3 followed up over 8 years. Similar to what
has been described in motor function,26,27 the decline of FVC
%P in SMA type 2 and type 3 followed different trajectories
across age ranges. FVC%P annual decline was steeper from 5
to 13 years (≈4% in SMA type 2 and ≈3% in SMA type 3),
followed by a slower progression after age 13 years (1% in
SMA type 2, 0.9% in type 3). However, in SMA type 3, the
decline was more obvious after age 8 years (rather than age 5
years as in SMA type 2). Although nonsitters generally had a
more severe phenotype, there was no significant difference in
their rate of decline compared to sitters. In both SMA types 2
and 3, the motor (HFMS and RULM scores) and respiratory
functions correlated positively. The data provided by this
study will be important in the interpretation of the long-term
real-world respiratory outcome of patients who are now being
treated with disease-modifying therapies.
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