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a b s t r a c t

Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K) is one of the Ca2þ/calmodulin-dependent protein
kinases. Activated eEF2K phosphorylates its specific substrate, eEF2, which results in inhibition of protein
translation. We have recently shown that protein expression of eEF2K was specifically increased in hy-
pertrophied left ventricles (LV) from spontaneously hypertensive rats (SHR). However, phosphorylation
state of eEF2K and eEF2 in hypertrophied LV is not determined. In the present study, we examined
expression and phosphorylation of eEF2K and eEF2 in LV from SHR as well as the pressure overload
(transverse aortic constriction: TAC)- and isoproterenol (ISO)-induced cardiac hypertrophy model. In LV
from TAC mice, eEF2K expression was increased as determined by Western blotting. In LV from TAC mice
and SHR, eEF2K phosphorylation at Ser366 (inactive site) was decreased. Consistently, eEF2 phosphor-
ylation at Thr56 was increased. In LV from ISO rats, while eEF2K phosphorylation was decreased, eEF2K
expression and eEF2 phosphorylation were not different as determined by Western blotting. In the re-
sults obtained from immunohistochemistry, however, total eEF2K and phosphorylated eEF2 (at Thr56)
localized to cardiomyocytes were increased in LV cardiomyocytes from ISO rats. Accordingly, the in-
creased expression and the decreased phosphorylation of eEF2K and the increased phosphorylation of
eEF2 in hypertrophied LV were common to all models in this study. The present results thus suggest that
cardiac hypertrophy may be regulated at least partly via eEF2K-eEF2 signaling pathway.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K) is one of
the Ca2þ/calmodulin (CaM)-dependent protein kinases, and its
amino-acid sequences are highly conserved among mammals. The
homology is 97% between mice and rats, and 90% between human
and rodents [20]. eEF2K belongs to a small group with α-kinase
catalytic domains [19]. The α-kinase catalytic domain plays an
important role for substrate specificity to eEF2K [14]. Besides that
domain, a CaM-binding region and an unstructured ‘linker’ do-
main were identified in eEF2K, and these regions include several
phosphorylation sites such as Ser78, Thr348 and Ser366, which
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regulate eEF2K activity both positively and negatively. Activated
eEF2K phosphorylates its only known substrate, eEF2 at Thr56.
eEF2 was also highly conserved in mammals [15]. eEF2 mediates
protein translation by translocating polypeptidyl-tRNAs from the A
to P site on ribosome. Of note, phosphorylation of eEF2 makes
itself an inactive state and subsequently inhibits protein transla-
tion. Thus activated eEF2K inhibits eEF2 function via phosphor-
ylation [5].

Cardiac hypertrophy is a kind of compensatory response caused
by several diseases including hypertension, cardiac myopathy,
valvular disease, and congenital abnormality, which eventually
leads to heart failure and sudden death. It is recognized that the
increased protein synthesis is one of the primary causes for cardiac
hypertrophy. Angiotensin II, a peptide hormone inducing cardio-
myocyte hypertrophy, was reported to facilitate eEF2 depho-
sphorylation at Thr56 via activating protein phosphatase 2A and
mitogen-activated protein kinases signaling in rat neonatal cardi-
omyocytes [4]. On the other hand, a β-adrenergic agonist, iso-
proterenol decreased protein synthesis concomitant with an in-
creased Ca2þ/CaM-dependent eEF2 phosphorylation in ventricular
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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cardiomyocytes from adult rats [13]. We have recently shown that
eEF2K expression was specifically increased in hypertrophied left
ventricles (LV) from spontaneously hypertensive rats (SHR) com-
pared with Wistar-Kyoto rats (WKY) [8]. However, little is known
about the expression and phosphorylation states of eEF2K and
eEF2 in LV from in vivo cardiac hypertrophy models. The aim of
this study was therefore to explore them in several animal models,
namely SHR as well as pressure overload- and isoproterenol-in-
duced cardiac hypertrophy. Accordingly, we for the first time re-
vealed in this study that the increased expression and the de-
creased phosphorylation of eEF2K and the increased phosphor-
ylation of eEF2 in hypertrophied LV were common to all models,
suggesting the potential role of eEF2K/eEF2 signal in the patho-
genesis of cardiac hypertrophy.
2. Material and methods

2.1. Animal study

Care and treatment of experimental animals were performed in
accordance with the institutional guidelines of The Kitasato Uni-
versity and the National Institutes of Health Guide for the Care and
Use of Laboratory Animals. The animal experiment was approved
by the ethical committee of School of Veterinary Medicine, The
Kitasato University. After 12-week-old male SHR (Hoshino La-
boratory Animals, Inc., Ibaraki, Japan) and age-matched WKY were
euthanized by exsanguination under a deep urethane (1.5 g/kg i.p.)
anesthesia, LV were isolated and immediately frozen in �80 °C.
After protein extraction, the samples were used for Western blot
analysis.

2.2. Pressure overload-induced cardiac hypertrophy model mice

Male C57BL/6NJcl mice weighing 15–27 g (Clea Japan, Tokyo,
Japan) received an operation of transverse aortic constriction
(TAC). After propofol (100 mg/kg) was pretreated intraperitoneally,
mice were anesthetized by an inhalation of diethyl ether. The ju-
gulum of mice was vertically incised and transverse aorta was
displayed. A blunted 27G needle was tied with 7–0 silk suture to
the aorta between brachiocephalic artery and left common carotid
artery. The needle was immediately withdrawn after the ligation.
Then, skin was closed with 6–0 nylon suture and buprenorphine
(0.12 mg/kg) was subcutaneously injected. SHAM operated mice
received an identical surgery except for aortic ligation. After 3 days
from TAC operation, echocardiography was performed under die-
thyl ether anesthesia using SONOS 5500 (Hewlett-Packard Co.,
Andover, MA, USA) with a dynamically focused S12 probe (5–
12 MHz. Hewlett Packard Co.). Heart rate was maintained in 420–
480 bpm. Interventricular septum (IVS), left ventricular internal
diameter (LVID) and left ventricular posterior wall (LVPW) in both
diastolic and systolic phases as well as fractional shortening (FS)
were measured by an M-mode. Subsequently LV were isolated and
weighed. The isolated LV were immediately frozen in �80 °C for
protein extraction and used for Western blot analysis.

2.3. Isoproterenol-induced cardiac hypertrophy model rats

Isoproterenol (5 mg/kg) was subcutaneously injected to male
Wistar rats weighing 150–180 g (Clea Japan; ISO) [17]. In the
control group, rats received a saline injection (Cont). We have
utilized rats because rats are easy to handle and widely used to
make an isoproterenol-induced cardiac hypertrophy model. After
1 week, LV were isolated under a deep pentobarbital (50 mg/kg, i.
p.) anesthesia and weighed. The isolated LV were then im-
mediately frozen in �80 °C for Western blotting and also fixed in
10% neutral buffered formalin for histological analysis. We chose a
subcutaneous rather than intraperitoneal route because the effects
of intraperitoneal injection are possibly stronger than sub-
cutaneous injection [21]. In general, a high-dose isoproterenol
might cause a myocardial infarction in rats. Since this is not the
pathogenesis which we focused on, we did not choose the in-
traperitoneal route. In this study, we did not examine the cardiac
function of ISO rats because we focused on cardiac hypertrophy
rather than dysfunction. Since Krenek et al. [11] previously re-
ported that isoproterenol (5 mg/kg) injection to rats for 7 days
induced cardiac dysfunction (decreased systolic left ventricular
pressure, dp/dtmax, dp/dtmin and heart rate), there might be a si-
milar cardiac dysfunction in our ISO rats.

2.4. Western blotting

Western blotting was done as described previously [7,8]. Pro-
tein lysates were obtained by homogenizing tissue samples with
lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA-
2Na, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM
β-glycerophosphate, 1 mM Na3VO4, 1 μg/ml leupeptin; Cell Sig-
naling Technology, Danvers, MA, USA) containing 1% proteinase
inhibitor mix (Nacalai Tesque, Kyoto, Japan). Protein concentration
was measured using a bicinchoninic acid method (Pierce, Rock-
ford, IL, USA). Equal amount of proteins (8–10 μg) was separated
by SDS-PAGE (10%) and transferred to nitrocellulose membranes
(Pall, Ann Arbor, MI, USA). After being blocked with 3% bovine
serum albumin for phosphorylation-specific antibodies or 0.5%
skim milk for others for 1 h, membranes were incubated with the
following primary antibodies (1:500 dilution): total-eEF2K, phos-
pho-eEF2K (at Ser366), phospho-eEF2 (at Thr56) at 4 °C overnight.
Then, the membrane was visualized using horseradish peroxidase-
conjugated secondary antibodies (1:10,000 dilution, 45 min at
room temperature) and the EZ-ECL system (Biological Industries,
Kibbutz Beit Haemek, Israel). Anti-GAPDH antibody (1:1000 dilu-
tion) was used for normalizing the expression of total-eEF2K and
phospho-eEF2. The resulting bands were analyzed using CS Ana-
lyzer 3.0 software (ATTO, Tokyo, Japan).

2.5. Azan staining

Azan staining was done as described previously [17]. LV tissues
were fixed in 10% neutral buffered formalin. The tissues were
dehydrated and embedded in paraffin and thin tissue sections (4
μm) were made. Deparaffinized sections were soaked in 5% po-
tassium dichromate solution for 1 h and stained with azocarmine
G (Waldeck, Division Chroma, Munster, Germany) at room tem-
perature overnight. Sections were soaked in 12-tungsto-(VI)-
phosphoric acid n-hydrate solution for 1 h and stained with ani-
line blue-orange G (Waldeck, Division Chroma) for 15 min. Images
were obtained using a CCD-camera equipped light microscope
(BX-51, Olympus, Tokyo, Japan).

2.6. Immunohistochemistry

Immunohistochemistry was done as described previously [9].
LV tissues were fixed in 10% neutral buffered formalin. The tissues
were dehydrated and embedded in paraffin and thin tissue sec-
tions (4 μm) were made. After the deparaffinized sections were
heated using a microwave for antigen retrieval, endogenous per-
oxidase activity was blocked by incubating in Dako REAL perox-
idase-blocking solution (Dako, Glostrup, Denmark) for 15 min.
Then, the sections were blocked with 5% normal goat serum for
60 min and subsequently incubated with specific primary anti-
body against total-eEF2K (1:250 dilution), phospho-eEF2K (1:250
dilution) or phospho-eEF2 (1:200 dilution) at 4 °C overnight. After



Table 1
Changes in body weight, left ventricular weight and the left ventricle to body
weight ratio in pressure overload- and isoproterenol-induced cardiac hypertrophy
model. TAC, transverse aortic constriction. **po0.01 vs. SHAM, ♯♯po0.01 vs.
Control.

Body weight
(g)

Left ventricular
weight (mg)

Left ventricle to body
weight ratio (mg/g)

SHAM (n ¼8) 21.771.1 76.872.6 3.5270.07
TAC (n ¼8) 22.870.9 97.575.3** 4.4370.28**
Control (n ¼8) 228.073.4 545.1710.7 2.3970.04
Isoproterenol (n
¼8)

233.471.8 717.1717.0♯♯ 3.0770.08♯♯

Table 2
Results of echocardiography in pressure overload-induced cardiac hypertrophy
model. IVSd/s, interventricular septal end diastole/end systole; LVIDd/s, left ven-
tricular internal diameter end diastole/end systole; LVPWd/s, left ventricular pos-
terior wall end diastole/end systole; FS, fractional shortening; HR, heart rate.
*po0.05 vs. SHAM.

SHAM (n ¼6) TAC (n ¼8)

IVSd (cm) 0.1070.006 0.1170.013
IVSs (cm) 0.1570.013 0.1470.011
LVIDd (cm) 0.2270.016 0.2870.012*
LVIDs (cm) 0.1270.008 0.1670.013
LVPWd (cm) 0.1270.007 0.1570.009*
LVPWs (cm) 0.1370.010 0.1770.010*
FS (%) 48.473.5 43.573.6
HR (bpm) 477722 457725
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washed in Tris buffer, the sections were incubated in biotinylated
link (Dako) for 10 min and next in streptavidin-HRP (Dako) for
10 min at room temperature. The images were visualized by a li-
quid DAB þ substrate chromogen system (Dako) and obtained
using a CCD-camera equipped light microscope (BX-51). For
comparing expression and phosphorylation of eEF2K and eEF2
phosphorylation between LV from ISO and Cont group, ratio of
total-eEF2K-, phosphorylated eEF2K- or phosphorylated eEF2-po-
sitive area in three fields from each LV section was calculated using
Image J software (NIH, Bethesda, MD, USA).

2.7. Materials

Reagent sources were as followings: propofol (Mylan N. V.,
Tokyo, Japan), diethyl ether (Wako Pure Chemical, Osaka, Japan),
buprenorphine (Otsuka Pharmaceutical, Tokyo, Japan), iso-
proterenol bitartrate (Sigma-Aldrich, St. Louis, MO, USA), and
pentobarbital (Sumitomo Dainippon Pharma, Tokyo, Japan).

Antibody sources were as followings: total-eEF2K (No.
GTX107879) (Gene Tex, Irvine, CA, USA), phospho-eEF2K (at
Ser366) (No. A0071) (Assay Biotech, Sunnyvale, CA, USA), phos-
pho-eEF2 (at Thr56) (No. ADI-905-775-100) (Assay Designs, Ann
Arbor, MI, USA), and GAPDH (No. GTX100118) (Gene Tex).

2.8. Statistics

Data are presented as means 7SEM. Statistical evaluations
were done by unpaired student's t-test. P values of o0.05 were
considered statistically significant.
3. Results

3.1. Changes in body weight (BW), LV weight as well as cardiac
function and structure

In pressure overload-induced cardiac hypertrophy model mice,
BW was not different between SHAM (21.771.1 g, n¼8, Table 1)
and TAC group (22.870.9 g, n¼8, Table 1). In TAC group, LV
weight (from 76.872.6 mg to 97.575.3 mg, po0.01, n¼8, Ta-
ble 1) and LV to BW ratio (LV/BW; from 3.5270.07 to 4.4370.28,
po0.01, n¼8, Table 1) were significantly increased compared
with SHAM group. LVID end diastole was significantly increased
compared with SHAM (from 0.2270.016 cm to 0.2870.012 cm,
po0.05, n¼6–8, Table 2). LVPW end diastole (from
0.1270.007 cm to 0.1570.009 cm, po0.05, n¼6–8, Table 2) and
end systole (from 0.1370.010 cm to 0.1770.010 cm, po0.05,
n¼6–8, Table 2) in TAC mice were significantly increased com-
pared with SHAM, suggesting the increased left ventricular wall
hypertrophy. In isoproterenol-induced cardiac hypertrophy model
rats, BW between control (228.073.4 g, n¼8, Table 1) and iso-
proterenol-injected group (233.471.8 g, n¼8, Table 1) was not
different. In isoproterenol-injected group, LV weight (from
545.1710.7 mg to 717.1717.0 mg, po0.01, n¼8, Table 1) and LV/
BW (from 2.3970.04 to 3.0770.08, po0.01, n¼8, Table 1) were
significantly increased compared with control group. We have
previously shown that LV/BW was significantly increased in SHR
compared with WKY at 12-week-old [8].

3.2. Phosphorylation of eEF2K and eEF2 in LV from SHR

We have recently shown that protein expression of eEF2K was
significantly increased in LV from SHR compared with WKY at 12-
week-old [8]. In the present study, we further examined phos-
phorylation states of eEF2K and its specific substrate, eEF2 in LV
from SHR. eEF2K phosphorylation at Ser366 (inactive site) was
decreased in SHR LV compared with WKY (p¼0.0732, n¼7, Fig. 1).
In consistent with the results, eEF2 phosphorylation at Thr56 was
significantly increased in SHR LV compared with WKY (po0.05,
n¼7, Fig. 1).

3.3. Expression and phosphorylation of eEF2K and eEF2 in pressure
overload-induced hypertrophied LV

We next examined protein expression and phosphorylation of
eEF2K and eEF2 in TAC-induced hypertrophied LV. While eEF2K
expression (po0.01, n¼8, Fig. 2) was significantly increased in LV
from TAC compared with SHAM, eEF2K phosphorylation at Ser366
was significantly decreased in LV from TAC compared with SHAM
(po0.05, n¼8, Fig. 2). In consistent with the results, eEF2 phos-
phorylation at Thr56 was significantly increased in LV from TAC
compared with SHAM (po0.01, n¼8, Fig. 2).

3.4. Expression and phosphorylation of eEF2K and eEF2 in iso-
proterenol-induced hypertrophied LV

We further examined expression and phosphorylation of eEF2K
and eEF2 in LV from isoproterenol-induced cardiac hypertrophy
model rats. eEF2K phosphorylation at Ser366 was significantly
decreased in LV from isoproterenol-injected group (ISO) compared
with control group (Cont; po0.01, n¼6, Fig. 3). However, eEF2K
expression and eEF2 phosphorylation at Thr56 were not different
between the groups as determined by Western blotting (n¼6,
Fig. 3). It has been demonstrated that isoproterenol induced car-
diac fibrosis in rat LV 7 days after isoproterenol injection [17]. We
confirmed it by an Azan staining (n ¼6, Fig. 4A-a, e). We next
examined expression and phosphorylation of eEF2K (at Ser366)
and eEF2 (at Thr56) by immunohistochemistry using specific an-
tibody. Expression of total-eEF2K and phosphorylated eEF2K as
well as phosphorylated eEF2 seemed to be mainly localized to
cardiomyocytes, but not fibrotic areas or cardiac fibroblasts (n¼3–
4, Fig. 4A-b-d, f-h). Of note, eEF2K-positive area was significantly
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increased (po0.05, n¼4, Fig. 4A-b, f and B) and phosphorylated
eEF2 was also increased (p¼0.0688, n¼3–4, Fig. 4A-d, h and D) in
LV cardiomyocytes from ISO compared with Cont. We also con-
firmed that the phosphorylated eEF2K was significantly decreased
in LV cardiomyocytes from ISO compared with Cont, which cor-
responded to the results in Western blotting (po0.05, n¼3–4,
Fig. 4A-c, g and C).
4. Discussion

Cardiac hypertrophy is a kind of compensatory response caused
by physiological adaptation or pathological events including hy-
pertension, cardiac myopathy and valvular disease. Cardiac hy-
pertrophy consists of several histological changes such as an in-
creased volume of cardiomyocyte and a fiber infiltration [3]. Pro-
tein synthesis is one of the cardinal features in cardiomyocyte
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ventricular sections (a: Cont, n¼6; e: ISO, n¼6) and immuno-stained sections using specific antibody against t-eEF2K (b: Cont, n¼4; f: ISO, n¼4), p-eEF2K (Ser366) (c: Cont,
n¼3; g: ISO, n¼4) or p-eEF2 (Thr56) (d: Cont, n¼3; h: ISO, n¼4). Scale bar: 500 mm (a, e), 200 mm (b-d, f-h). (B) t-eEF2K-, (C) p-eEF2K (Ser366)- or (D) p-eEF2 (Thr56)-
positive area to cross-sectional cardiomyocyte area ratio was calculated. The results were shown as fold increase relative to Cont. *po0.05 vs. Cont.
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hypertrophy, and partly regulated by elongation factor, eEF2. eEF2
was phosphorylated and inactivated by eEF2K. Thus, eEF2K in-
activation facilitates eEF2-dependent protein translation. Several
agonists including angiotensin II, endothelin-1 and phenylephrine,
which induce cardiomyocyte hypertrophy, are reported to facil-
itate dephosphorylation of eEF2 in rat cardiomyocytes [4,22].
These reports suggest that cardiac hypertrophy is partly regulated
by increased protein synthesis via eEF2K/eEF2 signaling.

Our recent study has shown that the protein expression of
eEF2K was significantly increased in hypertrophied LV from SHR
compared with normal LV from WKY [8]. In the present study, we
further examined phosphorylation states of eEF2K and eEF2 in LV
from SHR. eEF2K phosphorylation at Ser366 was decreased in SHR
LV (Fig. 1). eEF2K dephosphorylation at Ser366 makes itself an
active state, and mediates phosphorylation of eEF2 [23]. In con-
sistent with the report, eEF2 phosphorylation at Thr56 was sig-
nificantly increased in LV from SHR compared with WKY (Fig. 1). In
addition, we examined them in pressure overload-induced cardiac
hypertrophy model mice. Increased expression and decreased
phosphorylation of eEF2K at Ser366 were also found in LV from
TAC mice compared with SHAM mice (Fig. 2). Consistently, eEF2
phosphorylation at Thr56 was significantly increased (Fig. 2).
These results were consistent with the results obtained from SHR
LV. Moreover, the eEF2K/eEF2 signaling in LV was examined in
isoproterenol-induced cardiac hypertrophy model rats. While
eEF2K phosphorylation at Ser366 was significantly decreased in LV
from ISO rats compared with Cont rats, eEF2K expression and eEF2
phosphorylation were not different as determined by Western
blotting (Fig. 3). The LV from ISO had fibrotic areas at adluminal
part of free wall (Fig. 4A-a, e). In immunohistochemical analysis,
we found that total- and phosphorylated eEF2K as well as phos-
phorylated eEF2 were localized to cardiomyocytes but not fibrotic
areas (Fig. 4A-b-d, f-h). Of note, eEF2K- and phosphorylated eEF2-
positive areas were increased in LV from ISO rats compared with
Cont rats (Fig. 4A-b, d, f, h and B, D). Accordingly, the increased
expression and the decreased phosphorylation of eEF2K and the
increased phosphorylation of eEF2 in hypertrophied LV were
common to all animal models in this study.

The present results suggest that protein translation might be
decreased in hypertrophied LV. In general, cardiomyocytes in hy-
pertrophied heart are exposed by hypoxic and starved condition
because of microvascular rarefaction [16]. In these conditions,
adenosine monophosphate (AMP) to adenosine triphosphate ratio
is increased, which results in an increased activation of AMP-ac-
tivated protein kinase (AMPK) in cardiomyocytes [18]. It was re-
ported that activated AMPK facilitates eEF2 phosphorylation at
Thr56 and subsequently inhibits protein synthesis in rat cardio-
myocytes [1,12]. In addition, Crozier et al. revealed that phos-
phorylation of AMPK and eEF2 was increased by ischemia in rat
isolated heart [2]. Therefore, it might be possible that AMPK/
eEF2K/eEF2 pathway at least partly affects the pathogenesis of
cardiac hypertrophy.

In normal cardiomyocytes, myocardial contraction, Ca2þ

homeostasis and protein synthesis consume high proportion of
cellular energy [10]. Since myocardial contractile function is im-
paired during the development of cardiac diseases, it is important
to keep the energy consumption lower level for the maintenance
of cardiac contraction [6]. Therefore, it is proposed that a de-
creased protein synthesis induced by eEF2 inactivation might play
role for maintaining myocardial contraction during cardiac dis-
eases. On the other hand, eEF2K/eEF2 signaling is reported to
mediate apoptosis and autophagy in a certain tumor cells [24].
Thus, cardiac cell death regulated by eEF2K/eEF2 signaling might
be also related to the pathogenesis of cardiac hypertrophy.

In conclusion, we for the first time show that the increased
expression and the decreased phosphorylation of eEF2K and the
increased phosphorylation of eEF2 in hypertrophied LV were
common to several animal models, namely SHR as well as pressure
overload- and isoproterenol-induced cardiac hypertrophy. These
results suggest the potential role of eEF2K/eEF2 signaling in the
pathogenesis of cardiac hypertrophy development. Detailed ex-
aminations are needed to further reveal the relationships between
eEF2K/eEF2 signaling pathway and cardiac hypertrophy.
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