
Journal of

Personalized 

Medicine

Review

Fluid Candidate Biomarkers for Alzheimer’s Disease:
A Precision Medicine Approach

Eleonora Del Prete *, Maria Francesca Beatino, Nicole Campese, Linda Giampietri,
Gabriele Siciliano, Roberto Ceravolo and Filippo Baldacci

Neurology Unit, Clinical and Experimental Medicine Department, University of Pisa, 56126 Pisa, Italy;
mariaf.beatino@gmail.com (M.F.B.); campesenicole@gmail.com (N.C.); lindagiampietri@gmail.com (L.G.);
gabriele.siciliano@unipi.it (G.S.); r.ceravolo@med.unipi.it (R.C.); filippo.baldacci@unipi.it (F.B.)
* Correspondence: ele.delprete86@gmail.com

Received: 11 September 2020; Accepted: 5 November 2020; Published: 11 November 2020 ����������
�������

Abstract: A plethora of dynamic pathophysiological mechanisms underpins highly heterogeneous
phenotypes in the field of dementia, particularly in Alzheimer’s disease (AD). In such a faceted scenario,
a biomarker-guided approach, through the implementation of specific fluid biomarkers individually
reflecting distinct molecular pathways in the brain, may help establish a proper clinical diagnosis,
even in its preclinical stages. Recently, ultrasensitive assays may detect different neurodegenerative
mechanisms in blood earlier. ß-amyloid (Aß) peptides, phosphorylated-tau (p-tau), and neurofilament
light chain (NFL) measured in blood are gaining momentum as candidate biomarkers for AD. P-tau is
currently the more convincing plasma biomarker for the diagnostic workup of AD. The clinical role of
plasma Aβ peptides should be better elucidated with further studies that also compare the accuracy
of the different ultrasensitive techniques. Blood NFL is promising as a proxy of neurodegeneration
process tout court. Protein misfolding amplification assays can accurately detect α-synuclein in
cerebrospinal fluid (CSF), thus representing advancement in the pathologic stratification of AD.
In CSF, neurogranin and YKL-40 are further candidate biomarkers tracking synaptic disruption and
neuroinflammation, which are additional key pathophysiological pathways related to AD genesis.
Advanced statistical analysis using clinical scores and biomarker data to bring together individuals
with AD from large heterogeneous cohorts into consistent clusters may promote the discovery of
pathophysiological causes and detection of tailored treatments.

Keywords: biomarkers; Alzheimer’s disease; neurodegeneration; cerebrospinal fluid; mild cognitive
impairment; synaptic biomarkers; neuroinflammation; neurofilament light chain

1. Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease (NDD), with 5.8 million
Americans aged 65 years and older living with AD in 2020 [1]. Since Alois Alzheimer’s first description
of the typical histological alterations of neuritic plaques (NP) and neurofibrillary tangles (NFT) in
1906 [2], more than eighty years have passed before amyloid beta (Aβ) and phosphorylated-tau
(p-tau) were identified as the main component of NP and NFT, respectively [3]. In 1984, the National
Institute of Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADRDA) [4] set postmortem examination as the reference standard
of AD diagnosis. Since then, the broad phenotypical variability of neurodegenerative diseases (NDDs)
has pushed the efforts toward developing a classification based on the main misfolded protein
deposition [5,6]. Nevertheless, the occurrence of these aggregates in multiple combinations is frequent,
and NDDs are rather emerging as a spectrum of disorders characterized by the loss of proteostasis [7].
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Due to the failure of numerous trials against amyloid pathology, the idea of “one drug fits all”
treatment as an ultimate solution for an AD cure is fading [8]. In brief, the current framework on
AD is more complex than previously thought because AD is not a mere plaque and tangle disorder.
The following pathophysiological pathways leading to neurodegeneration have been recognized as
clearly implicated in AD pathogenesis: (1) accumulation of misfolded proteins in the brain (Aβ peptides,
tau and p-tau proteins, other co-pathologies), (2) vascular dysfunction, (3) synaptic disruption, and (4)
neuroinflammation. The discovery of biomarkers indicating the modification of these processes at
different levels in space and time is gaining momentum, especially in design tailored disease-modifying
trials (Figure 1).
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Figure 1. Alzheimer’s disease fluid biomarkers. The major pathophysiological processes involved in
Alzheimer’s disease (in bold) with validated and proposed fluid biomarkers are schematically represented.
Fluid biomarkers of vascular dysfunction, and of TAR DNA binding protein 43 (TDP-43) and α-syn
pathologies are still missing. Abbreviations: Aβ, β-amyloid, α-syn, α-synuclein; NFL, neurofilament light
chain; Ng, neurogranin; p-tau, phosphorylated tau protein; t-tau, total tau protein, synaptosomal-associated
protein 25 (SNAP-25), and triggering receptor expressed on myeloid cells 2 (TREM2).

Our aim is to review the development of novel candidate fluid biomarkers tracking these key
pathophysiological mechanisms in different matrices, especially cerebrospinal fluid (CSF) and blood.
In relation to AD, we mainly focused on the diagnostic and prognostic value of these biomarkers,
with particular attention to the novel ultrasensitive techniques.

2. Literature Search Methods

We performed a narrative review of literature focusing on novel candidate fluid biomarkers
for AD. A systematic review of literature focused on plasma biomarkers detected by means of
novel ultrasensitive techniques was performed in PubMed. We used the combination of the
keywords “plasma”, “serum”, “amyloid-β”, “NFL” (neurofilament light chain), “p-tau”, “p-tau181”,
“phopsho-tau181”, “phosphorylated tau181”, “t-tau”, “Simoa”, “immunoassay”, “immunomagnetic
reduction”, “fully automated”, “immuno-infrared sensor”, “mass spectrometry”, and “multimer
detection system”. Only papers in English published between 2014 and July 2020 and focused on
AD were included in the final analysis. Overall, we identified 21 studies that provided relevant
diagnostic and/or prognostic information (Figure 2). Among them, 10 were focused on amyloid-β
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peptides, 7 were focused on p-tau or tau or both, and 4 were focused on NFL. For each paper, the study
population, the study design (cross-sectional, perspective, retrospective), and the diagnostic and/or
prognostic value of the investigated biomarker were analyzed. We classified the diagnostic value of
each biomarker according to previously published recommendations as follows: “excellent” (area under
ROC curve [AuROC] 0.90–1.00), “good” (AuROC 0.80–0.89), “fair or moderate” (AuROC 0.70–0.79),
“poor” (AuROC 0.60–0.69), or “fail or insufficient” (i.e., no discriminatory capacity) (AuROC 0.50–0.59).
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3. Toward a Pathophysiological Definition of Alzheimer’s Disease

With the 1984 NINCDS-ADRDA criteria, the accuracy for probable AD diagnosis was suboptimal,
with sensitivity between 70.9% and 87.3% and specificity between 44.3% and 70.8% [9]. The definite
diagnosis relied on postmortem examination, with obvious limitations, since it is not applicable in vivo.
For this reason, the International Working Group (IWG) [10] and later the National Institute on Aging and
Alzheimer’s Association (NIA-AA) [11] published novel criteria for the diagnosis of AD incorporating
in vivo biomarkers. According to the 2007 IWG criteria, AD can be identified in vivo by the presence
of amnestic syndrome of the hippocampal type, which is characterized by low free recall that does not
improve with cueing. Moreover, biomarkers must be consistent with AD pathology. These biomarkers
are pathophysiological and topographical. The pathophysiological ones are low CSF Aβ1-42 peptide
concentration, high CSF total tau (t-tau) or p-tau levels, and an increased cerebral uptake of amyloid
tracers (e.g., Pittsburgh compound) with PET. The formers are hippocampal atrophy on volumetric
Magnetic Resonance Imnaging (MRI) and cortical regional hypometabolism on fluorodeoxyglucose
FDG-PET, involving bilateral temporal parietal regions and posterior cingulate. IWG criteria managed
to move from the static and binary/dichotomic vision of AD as a clinicopathological entity to its
current dynamic clinical-radio-biological description [10]. The subsequent 2010 revision of IWG
criteria overtook the amnestic-centered concept of AD and broadened the spectrum, adding the
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rarer atypical forms of AD, such as primary progressive non-fluent aphasia, in particular logopenic
aphasia, posterior cortical atrophy, and frontal variant AD. The-so-called “asymptomatic at risk of AD”
condition without clinical symptoms but with positive biomarkers of AD pathology was stated out,
as well as the concept of “mixed AD”, implying the co-occurrence of clinical and biological features
of other disease, such as parkinsonism (e.g., Lewy body pathology) or cerebrovascular disease [12].
Later on, these concepts were implemented in the IWG-2 criteria (2014) [13], where clinical diagnosis
required specifying whether typical or atypical AD phenotypes occurred. Furthermore, the condition
of a preclinical AD stage (for asymptomatic at risk and presymptomatic subjects) was defined in the
presence of cognitive normal individuals with biomarkers indicative of AD pathophysiological process.
Topographical biomarkers were used only for disease staging and monitoring. In parallel with IWG
criteria, the NIA-AA diagnostic guidelines developed in 2011 [14–16] moved forward, defining the
concept of mild cognitive impairment (MCI) due to AD (clinical MCI individuals with biomarkers
indicating AD pathology). In fact, MCI due to AD had a high likelihood of developing AD over time.
Subsequently, in 2016, the joint IWG-Alzheimer’s Association (IWG-AA) formalized a purely biological
definition of AD, based on the positivity of biomarkers of both amyloidosis and tauopathy [17]. In the
same years, the “A/T/N” classification system for AD was published. In this classification, the validated
AD biomarkers were reported into three binary categories (presence or absence) based on the nature
of the pathophysiology. “A” refers to the ß-amyloid pathology (cerebral amyloid PET or CSF Aß42);
“T,” refers to taupathology (CSF p-tau, or cerebral tau PET); and “N” refers to neurodegeneration
or neuronal injury tout court ([18F]-fluorodeoxyglucose-PET, structural MRI, or CSF total tau [18]).
This unbiased biomarker-based scheme was recently incorporated in the current NIA-AA criteria
published in 2018, with the addition of C for clinical change, to integrate the biomarkers condition with
clinical cognitive status [19]. All A+ individuals are considered part of the “Alzheimer’s continuum”,
while only A+ and T+ define AD. Non AD-specific parameters, namely neurodegenerative/neuronal
injury biomarkers (N) and cognitive symptoms (C), define staging [19]. A- individuals fall either in the
“normal AD biomarker” category with A-T-(N-), or “Suspected non-Alzheimer’s pathophysiology”
(SNAP) with A-T+(N)-, A-T-(N)+, or A-T+(N)+.

Among the mimics of typical AD-type dementia, Primary Age-Related Tauopathy (PART) should
be mentioned [20,21]. PART identifies individuals with cerebral NFT indistinguishable from those of AD,
in the absence of Aβ plaques; notably, NFT are restricted to the medial temporal lobe, basal forebrain,
brainstem, and olfactory areas [21]. At a clinical level, associated manifestations range from normal
cognition to amnesic cognitive impairment, but they are rarely a frank dementia. Similarly, a recently
described entity is the limbic-predominant age-related TDP-43 encephalopathy (LATE) [22]. LATE is a
common TDP-43 proteinopathy that generally affects older adults, and it is frequently associated with
hippocampal sclerosis. Aβ plaques or tauopathy may also coexist. Generally, co-pathologies in AD
subjects are common with approximately 30% of AD patients showing a cerebrovascular disease [23].
The concomitant deposition of Aβ and α-syn proteins is also described in postmortem examination in
about 30% of AD individuals [24,25] but also in up to 40% of patients with Parkinson’s disease (PD),
Parkinson disease dementia (PDD), and dementia with Lewy bodies (DLB) clinical diagnoses [26–28].

Thus, in this scenario, it is likely that no single biomarker could reach a 100% diagnostic accuracy,
being AD biologically multifaceted with a clinical picture reflecting pathology only in terms of
probabilistic association. Despite these intrinsic limitations, the use of core biomarkers in the AD
diagnostic workup improves accuracy (up to 90%) with a relevant impact on AD stratification and
selection for disease-modifying trials tailored against Aß and tau pathologies [29].

To date, the neuropathological hallmarks of AD remain extracellular Aβ plaques and NFTs [30,31].
First proposed in 1992, the “amyloid cascade hypothesis” [32] has been later corroborated by genetic
and biochemical data and currently represents the dominant pathogenetic model of AD. According to
this hypothesis, the deposition of fibrillar Aβ plaques within the brain promotes the accumulation of
NFTs, synaptic disintegration and neuronal death by inflammatory mechanisms, modification of ions
homeostasis, kinase/phosphatase activity, and oxidative stress [33]. In particular, Aβ plaques create an
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unique environment that facilitates tau aggregation, initially as dystrophic neurites surrounding Aβ
plaques, followed by the formation and spread throughout the brain in a prion-like manner of NFTs
and neuropil threads [34]. NFTs are characteristic of AD and are composed of hyperphosphorylated
tau [35–37]. The hyperphosphorylation of tau protein reduces its affinity for microtubules and promotes
its capacity to aggregate and fibrillize [38]. Therefore, microtubules are destabilized, and axonal
transport is impaired [39].

The hyperphosphorylated tau could also migrate in the somatodendridic compartments where it
interacts with Aβ and enhances synaptotoxicity [40], finally causing cell death due to a toxic gain of
function mechanism [41,42].

At the same time, much interest is growing around the role of inflammation in the pathogenesis of
AD. The contribution of inflammation to the pathophysiology of AD has been already hypothesized more
than 20 years ago [43–45]. The attention has been focused especially on microglia activation, which seems
to occur decades before AD onset [46–48]. Furthermore, a correlation between neuroinflammation and
amyloid or tau accumulation in the human brain has been reported in several investigations [46,49–51].
The microglial activation produces two different phenotypes. The microglial “pro-inflammatory”
phenotype (M1) displays pro-inflammatory cytokines (IL-1β, IL-6, IL-12, tumor necrosis factor
(TNF)-α, CCL2), nitric oxide, reactive oxygen and nitrogen species. The “anti-inflammatory” one
(M2) sustains the production of IL-10 and TGF-β, and it increases the expression of neurotrophic
factors (nerve-derived growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophins,
glial cell–derived neurotrophic factor (GDNF)), and several other signals involved in downregulation,
protection, or repair processes [52]. The chronic stimulus on microglia by Aβ peptides accumulation is
likely to lead to a protracted inflammation, and, in turn, increase Aβ deposition, in a vicious circle [53].
The inflammatory state would promote the production and release of pro-inflammatory cytokines,
which could themselves have a detrimental effect by inducing neuronal cell death.

Another relevant key pathophysiological mechanism that contributes to AD is vascular
dysregulation [54]. Several pieces of evidence support the role of chronic cerebral hypoperfusion
as the primum movens of AD pathology [55,56]. Hypoxia can activate β-secretase-1 and γ-secretase
as well as increase Aβ peptides accumulation [57]. Furthermore, the reduced supply of oxygen
and nutrients affects neurons per se, and, in turn, it promotes blood–brain barrier dysfunction,
increasing oxidative stress and inflammation [58]. Since Aβ deposition derives essentially from an
imbalance between production and removal, clearing system impairment is emerging as a further key
pathophysiological mechanism leading to AD. In particular, this mechanism involves the alteration of
astroglial-mediated interstitial fluid (ISF) bulk flow or glymphatic system [59,60]. This pathway is
mainly modulated by the sleep–wake cycle and seems to be important for the sleep-driven clearance
of Aβ [61]. Vascular pathology seems to be additive or even synergic to AD pathology as a cause of
cognitive impairment [62,63]. This cross-talk is most evident for cerebral amyloid angiopathy (CAA),
which shares Aβ deposition with AD typical neurotic plaques that are localized within leptomeningeal
and intracortical arteries, arterioles, and capillaries. CAA is commonly found in AD brains: up to
approximately 50% of subjects with severe NP load [64]. CAA can affect perivascular drainage
impairing glymphatic circulation, thus reducing a major route of Aβ clearance from the brain [59].
Intracranial atherosclerosis was found to be an additional, although not strictly neurodegenerative,
strong risk factor for AD dementia [65].

4. Fluid Biomarkers: Ultrasensitive Measurement Techniques

Due to several advantages over invasive (e.g., CSF Aβ peptides), expensive and scarcely available
(e.g., cerebral amyloid-PET) diagnostic tools, technologies aiming at quantifying NDDs biomarkers in
blood are gathering momentum.

However, the discovery of CNS-related biomarkers in blood presents challenging issues: (a) the
concentration of a biomarker released in CNS is lower than in CSF, considering that it has to cross the
blood–brain barrier and that the blood volume is consistently larger than the CSF one, (b) biomarkers
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could also be directly expressed peripherally, and the contribution of CNS might be difficult to quantify,
(c) proteolytic degradation of the analytes by plasma proteases and confounding blood proteins may
interfere with biomarker measurement [66].

The traditional enzyme-linked immunosorbent assay (ELISA) was extensively used in the last
few decades. It showed a substantial intrinsic variability in the quantification of plasma/serum
biomarkers and provided overlapping results in the discrimination between NDDs and cognitively
healthy subjects [67,68]. The large sample volume required in the analysis combined with a sensitivity
limited to the picomolar range could be addressed as the main weakness of this method. Therefore,
ultrasensitive techniques often representing ELISA-based evolutions have been developed for blood
biomarker discovery.

The automated xMAP (multi-analyte profiling) Luminex technology, a flow cytometric method,
allows the adaptation of several immunoassay formats to simultaneously detect multiple analytes
on different sets of microspheres in a single well [69]. Through pre-made calibrators, it reduces
measurement variability, partially overcoming some limitations of conventional ELISA methods
(Table 1).

Another emerging technique is the single-molecule array (Simoa), which is essentially a digital
ELISA. This fully automated method is based on capturing antibody-coated paramagnetic beads
loaded in arrays of femtomolar-sized reaction chambers with a volume 2 billion times smaller than
conventional ELISA. Ultimately, by acquiring fluorescence images, an increase in signal will reflect the
presence of single enzyme-associated immunocomplexes [70] (Table 1). This method is a candidate
prescreening tool but may be potentially useful throughout the whole AD spectrum [71]. Large-scale
longitudinal multicenter studies are anyway needed for the standardization and harmonization of
preanalytical and analytical variables [72].

Combining the unique advantages of highly specific immunoreactions and
electrochemiluminescence (ECL) biosensors, ECL immunoassays (ECLIA) have been implemented in
several automated platforms. A wide dynamic detection range, low background noise, and simple
optical set-ups are the strengths of this technique [73,74] (Table 1).

For protein analysis, immunoprecipitation has also been coupled with mass-spectrometry (IP-MS)
providing a robust quantitative tool to identify antigens based on their intrinsic chemicophysical
properties [75]. A significant advantage of this method is the possibility to analyze complex mixtures
of Aβ peptides at very low concentrations in a single assay. However, multi-step structured analysis
strategies are required in order to reduce the influence of non-specific binders and improve the signal
quality (Table 1) [76]. A tailored approach for the identification of oligomers has been adopted in the
Multimer Detection System (MDS), which is a modified sandwich ELISA originally designed to detect
prion proteins. As opposed to the conventional method, this strategy relies on two epitope-overlapping
antibodies for capturing and detecting an epitope, so that only multimers will bind to both antibodies,
allowing their selective detection over monomers, which conversely will only bind to one of them
(Table 1) [77,78].

Table 1. Key points of ultrasensitive techniques for the detection of putative blood biomarkers for AD.

METHOD PROS CONS

xMAP

It is a flexible technology with a workflow ranging from
semi- to fully automated options.
It enables the concomitant evaluation of multiple analytes
in a single sample representing a time-, cost-, and
labor-saving method.
It enables a shift from a hypothesis-based analysis of
known targets to a data-driven approach [83,84].

The simultaneous measurement of multiple ligands
may favor cross-reactivities (“matrix effect”).
A rigorous adherence to the manufacturer’s protocols
is required to minimize any artifacts when using
these kits [85].
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Table 1. Cont.

METHOD PROS CONS

Simoa

It is a fully automated technology based on
antibody-coated paramagnetic microbeads.
It has a great sensitivity (×1000 greater compared to
conventional immunoassays), being able to detect single
proteins at subfemtomolar concentrations.
It is capable of multiplexing with short turnaround times
and a remarkable throughput (up to 66 samples/h).
It represents the most established ultrasensitive technology
for blood biomarkers of AD to date (kits to measure
Aβ1-42, p-tau181, t-tau, and NFL are available).
A higher sensitivity compared to both ELISA and
ECLIA-based methods was shown for the detection of NFL
in serum [86–88].

Wide longitudinal multicenter studies are warranted
for the standardization of preanalytical and
analytical protocols parameters [72,88].

ECLIA
(MSD, Elecsys)

ECLIA-based methods are adopted in semi- to fully
automated (MSD) and fully automated (Elecsys) platforms.
MSD is a flexible multi-array technology enabling the
detection of biomarkers in single and high throughput
multiplex formats.
It provides a high inter-laboratory reproducibility, low
matrix effects, reliability and cost-effectiveness [73,74].
Aβ peptides measured with Elecsys showed among the
best accuracies in predicting the Aβ status assessed by
either amyloid-PET or CSF Aβ1-42/Aβ1-40 ratio when
compared to other techniques [89].
MSD provides good to optimal accuracy regarding the
discriminative role of plasma p-tau181 to detect AD [90,91].

The accuracy of the Aβ1-42 and Aβ1-40 Elecsys
assays is still suboptimal and insufficient to enable
the use of these techniques alone as clinical tests of
Aβ positivity.
Additional cross-evaluations are needed before these
ECLIA-based methods can be recommended [89].

IP-MS

It is able to characterize and quantify peptides by
introducing them into the mass spectrometer after
isolation through antibody-driven immunoprecipitation.
Using this technique, optimal discriminative accuracies in
detecting AD were reached by the Aβ1-40/Aβ1-42 ratio
measured in plasma [75].

Antibodies and solid matrices also isolate many
non-specific “contaminants”.
To reduce the interferences with the signals and
increase specificity in the detection of the antigens,
targeted precautions are recommended (e.g., two
rounds of repeated processing during the
immunoprecipitation) [75,76].
Compared to automated ELISA-based techniques,
IP-MS is a labor-intensive, low-throughput and
time-consuming method not easily implementable on
a wide scale [92].

MDS

It is an ELISA-based sandwich assay aiming at measuring
oligomerization tendency in blood. It uses capture
antibodies and epitope-overlapping detection antibodies
to identify oligomers or multimers [93].

Its sensitivity in detecting Aβ oligomers failed to
reach the cut-off of >80% that is needed for the
validation of a biomarker [94].

Immuno-infrared
sensor

It is an antibody-based method to extract all the Aβ
peptides from blood samples, allowing the identification of
β-sheet enriched conformations [79].
Compared to established ELISA-based tests, it does not
measure the absolute biomarker concentration but the
relative frequency shift in the infrared, reducing the
influence of concentration fluctuations caused by
biological variances [80].
Unique features of this assay are the absence of labels
(enzymes, fluorescent or radioactive molecules) with
potentially confounding effects, being the analytes detected
based on their intrinsic physical properties, a simple and
low-cost procedure and the low sample volume needed.
It is able to identify the initial Aβmisfolding, occurring
several years before clinical manifestation of AD [80].

Further tests in different clinical set-ups are needed to
investigate the potential effects of sample handling and
to evaluate their potential as screening-assays [79–81].

IMR

It measures the change in magnetic susceptibility caused
by the association of antigens with antibody-coated
paramagnetic nanobeads [82].
In contrast to ultrasensitive digital ELISA methodologies,
IMR is a single-antibody immunoassay. Less stereoscopical
interferences and a better ability to detect Aβ1-42
molecules in different conformations (isolated, complex or
oligomeric forms) are strengths of this technique [95].

In regard to Aβ peptides, it provides results that are
not consistent with those of the ELISA- and
MS-based methods. The unspecific detection of Aβ
aggregates or Aβ binding proteins likely caused by
the single-antibody nature of the technique may
explain the increase of plasma Aβ1-42 levels in AD
patients compared to healthy controls [96].

Abbreviations: Aβ: amyloid β; Aβ1-40: amyloid β-peptide 1-40; Aβ1-42: amyloid β-peptide 1-42; AD: Alzheimer’s
disease; CSF: cerebrospinal fluid; ECLIA: electrochemiluminescence immunoassay; ELISA: enzyme-linked
immunosorbent assay; IMR: immunomagnetic reduction; IP-MS: immunoprecipitation coupled with mass
spectrometry; MDS: multimer detection system; MSD: meso scale discovery; NFL: neurofilament light chain;
p-tau: phosphorylated-tau; Simoa: single molecule array; t-tau: total tau; xMAP: multi-analyte profiling.
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Among the recently developed biosensors in AD research, the immuno-infrared sensor represents
a promising label-free technique not aiming at discriminating particular Aβ species, but rather aiming
at identifying the secondary structure distribution of all misfolded peptides. Thus, it is potentially
exploitable in a preclinical setting (Table 1) [79–81].

A further virtuous application of the immunoassay principles is part of the immunomagnetic
reduction (IMR) technique, in which magnetic antibody-coated nanoparticles dispersed in aqueous
solution oscillate under external multiple alternating current (AC) magnetic fields. The association of
target molecules determines a reduction in the AC magnetic susceptibility of capturing nanoparticles
that will be as high as the concentration of the analytes (Table 1) [82]. Compared to ELISA-based
techniques (e.g., Simoa), this method does not make use of beads to purify or concentrate antigens,
and it is virtually able to quantify smaller proteins in higher number. Whether this could represent an
advantage to detect Aβ peptides in plasma is still to be elucidated (Table 1).

Huge efforts have been made to develop and refine these technologies. Nevertheless, there is an
urgent need to promote unbiased cross-platform evaluations for an effective method standardization.

In view of a targeted-oriented approach to AD, the adoption of guidelines to systemize preanalytical
and postanalytical procedures across laboratories, aiming at finding consensus on a high-performance
scalable platform for the discovery and approval of blood biomarkers, would be strongly recommended.

5. Biomarkers Tracking Amyloid Pathology

Accumulating evidence from the clinical research consistently supports that CSF Aβ1–42 peptide
shows an inverse correlation with plaque load in the brain [97–101] and provides important diagnostic
information throughout the continuum of the AD spectrum. Therefore, this biomarker is currently
integrated in the diagnostic criteria of AD; it is used for subject selection in clinical trials and approved
in medical practice as well [13,14,19]. On the contrary, CSF Aβ1–40 peptide alone, albeit prevailing
over the other Aβ species in both CNS and periphery, showed no relevant correlation with AD
dementia [76,87–89]. Notably, the ratio of CSF Aβ1–42/Aβ1–40 has been found to predict cortical
amyloid-PET positivity more accurately than CSF Aβ1–42 alone [90–92], improving the discrimination
of AD vs. non-AD demented patients (Table 2) [93,94].

Table 2. Overview on the possible context of use of fluid biomarkers in AD.

Diagnostic Value Prognostic Value Monitoring Treatment

Preclinical
Phase

Prodromal
Phase

Full-Blown
Picture

Amyloid pathology

Aβ peptides Blood +
Aβ peptides CSF + + + +

Tau pathology

p-tau Blood + + + +

Neuroinflammation

YKL-40 CSF + +

Synaptic dysfunction

Ng CSF + + +

Neuronal structure and signaling disruption

NFL
CSF + + +

Blood + + +

Legend: plus sign (+): potential use, supportive data available. Abbreviations: Aβ: amyloid beta; t-tau: total tau;
p-tau: phosphorylated-tau; YKL-40; Ng: neurogranin; NFL: neurofilaments; CSF: cerebrospinal fluid.

Some investigations suggest that also the CSF Aβ1–42/Aβ1–38 ratio turned out to improve cerebral
amyloid deposition compared with CSF Aβ1–42 alone [94–96]. In addition, in pharmacological
trials, short Aβ peptides detection in CSF may help monitor patients receiving drugs that modulate
γ-secretase (Table 2) [97,98]. Among Aβ species, Aβ oligomers that are likely to play a key role in AD
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pathogenesis could be potentially used as preclinical biomarkers in CSF. Unfortunately, the detection of
Aβ species and Aβ oligomers is challenging due to their polymorphous and unstable nature. Moreover,
their concentration in biofluid is low, and they compete with other proteins and Aβmonomers. For the
aforementioned reasons, most of the existing techniques are not satisfactory and reporting conflicting
results so far [99]. As it also emerged from the Olsson and colleagues meta-analysis in 2016, Aβ11–42

and Aβ1–40 peptides measured in blood with traditional ELISA methods did not discriminate AD from
healthy controls [95].

Undoubtedly, the validation of relatively new technologies in the last few years—e.g., Simoa [100],
immunoprecipitation-mass spectrometry (IP-MS) assays [74], stable labeling kinetics protocols [101],
multimer detection system (MDS) [102], xMAP technology [103], immuno-infrared sensor [104],
electrochemiluminescence immunoassays (ECLIA) [105–112]—led to a significant increased sensitivity
in amyloid peptides detection in periphery when compared to the conventional ELISA technique,
with drastically lower concentrations (up to the femtolitre) in blood than in CSF [65]. Particularly, in a
2017 study based on an IP-MS method, the plasma Aβ1-42/Aβ1-40 ratio was significantly lower in
amyloid-PET positive compared with amyloid-PET negative participants. This ratio reported a good
accuracy in distinguishing the two populations [101] (Table 3) [113–131].

In 2018, Nakamura and colleagues used the same technique to measure Aβ peptides in plasma of
cognitive normal individuals, MCI and AD with dementia subjects, finding higher levels of plasma
Aβ1–40/Aβ1–42 ratio in amyloid-PET positive compared with amyloid-PET negative individuals [75].
Regardless of the clinical diagnosis, the ratio of Aβ1–40 and Aβ1–42 peptides (Aβ1–40/Aβ1–42), and that
of Aβ precursor protein fragment (APP669–711) and Aβ1–42 (APP669–711/Aβ1–42), had an excellent
diagnostic accuracy in discriminating cerebral amyloid-PET positive and amyloid-PET negative
subjects (Table 3). Similarly, in another study including a cohort of subjective memory complainers,
a condition at risk for AD, the plasma Aβ1–40/Aβ1–42 ratio, turned out to be the best predictor of cerebral
amyloidosis among a series of tested candidate biomarkers (e.g., β-site amyloid precursor protein
cleaving enzyme 1 or BACE1, t-tau, NFL [72] (Table 3). Additional investigations performed using the
Simoa technique reported a moderate accuracy of Aβ1–42/Aβ1–40 ratio in identifying the amyloid status.
The Aβ1–42/Aβ1–40 ratio was lower in amyloid-PET positive compared with amyloid-PET negative
participants [122,132] (Table 3). A further study in which Aβ peptides concentrations were assessed
with a fully automated ECLIA technique confirmed the good discriminative role of Aβ1–42/Aβ1–40

ratio, in both validation and discovery cohorts [92] (Table 3). Similarly, Hanon and colleagues in a
large investigation including 1040 MCI or AD participants reported that plasma Aβ1–42 and Aβ1–40

concentrations assessed by means of a kit based on a multiplex xMAP technique were lower in AD
than in both MCI and non amnestic MCI (naMCI), suggesting a gradual decrease of these peripheral
biomarkers with the course of the disease, in accordance to previous findings [109,133,134]. Conversely,
in some studies where IMR was used, plasma Aβ1–42 concentrations are higher in AD patients than in
healthy subjects [95,121]. Lue and colleagues reported a moderate diagnostic accuracy of this plasma
biomarker in one cohort and excellent in the other [121] (Table 3). Moreover, in a 2018 study carried out
by Nabers and colleagues using an immuno-infrared sensor, when compared with controls, not only
were the concentrations of β-sheet-enriched Aβ peptides higher in severe AD dementia patients,
as previously demonstrated [80], but they were also higher in prodromal AD patients, reaching a
good diagnostic accuracy in identifying the amyloid status assessed by PET (Table 3) [80]. A recently
developed ELISA method detecting Aβmultimers from monomers (MDS) showed a good accuracy of
plasma Aβ oligomers in distinguishing AD patients from healthy controls [118] (Table 3). In parallel,
in a subsequent study in which traditional ELISA was applied, plasma BACE-1 increase has emerged
as another surrogate hallmark of AD progression [135]. In an effort to assess the plasma concentrations
of Aβ1–38, Aβ1–40 and Aβ1–42 simultaneously, Shahpasand-Kroner and colleagues found that the
Aβ1–42/Aβ1–40 and Aβ1–42/Aβ1–38 ratios are significantly lower in patients with AD dementia than
in patients with dementia due to other causes and have a good accuracy in differentiating the two
groups [120] (Table 3).



J. Pers. Med. 2020, 10, 221 10 of 34

Table 3. Diagnostic and prognostic role of blood Aβ peptides, p-tau, t-tau, and NFL proteins measured with ultrasensitive techniques in AD.

Reference Population Study Design Technique Diagnostic Value Prognostic Value

Aβ peptides

Ovod V. et al., 2017 [113] N = 41 (CU, AD dementia) Longitudinal IP-MS and stable labeling
kinetics protocols

Aβ1–42/Aβ1–40 in differentiating amyloid positive participants vs.
negative: AuROC = 0.89 with amyloid-PET and CSF Aβ1–42 as
reference standards

NA

Wang M. et al., 2017 [114] N = 61 (CU, AD dementia) Cross-sectional MDS Aβ oligomers in differentiating AD patients vs. CU subjects:
AuROC = 0.84 with clinical diagnosis (AD) as reference standard NA

Lue L. et al., 2017 [115]
N = 124 (CU, AD dementia);
U.S. cohort: N = 32; Taiwan

cohort: N = 92
Cross-sectional IMR

Aβ1–42 in differentiating AD patients vs. CU subjects:
AuROC = 0.69 (U.S. cohort); AuROC = 0.96 (Taiwan cohort) with
clinical diagnosis (AD) as reference standard

NA

Nakamura A et al., 2018 [74] N = 484 (CU, MCI, AD) Cross-sectional
(retrospective) IP-MS

APP/Aβ1–42 and Aβ1–40/Aβ1–42 in differentiating amyloid positive
participants vs. negative: AuROC ≈0.90 compared with
amyloid-PET as reference standard

NA

Nabers A. et al., 2018 [80]
N = 385 (CU, prodromal AD,
AD); Sweden cohort: N = 73;

Germany cohort: N = 312

Cross-sectional and
nested case control Immuno-infrared sensor

β-sheet-enriched Aβ peptides in differentiating:
- amyloid positive participants vs. negative: AuROC = 0.78
(Sweden cohort) compared with amyloid-PET as
reference standard;
- AD vs. CU subjects: AuROC = 0.80 (Germany cohort)

NA

Shahpasand-Kroner H. et al.,
2018 [120]

N = 40 (AD dementia,
dementia due to other

reasons)
Cross-sectional ECLIA

Aβ1–42/Aβ1–40 in differentiating AD dementia vs. dementia due to
other reasons: AuROC = 0.87 with clinical diagnosis as
reference standard

NA

Verberk I. et al., 2018 [71] N = 248 (SMC) Longitudinal Simoa
Aβ1–42/Aβ1–40 in differentiating amyloid positive SMC vs.
negative: AuROC = 0.77 with CSF Aβ1–42 and amyloid PET as
reference standards

Low Aβ1–40/Aβ1–42 is associated to
MCI or dementia conversion

(HR = 2.0) also after correcting for
age and sex (HR=1.67)

Palmqvist S. et al., 2019 [89]
N = 1079 (CU, MCI, AD)
Sweden cohort: N = 842

Germany cohort: N = 237

Multicenter and
longitudinal ECLIA

Aβ1–42 + Aβ1–40 (used as separate predictors in a logistic
regression) in differentiating amyloid negative participants vs.
positive: AuROC = 0.80 (Sweden cohort) and AuROC = 0.86
(Germany cohort) compared with CSF Aβ1–42/Aβ1–40 ratio as
reference standard

NA

Vergallo A. et al., 2019 [72] N = 276 (SMC) Longitudinal Simoa
Aβ1–40/Aβ1–42 in differentiating amyloid positive SMC vs.
negative: AuROC = 0.77
compared with amyloid-PET as reference standard

NA

Chatterjee P. et al., 2019 [122] N = 95 (CU) Cross-sectional Simoa
Aβ1–40/Aβ1–42 along with age and APOE ε4 status in
differentiating amyloid positive participants vs. negative: AuROC
= 0.78 compared with amyloid-PET as reference standard

NA
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Table 3. Cont.

Reference Population Study Design Technique Diagnostic Value Prognostic Value

p-tau and t-tau proteins

Mielke MM. et al., 2017 [123] N = 458 (CU, MCI) Longitudinal Simoa

Both the middle (HR = 2.43) and
the highest (HR = 2.02) tertiles of
plasma t-tau levels are associated

with increased risk of MCI in
CU participants

Mielke MM. et al., 2018 [124] N = 269 (CU, MCI, AD) Cross-sectional Simoa

In the discrimination between amyloid negative participants
vs. positive:
- plasma p-tau181: AuROC = 0.80;
- plasma t-tau: AuROC = 0.60 compared with amyloid-PET as
reference standard

NA

Yang C. et al., 2018 [125] N = 73 (CU, MCI, very mild
AD) Cross-sectional IMR

Plasma p-tau181 discriminating:
- CU vs. MCI due to AD: AuROC = 0.85;
- MCI due to AD vs. mild AD: AuROC = 0.78
with clinical diagnosis as reference standard

NA

Park JC. et al., 2019 [126] N = 76 (CU, MCI, AD) Both cross-sectional and
longitudinal designs

Simoa (tau
protein)/xMAP(Aβ1–42)

In the discrimination between tau positive participants vs. negative:
- plasma t-tau/Aβ1–42 ratio: AuROC = 0.89;
- plasma t-tau: AuROC = 0.80 with tau-PET as reference standard

NA

Janelidze S. et al., 2020 [90]

N = 589 (CU, MCI, AD
dementia, non-AD dementia)

cohort 1: N = 182
cohort 2: N = 344

cohort 3 (neuropathology
cohort): N = 63

Both cross-sectional and
longitudinal designs ECLIA

Plasma p-tau181 in differentiating:
- tau positive vs. negative participants: AuROC = 0.87–0.91
depending on different brain regions with tau-PET as reference
standard (cohort 1);
- AD dementia vs. non-AD dementia: AuROC = 0.94 with clinical
diagnosis as reference standard (cohort 1);
- Aβ positive vs. negative participants: AuROC ~ 0.80 (cohort 1
and cohort 2) with Aβ PET as reference standard;
- AD dementia vs. non-AD dementia group: AuROC = 0.85 with
neuropathology autopsy as reference standard (cohort 3)

High plasma p-tau levels are
associated with future

development of AD dementia in
CU (HR = 2.48) and MCI

(HR = 3.07) participants (cohort 2)

Thijssen E. et al., 2020 [91]
N = 404 (CU, MCI, AD, CBS,
PSP, FTLD, nfvPPA, svPPA)

3 independent cohorts

Both cross-sectional
(retrospective) and

longitudinal designs
ECLIA

Plasma p-tau181 in differentiating:
- AD (56) vs. FTLD (190) participants: AuROC = 0.89 with clinical
diagnosis as reference standard;
- Aβ-PET positive CU (11) vs. negative (29): AuROC = 0.86 with
amyloid-PET as reference standard;
- AD (15) vs. FTLD-tau participants (52): AuROC = 0.86 with
neuropathology autopsy as reference standard

NA
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Table 3. Cont.

Reference Population Study Design Technique Diagnostic Value Prognostic Value

Karikari T. et al., 2020 [127] kari Longitudinal Simoa

Plasma p-tau181 in differentiating AD participants vs:
- amyloid β negative young adults: AuROC = 0.99;
- CU older adults: AuROC = 0.90–0.98 across cohorts;
- vascular dementia participants: AuROC = 0.92;
- PSP or CBS participants: AuROC = 0.89;
- PD or MSA participants: AuROC = 0.82 with clinical diagnosis as
reference standard
- tau-PET positive vs. tau-PET negative individuals AuROC = 0.83–0.93 across
cohorts with tau-PET as reference standard

NA

NFL protein

Mattsson N. et al., 2017 [128] N = 570 (CU, MCI, AD) Case-control Simoa Plasma NFL in differentiating CU vs. AD participants:
- AuROC = 0.87 with clinical diagnosis as reference standard NA

Lewczuk P. et al., 2018 [129] N = 99 (CU, MCI, AD) Cross-sectional Simoa Plasma NFL in differentiating CU vs. diseased participants:
- AuROC = 0.85 with clinical diagnosis as reference standard NA

Steinacker P. et al., 2018 [130] N = 132 (CU, MCI, AD, bvFTD) Longitudinal Simoa

Serum NFL in differentiating bvFTD vs:
- AD: AuROC = 0.67
- MCI: AuROC = 0.90
- CU: AuROC = 0.85
with clinical diagnosis as reference standard
Serum NFL in differentiating:
- bvFTD vs. AD groups selected on the basis of CSF Aβ1–42 levels: AuROC = 0.79
- bvFTD vs. AD groups selected on the basis of both CSF Aβ1–42 and tau/p-tau
levels: AuROC = 0.77

NA

Preische O. et al., 2019 [131]

N = 405 (controls - AD mutation
non-carriers-, AD mutation

carriers subdivided into
presymptomatic mutation

carriers, converters and
symptomatic mutation carriers)

Longitudinal Simoa

Rate of change of serum NFL in differentiating:
- non-mutation carriers vs. presymptomatic mutation carriers: AuROC = 0.70
- non-mutation carriers vs. symptomatic non-mutation carriers: AuROC = 0.89
Baseline serum NFL levels in differentiating:
- non-mutation carriers vs. presymptomatic mutation carriers: AuROC = 0.49
- non-mutation carriers vs. symptomatic non-mutation carriers: AuROC = 0.85

NA

Abbreviations: AD: Alzheimer’s disease; AuROC: area under the receiver operating curve; Aβ: amyloid β; Aβ1–40: amyloid β-peptide 1–40; Aβ1–42: amyloid β-peptide 1–42; bvFTD:
behavioral variant frontotemporal dementia; CBS: corticobasal syndrome; CSF: cerebrospinal fluid; CU: cognitively unimpaired; ECLIA: electrochemiluminescence immunoassay; FTD:
frontotemporal dementia; FTLD: frontotemporal lobar degeneration; HR: hazard ratio; IMR: immunomagnetic reduction; IP: immunoprecipitation; IP MS: immunoprecipitation coupled to
mass spectrometry; MCI: mild cognitive impairment; MDS: multimer detection system; MS: mass spectrometry; MSA: multiple system atrophy; NA: not assessed; NFL: neurofilament light
chain; nfvPPA: non-fluent variant primary progressive aphasia; PD: Parkinson’s disease; PPA: primary progressive aphasia; PSP: progressive supranuclear palsy; p-tau181: phospho-tau181;
Simoa: single molecule array; SMC: subjective memory complainers; svPPA: semantic variant primary progressive aphasia; t-tau: total-tau; xMAP: multi-analyte profiling.
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In summary, quite concordant results regarding low plasmatic concentrations of Aβ1–42 and low
Aβ1–42 /Aβ1–40 ratio in AD are reported in most of the studies in which an ultrasensitive technique has
been applied. Overall, recent data suggest a low plasma Aβ1–42 and Aβ1–42/Aβ1–40 ratio as being a
specific feature of AD patients with a weak to moderate and a moderate to high concordance with
amyloid-PET outcomes, respectively [136] (Table 2). Further investigations comparing the different
ultrasensitive techniques in the same populations will provide more accurate information regarding
advantages and drawbacks.

6. Biomarkers for Tau Pathology

Together with CSF Aβ1–42, CSF t-tau and p-tau are considered as core biomarkers for AD
diagnosis [11,137], and they are currently used for subject selection in clinical trials. Both CSF tau
species are higher in patients compared to non-demented individuals. P-tau is more specific than
t-tau for AD pathology and plays a main role in differential diagnosis being substantially normal in
non-AD dementias [138]. Recent studies have shown that CSF tau can predict disease progression in
both cognitively unimpaired and MCI subjects (Table 2) [139–141]. In 1999, Hulstaert and colleagues
reported that the combined measurements of CSF Aβ1–42 and tau had a better outcome than the
individual biomarker in differentiating AD patients from controls and other dementias [142]. In an
effort to establish the utility of both CSF t-tau/Aβ1–42 and p-tau/Aβ1–42 ratios, several authors ended
up confirming those preliminary findings [98,143,144]. Moreover, the ability of both ratios to predict
disease onset and progression was proven in other studies, including normal individuals and MCI
subjects, respectively [140,145,146].

Since 2013, it has been reported that plasma t-tau levels, measured through an assay based
on digital array technology, were higher in AD participants compared with both MCI and healthy
subjects, but they did not show significant modifications in subsequent longitudinal evaluations
(Table 2) [116,147]. Shortly thereafter, a large meta-analysis demonstrated the increase of plasma t-tau
levels to be strongly associated with AD (Table 2) [115].

In the last four years, highly sensitive immunoassay techniques significantly implemented
tau levels detection in peripheral blood. Indeed, Mattsson and colleagues to assess plasma t-tau
concentration in two separate cohorts applied the Simoa technique. In AD patients compared with both
MCI and healthy controls, an increase of plasma tau was demonstrated but with overlapping results.
More interestingly, longitudinal evaluations revealed that high baseline levels of this biomarker were
predictive of cognitive decline, higher atrophy rates at MRI, and hypometabolism at 18F-FDG-PET as
well [148]. A longitudinal study carried out using the same technique found increased plasma tau levels
associated with a higher risk of MCI and cognitive decline in MCI subjects, irrespective of the total
Aβ-burden in the brain [123] (Table 3). In 2019, Park and colleagues highlighted that both plasma t-tau
measured by the Simoa technique as well and the plasma t-tau/Aβ42 ratio positively correlated with
cerebral tau-PET uptake. Moreover, plasma tau-related biomarkers concentrations were significantly
higher in Tau-PET+ subjects compared with Tau-PET- subjects and could differentiate the two groups
with good accuracy (Table 3). It is noteworthy that the plasma t-tau and t-tau/Aβ42 ratio could predict
the cerebral accumulation of this misfolded protein after a 2-year follow-up [149]. A clear association
between plasma and CSF levels of p-tau was also found in Aβ+ patients, including the presymptomatic
stage (Aβ+ cognitively unimpaired), but not in Aβ− individuals [90]. Overall, these data suggest
to some extent that plasma t-tau concentration is high in AD patients, but the substantial overlap
with normal controls hinders its diagnostic utility (Table 2). Interestingly, an additional study found
out that plasma p-tau concentrations improve diagnostic accuracy significantly compared to plasma
t-tau by reaching a good capability in the discrimination of amyloid-positive and amyloid-negative
subjects (Table 3) [124]. Moreover, plasma p-tau levels assessed by IMR have shown a good accuracy
in differentiating unimpaired and MCI subjects [125] (Table 3).

The potential diagnostic role of plasma p-tau has been outlined in three recent investigations.
In a first study performed with a novel ECLIA technique, plasma p-tau concentrations not only could
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discriminate AD and frontotemporal lobar degeneration (FTLD) participants with good accuracy,
but they also identified amyloid-PET positive participants among elderly and MCI, and they predicted
the rate of cognitive decline in AD and MCI over a 2-year follow-up (Table 3) [91]. The second study
including three separate cohorts with 589 individuals (controls, MCI, AD, and non-AD NDDs) revealed
that plasma p-tau levels likewise assessed by means of the MSD platform increase with disease
progression (from preclinical to frank dementia phases encompassing prodromal/MCI stage) and can
distinguish AD dementia from non-AD dementia with excellent accuracy (Table 3). Furthermore,
plasma p-tau concentration was more elevated in Aβ+ cognitively unimpaired individuals than in Aβ−
ones and in Aβ+ MCI who progressed to AD dementia compared to those who did not convert [90].
These results were confirmed in another study involving four independent cohorts (1131 total subjects)
in different clinical contexts. Actually, plasma p-tau concentration measured by the Simoa technique
discriminated AD dementia patients from both cognitively unimpaired subjects and other NDDs
(including tauopathies such as Progressive Supranuclear Palsy and Corticobasal Syndrome) with
optimal diagnostic accuracy (Table 3). Moreover, plasma p-tau predicted future cognitive decline over
time. Interestingly, plasma p-tau concentration strongly correlates with cerebral amyloid-PET burden,
even in amyloid-PET positive but tau-PET negative subjects, suggesting its crucial role in detecting
the earliest disease phases. Thus, this biomarker might represent a screening tool implementable in
different clinical settings and contexts of use [127].

7. Biomarkers for Neuroinflammation

The role of inflammation in AD pathogenesis was first suggested more than 20 years ago. Microglia,
astrocytes, cytokines, and chemokines play a central role in disease pathogenesis since early phases [45,150].
Furthermore, amyloid and tau accumulation is linked to neuroinflammation [46,49,50,151], and Aβ
accumulation evokes an exaggerated or heightened microglial response inducing and amplifying
inflammatory reactions [152]. Therefore, biomarkers of neuroinflammation are gaining momentum
in preclinical stages of AD and are useful to establish the eligibility of patients into new clinical
trials [153–156].

A potential biomarker of neuroinflammation is the microglia/astrocyte-expressed protein YKL-40.
YKL-40 is 45 a glycoprotein belonging to the family of 18 glycosyl hydrolases, and it is alternatively
named human cartilage glycoprotein-39 (HC gp-39) or chitinase-3-like-1 protein (CHI3L1) [157].
CSF YKL-40 concentration is able to differentiate patients with typical AD dementia from cognitively
normal controls with fair diagnostic accuracy [158,159]. Limited data regarding the ability of CSF
YKL-40 to discriminate different NDDs are available so far. Actually, CSF YKL-40 differentiated AD
from DLB, PD [160], FTLD [161], and non-AD MCI [162] with only a moderate diagnostic accuracy.
Furthermore, CSF YKL-40 concentration is higher in AD versus Aβ-positive MCI subjects [163], and it
significantly increases over time in the former (Table 2) [163]. CSF YKL-40 showed no ability in
differentiating stable and progressing MCI [164,165], although it may predict progression to overt
dementia in MCI [165] (Table 2). CSF YKL-40 levels negatively correlated with cortical thickness in
specific AD-vulnerable areas, such as middle and inferior temporal areas in Aβ42-positive subjects [166]
and grey matter volume in APOE ε4 carriers [167]. Interestingly, a positive association between CSF
YKL-40 and t-tau has been reported in asymptomatic preclinical stages of AD and other NDDs [110,168],
thus suggesting a link of YKL-40 with an underlying tau-driven neurodegenerative mechanisms [169].

YKL-40 has also been investigated in plasma, and elevated levels have been reported in patients
with mild AD [170] and early AD [171] compared with controls. Unfortunately, plasma YKL-40
did not, so far, demonstrate utility as a diagnostic biomarker and for predicting cognitive decline
(Table 2) [170,172]. To sum up, YKL-40 is an unspecific pathophysiological biomarker tracking
immune/inflammatory response in NDDs, and it could be helpful as a monitoring biomarker for
targeted anti-inflammatory therapies [169].

Another emerging biomarker of inflammation is “Triggering Receptor Expressed on Myeloid
cells 2” (TREM2). TREM2 receptors play an important role in the pathogenesis of AD [173]. In the
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early stages of AD, TREM2 seems to be upregulated, probably in a protective intent [174]. However,
due to the activation of inflammatory response, a detrimental role may prevail in later stages [175].
Some TREM2 genetic variants are related to AD possibly impairing microglia Aβ phagocytic ability
and reducing, as a consequence, the cerebral Aß peptides clearance [167]. TREM2 has been proposed
as AD biomarker in CSF, but with conflicting results so far. Some studies found higher CSF levels of
TREM2 in AD [176–179] and MCI [176] compared to controls, and in subjects with MCI due to AD
(or prodromal AD) compared with preclinical AD and AD dementia patients (Table 2) [179]. However,
another study showed no difference between AD or MCI patients and cognitively normal controls [180].
A link between high CSF TREM2 value and neurodegeneration was proposed in MCI, considering that
it positively correlated with gray matter volume and a negative correlation with mean diffusivity was
detected [181]. Higher levels of TREM2 mRNA and TREM2 protein expressed in peripheral blood
mononuclear cells were identified in AD patients compared to controls, with an inverse correlation with
MMSE [182]. Moreover, TREM2 gene expression was found to be higher in MCI than AD patients [183].
Finally, a possible role of TREM2 as CSF and blood biomarker for AD has been suggested, but few data
are currently available, and additional research is needed.

Another interesting candidate inflammatory biomarker is the monocyte chemoattractant protein-1
(MCP-1), which is a member of the C-C chemokine family and a potent chemotactic factor for
monocytes [184]. Elevated CSF MCP-1 levels were found in AD patients compared to controls [185].
Noteworthy, also in blood, MCP-1 could be higher in MCI subjects than in controls [185].

Several other inflammatory biomarkers in CSF and blood have been investigated for their potential
use as biomarkers for AD. A large metanalysis exploring inflammatory biomarkers in CSF demonstrated
that AD patients could express higher levels of TGF-β compared with controls [350 Molievo]. TGF-ß1 is
a neurotrophic, anti-inflammatory factor, and it enhances Aβ clearance by microglia activation. Since the
early phases of disease, a reduced expression of TGF-ß has been described both in postmortem AD
studies [186,187] and in animal models [188–190]. Two recently published meta-analyses investigating
inflammatory biomarkers in blood reported an elevated tumor necrosis factor (TNF)-α, IL-12 [191],
IL-1β, IL-2, IL-6, IL-18 [191,192], and reduced IL-1 receptor antagonist concentration in AD patients
compared with controls. Mounting data about IL-6 as an AD biomarker are available. Blood IL-6 levels
are associated with severity of cognitive decline in AD [193] and positively correlated with the cerebral
ventricular volumes [194] and with matched CSF samples [195]. Blood IL-6 concentration was even
higher in MCI individuals [135], suggesting that this biomarker is altered also in prodromal AD stages.

8. Biomarkers for Synaptic Dysfunction

Synaptic dysfunction is a core feature of AD, occurring early in the disease course. Synaptic density
is strictly correlated with cognitive impairment and with Aβ and tau accumulation in AD,
thus suggesting a central role in the underlying neurodegenerative process [196]. Based on these
observations, several synaptic proteins have been investigated as potential diagnostic and prognostic
biomarkers in AD. These include the quite well-characterized Neurogranin (Ng) and other emerging
biomarkers such as Synaptosomal-Associated Protein 25 (SNAP-25), Synaptotagmin 1 and 2 (SYT-1
and SYT-2), Neuropentraxin 2 (NPTX-2), and Growth Associated Protein 43 (GAP-43) [197,198].

Ng is a post-synaptic protein largely expressed in the excitatory neurons of the hippocampus
and cerebral cortex that acts as a calcium-sensitive modulator of post-synaptic signaling pathways
and of long-term potentiation (LTP) [199]. Two recently published meta-analyses reported higher
CSF Ng levels in AD compared to MCI and normal controls, thus supporting a role of CSF Ng as a
useful diagnostic tool (Table 2) [200,201]. In particular, Ng reported good or even optimal diagnostic
accuracy in differentiating AD patients with a full-blown clinical picture from cognitively normal
subjects [202]. However, CSF Ng concentration discriminates between stable and converting MCI with
poor diagnostic accuracy [200,201,203]. As regards its prognostic value, higher baseline CSF Ng levels
are detected in controls and in MCI subjects who will convert to AD compared to non-converters,
indicating a role of Ng in predicting progression to AD dementia in both cognitively normal [204]
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and MCI individuals (Table 2) [205,206]. CSF Ng could be also a reliable biomarker in the diagnostic
workup of dementia being specifically more elevated in AD than non-AD dementias (FTD, DLB,
but also VaD) [168,207–210]. Intriguingly, CSF Ng levels are high in AD patients with a typical amnesic
phenotype, suggesting its role in the stratification and identification of AD subtypes, as a selective
indicator of hippocampal degeneration [207]. In addition to Ng, other synaptic proteins have been
explored as candidate biomarkers for AD. In particular, SNAP-25, a pre-synaptic protein involved in
vesicle docking and neurotransmitter release, showed good accuracy in differentiating AD and MCI
from normal controls (Table 2) [211–213]. Furthermore, high baseline CSF SNAP-25 levels predict
future conversion to AD in MCI individuals [212]. Other pre-synaptic proteins such as SYT-1, SYT-2,
NPTX-2, and GAP-43 are candidate as biomarkers to differentiate AD, MCI, and cognitive normal
controls [197,213]. Importantly, an inverse correlation between CSF and neuron-derived plasma
exosomes (NDE) levels of Ng, SYT-2, and GAP-43 has been observed [200,214]. Even if these results
would deserve further supporting evidence, NDE may represent a window on the early synaptic
dysfunction in AD and pave the way to a minimally invasive assessment (blood sample) of synaptic
biomarkers in cognitively impaired and unimpaired subjects.

9. Biomarkers of Neuronal Injury

NFL is a subunit of neurofilaments that are neural cytoplasmic proteins designated to the structural
stability of neurons; they are present in dendrites, soma, and also in axons. Axons physiologically release
a low amount of NFL proteins that increase with aging [215]. The concentration of NFL significantly
increases in both CSF and in blood as a result of axonal injury or neurodegeneration [216–219]. NFL in
CSF is usually measured by sandwich ELISA technology. On the contrary, blood NFL concentration
is 40-fold lower than in CSF, and it is below the sensitivity of ELISA or electrochemiluminescence
assay technology [215]. Promising results came from recently developed ultrasensitive techniques
capable of detecting even low concentrations of NFL in blood (Simoa) [220]. Despite being a
sensitive biomarker of axonal injury, NFL is unspecific and did not discriminate between neurological
diseases with a similar rate of axonal loss. However, growing data showed that CSF and, above
all, blood NFL identifies neurodegeneration from early stages [215]. Indeed, NFL (CSF and
blood) showed a good diagnostic accuracy in differentiating AD and FTD from healthy controls
(Table 3) [128,129,131,208,221,222]. According to these results, a possible context-of-use of this
biomarker is to rule out neurodegeneration in mimics such as psychiatric disturbances, or to early
detect, within screening programs, the neurodegenerative process in a specific population at high
risk (e.g., diabetes, elderly, genetic mutation carriers). Increased blood NFL concentration could also
help clinicians to proceed or not with more invasive and expensive examinations in individuals with
subjective memory complaints [215]. Moreover, CSF NFL but not t-tau, p-tau, and Ng might be a
reliable risk biomarker being associated with a threefold higher risk to develop MCI over a median
follow-up of 3.8 years in a population of cognitively healthy individuals [223]. CSF [224,225] and
blood [128,226,227] NFL tightly correlated each other and with disease severity. In this regard, in a
prospective case-control study including normal controls, MCI, and AD dementia patients, plasma NFL
correlated with CSF NFL, poor cognition, cerebral atrophy, and brain hypometabolism [128].

Serum NFL concentration correlated with the estimated years to symptom onset and disease
severity in autosomal dominant AD mutation carriers, suggesting its possible role as a risk biomarker
in subjects with autosomal genetic mutations for AD (Table 3) [227]. Promising data concern the
role of NFL in the differential diagnosis between FTD and AD. Actually, CSF NFL is higher in FTD
patients compared to early onset AD, and the addition of NFL analysis improves the diagnostic
accuracy of the traditional core biomarkers (p-tau181 and Aß42) up to a sensitivity of 86% and a
specificity of 100% [228]. Similar findings were also reported in an autopsy-confirmed AD and FTD
study (Table 3) [229]. Moreover, serum NFL could help in the differentiation of Primary Progressive
Aphasia (PPA) variants. Indeed, serum NFL is increased in PPA compared to controls and discriminates
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between nfvPPA/svPPA (with a more likely FTD pathology) and lvPPA (where an AD pathology is
expected in more than 50% of cases) with 81% and 67% of sensitivity and specificity, respectively [230].

Visinin-like protein 1 (VILIP-1) is emerging as a surrogate of signaling disruption and neuronal
injury. VILIP-1 is a neuronal calcium sensor protein involved in signaling pathways related to synaptic
plasticity [231]. A high intracellular concentration of Ca2+ induces the reversible translocation of
VILIP-1 to the membrane components of the cell modulating signaling cascade in the neurons via
the activation of specific membrane-bound targets [232]. The dysregulation of Ca2+ homeostasis is
involved in AD neurodegeneration, bringing to a reduced intracellular expression of VILIP-1 and a
quite selective damage of VILIP-1-containing neurons (cortical pyramidal cells, interneurons, septal,
subthalamic, and hippocampal neurons) [232]. Therefore, this biomarker significantly increases in
CSF [231]. Since VILIP-1 contributes to an altered Ca2+ homeostasis leading to neuronal loss [232],
it is mainly considered a biomarker of neuronal injury. CSF VILIP-1 is higher in AD than in controls,
but its diagnostic accuracy remains limited, especially in the prodromal stage (Table 2) [115,233,234].
Although VILIP-1 tightly correlated with p-tau and t-tau in CSF, conflicting results concern its
relationship with Aß peptides [235,236]. CSF VILIP-1 and the VILIP-1/Aβ-42 ratio negatively correlate
with MMSE and with the cerebral amyloid load, and they may predict a cognitive decline over
time [233,234,236–240].

10. Toward Alternative Pathophysiological Pathways and Novel Matrices

The research on novel putative biomarkers in AD recently focused on two main directions:
the exploration of new still under-characterized pathophysiological pathways, including mixed
neuropathology models, and the identification of alternative easily accessible matrices.

TAR DNA-binding protein 43 (TDP43) is a DNA and RNA binding protein involved in transcription
and splicing. TDP-43 contributes to neuroinflammation and may play a role in mitochondrial and
neural dysfunction. In ALS and FTLD, its hyperphosphorylated and/or ubiquitinated cytoplasmic
inclusions are detected [241,242] but also 20–50% of AD patients may show concomitant TDP-43
pathology [243–245]. Interestingly, TDP-43 pathology can be triggered by Aβ peptides [244]. In AD,
increased plasma TDP-43 levels have been found compared to normal controls [246]; furthermore,
plasma levels were increased also in the preclinical stage of subjects who subsequently progressed to
AD dementia [247]. However, the evidence of a diagnostic and prognostic role of TDP-43 in AD is
currently quite limited as well as its role in differentiating AD from other dementia mainly involving
the hippocampus and memory (e.g., LATE) [22].

Lewy-related pathology (LRP), primarily consisting of α-synuclein (α-syn) aggregates, has been
detected in more than half of autopsied AD brains, and higher levels of α-syn in the CSF of patients
with MCI and AD have been associated with AD pathology and cognitive decline [248,249]. Moreover,
CSF total α-syn (t-α-syn) and oligomeric α-synuclein (o-α-syn) levels were higher in AD [250]
compared to PD, PD dementia and DLB individuals [251,252]. The use of standard ELISA methods
to assess CSF α-syn levels does not ensure good diagnostic accuracy in discriminating AD from
synucleinopathies [250]. Nevertheless, RT-QuIC [253] and protein misfolding cyclic amplification
(PMCA) [254] are promising tools to identify AD individuals with α-syn co-pathology. Furthermore,
growing interest toward the evaluation of α-syn heterocomplexes with Aβ1–42 (α-syn/Aβ) or tau
(α-syn/tau) measured in red blood cells (RBCs) as peripheral pathophysiological markers of NDDs has
been displayed [254]. Despite both α-syn alone, α-syn/Aβ and α-syn/tau heteroaggregates being found
lower in AD compared to cognitive normal controls when isolated from red blood cells (RBC), only RBC
α-syn/Aβ and α-syn/tau heterodimers discriminated AD from controls with fair accuracy [254].

Exploring alternative easily accessible matrices as a source of putative biomarkers is another key
point of the search for novel fluid biomarkers. In this frame, exosomes represent an innovative and
promising non-invasive tool to track early neurodegenerative changes occurring within the central
nervous system. Exosomes are vesicles containing potential biomarkers for NDDs released into the
extracellular space (that can be isolated from several body fluids) [243,254]. Proteins reflecting key
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events of the neurodegenerative process have been isolated in exosomes extracted from CSF and blood
by using proteomic analysis [244–246]; in particular, p-tau was isolated in CSF exosomes from patients
with mild AD (Braak stage 3) [247], and increased levels of exosomes-associated tau and Aβwere found
in AD patients compared to controls [248]. Finally, other easily accessible matrices such as the retina
may represent an open window on early neurodegenerative events in AD [249]. Amyloid pathology
was demonstrated in the retina, and high-resolution non-invasive retinal imaging [47–51] represents
an in vivo approach for visualizing Aβ deposits [250–252]. Indeed, retinal Aβ accumulation positively
correlated with cerebral amyloid plaques [8]. Furthermore, decreased flow velocities in the retinal
central veins were found in both MCI and AD compared to controls, thus suggesting a strict correlation
with the underlying early neurodegenerative changes [253]. However, this field of research remains in
its pathfinding stages, and a consensus on retinal imaging modalities, methodologies, and measures is
still missing [253].

11. Conclusions

Recent research efforts are expanding the array of biomarkers on detecting and stratifying NDDs.
Since 2007, fluid biomarkers have been reported within the diagnostic criteria of AD. In particular,
Aß42 peptide, p-tau, and t-tau proteins measured in CSF became essential for a “modern” AD definition.
The conceptual shift from a phenotype to a biomarker-based (or a precision medicine) diagnostic
approach allowed the inclusion of the atypical subtypes within the AD spectrum and the exclusion of
AD-mimics. For instance, patients with early and predominant behavioral impairment but positive for
core pathophysiological biomarkers are categorized as AD and not as FTD. By contrast, individuals
showing cognitive impairment of the hippocampal type but negative for core biomarkers are not
considered AD. Definitely, the identification of a specific pathophysiological process in vivo by one or
more biomarkers prevails on clinical phenotype. Unfortunately, validated fluid biomarkers used for
AD diagnosis are invasive, time-consuming, expensive, not easily repeatable and, most importantly,
not applicable as screening tools in large asymptomatic populations. On the other hand, the preclinical or
prodromal identification of AD is urgent for patient recruitment in future disease-modifying treatments.
This is an “expert” opinion based on the current literature, reporting the diagnostic and prognostic value
of fluid biomarkers in AD. Five candidate molecules—three in plasma measured using ultrasensitive
techniques (Aβ peptides, p-tau, and NFL proteins) and two in CSF (Ng and YKL-40)—with different
potential context-of-use (Table 2) may be proposed. These molecules may enrich the current array of
fluid biomarkers—CSF Aβ42, t-tau, and p-tau—for a more precise management of AD, and, broadly
speaking, NDDs. These biomarkers are useful to both classify patients in different diagnostic categories
and to track the pathophysiological mechanisms underlying neurodegeneration. The blood biomarkers
(Aβ peptides, p-tau, NFL) are probably not more accurate than the respective molecules measured in
CSF. However, they may be easily repeated over time, proposed in screening programs, and monitor
treatments in disease-modifying trials. On the other hand, CSF YKL-40 and Ng are proxies of additional
pathophysiological mechanisms related to AD, namely neuroinflammation and synaptic disruption,
that cannot be efficiently evaluated with peripheral blood biomarkers. Therefore, CSF YKL-40 and Ng
may be used in a subsequent diagnostic step to better stratify patients with prodromal or definite AD.

Plasma p-tau is increased in AD patients compared to controls and MCI individuals, discriminating
AD demented patients from both cognitively unimpaired subjects and other NDDs with optimal
diagnostic accuracy [91]. In several recent studies from different research groups, its classificatory
accuracy surprisingly overlaps with cerebral amyloid-PET [90,124]. Moreover, plasma p-tau predicts
a future cognitive decline over time [91]. Therefore, plasma p-tau, being easily repeatable, could be
proposed in screening, diagnostic, prognostic, and monitoring context-of-uses. Simoa is the
ultrasensitive technique used with more successful results across the studies on plasma p-tau so far.
Of course, additional studies are needed. In addition, plasma t-tau concentration correlated with
future cognitive decline, increased atrophy rates measured by MRI, and cerebral hypometabolism in
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FDG-PET images, but the results are less convincing and charted overlapping values among AD with
dementia, prodromal, and preclinical AD groups [148].

Plasma Aβ peptides may represent a further significant improvement to facilitate the in vivo
detection of amyloid pathology, substituting traditional core CSF biomarkers in next years.
The combination of CSF traditional biomarkers (e.g., Aβ1–42/Aβ1–40 ratio, t-tau/Aβ1–42, and p-tau/Aβ1–42

ratios) can improve the diagnostic accuracy as well as the prediction of cognitive decline in AD patients.
Similarly, the combination of plasma and serum biomarkers into ratios may increase the diagnostic
power, although further evidence is needed [109,133]. Mounting data revealed that a low plasma Aβ1–42

and Aβ1–42/Aβ1–40 ratio are quite specific of AD pathology, although the concordance with cerebral
amyloid-PET examination is variable and should be carefully evaluated in future studies [75,92,120].
In brief, further investigations should clarify in larger prospective studies: (1) the more accurate
method to detect Aβ peptides and related by-products in plasma, (2) the pathophysiological role of
plasma Aβ peptides and Aβ oligomers, and (3) their diagnostic and prognostic value as biomarker
of AD.

NFL is mainly a marker of axonal degeneration and considered an unspecific indicator of
neurodegeneration. Importantly, CSF and plasma NFL strictly correlated in all studies, suggesting
that plasma NFL would be a reliable peripheral biomarker consistently reflecting modifications within
the CNS. Indeed, many studies on NDDs demonstrated that diagnostic and prognostic accuracies
of plasma and CSF NFL overlap [254]. NFL is a good example as a versatile biomarker for multiple
context-of-use. It is useful to differentiate NDDs from mimics such as psychiatric disturbances or
to early detect neurodegenerative processes in particular populations at risk (e.g., diabetes, elderly,
genetic mutation carriers). NFL values were associated with a threefold higher risk to develop MCI,
demonstrating a potential prognostic value [128,226,227]. Finally, the negative predictive value of
plasma NFL might be used as a first step in screening programs for neurodegeneration, involving
individuals with subjective memory complaints and late-onset psychiatric disorders. Concerning AD,
plasma NFL showed a promising role in differentiating AD from bvFTD patients. It is likely that bvFTD
individuals with an underlying TDP-43 pathology (related to amyotrophic lateral sclerosis) reported
significantly higher plasma NFL value than AD subjects. Plasma NFL could early discriminate AD from
more aggressive neurodegenerative dementia such as CJD [244]. Simoa was the only ultrasensitive
technique used to measure plasma NFL in AD studies.

An increasing number of studies are focused on the development of precise biomarkers tracking
additional key pathophysiological pathways leading to neurodegeneration, such as synaptic disruption
and neuroinflammation. The pre-synaptic protein Ng measured in CSF is the most promising
indicator of a synaptic dysfunction and hippocampal damage [202]. It could help stratify patients
suffering from NDDs involving the hippocampus, including AD but also hippocampal sclerosis, LATE,
and PART. LATE and PART have been recently defined in postmortem examinations, but in vivo
diagnostic biomarkers are needed. CSF Ng could be also used as predictive indicator of an
anticholinesterasic treatment response in patients showing a prevalent hippocampal impairment
(typical AD phenotype, etc.) [200,201,205,206]. CSF Ng demonstrated from good to optimal diagnostic
accuracy in discriminating AD dementia patients from the control group and a reliable prognostic
value for AD conversion in MCI individuals.

Growing data reported an abnormal neuroinflammatory response in AD. Currently, CSF YKL-40 is
the most promising fluid biomarker of glia activation, and it has been extensively investigated in other
NDDs as well. Neuroinflammation is a common pathway of several NDDs, and not surprisingly, YKL-40
is an unspecific biomarker. This biomarker could be helpful in monitoring tailored anti-inflammatory
trials in AD. Studies exploring a possible correlation between CSF YKL-40 concentration and cerebral
inflammatory tracer as the translocator protein (TSPO)-PET uptake could clarify the role of this fluid
biomarker as an indicator of neuroinflammation. CSF YKL-40 showed a fair diagnostic accuracy to
discriminate AD patients from the control group and other neurodegenerative dementias. YKL-40 also
reported a certain predictive value for MCI-AD progression.
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In summary, we found that reliable fluid biomarkers might track three out of four of the main
pathophysiological pathways of AD (Figure 1). The concentration in different biofluids of Aβ peptides
and p-tau proteins reflect the cerebral misfolded protein deposition in AD. Moreover, plasma NFL might
help the early identification of a general neurodegenerative process independently from the specific
pathology. The diffusion of ultrasensitive techniques in the last few years is radically revolutionizing
the context-of-use of these biomarkers in AD. The possibility to measure biomarkers in blood opens a
completely novel scenario for the detection of multiple neurodegenerative mechanisms with a low
cost and minimally invasive examination. This should encourage the development of screening tools
in selected populations and improve the monitoring of disease-modifying trials. Of note, validated
surrogates of co-pathologies such as α-syn and TDP-43 protein accumulation are currently not available
as well as of cerebrovascular impairment. Finally, YKL-40 and Ng measured in CSF are promising
proxies of neuroinflammation and synaptic disruption, respectively.

The studies described have several shortcomings. Many investigations reported different
inclusion criteria and sometimes, they were not biomarker-based. Moreover, there is frequently
a lack of data about comorbidities, especially cerebrovascular burden, contemporary pharmacological
treatments, or stratification for age, gender, and genetic profiles [53]. Hepatic and kidney dysfunctions
may impact biomarker levels as well as modifications of blood cell counts and plasma protein
composition [67]. Nonetheless, these variables were not systematically considered, thus constituting a
possible methodological bias, since individuals with AD present relevant vascular comorbidities.

From the prospective of a precision medicine approach, increasing attention is paid to find
biomarkers associated to pathogenic pathways leading to neurodegeneration. The contemporary use
of multiple biomarkers can help dissect the pathological mechanisms dynamically acting in space and
time providing an accurate stratification of AD population.

AD is more a spectrum of different pathological mechanisms that brings a loss of proteostasis,
which is the accumulation of several misfolded and aggregated proteins in multiple combinations
rather than a single entity. Advanced statistical analysis, including unsupervised clustering
strategies, combining clinical, biomarkers, and genetic data to collect subjects from large diversified
cohorts into consistent clusters might be an innovative representation of AD [6] and other
NDDs [254] and significantly contribute to the discovery of causes and tailored treatments.
Novel data-driven classifications based on quantitative measurements of biomarkers and clinical
information (e.g., standardized clinical scores) could improve the identification of effective and
personalized therapies [253,254]. In conclusion, we assume that the identification and inclusion of
AD patients in disease-modifying trials will be soon changed, mainly based on the demonstration of
specific pathophysiological mechanisms and minimally influenced by phenotypes.
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