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Abstract: Parkinson’s disease (PD) is a chronic neurodegenerative condition that affects a patient’s
everyday life. Authors have proposed that a machine learning and sensor-based approach that contin-
uously monitors patients in naturalistic settings can provide constant evaluation of PD and objectively
analyse its progression. In this paper, we make progress toward such PD evaluation by presenting
a multimodal deep learning approach for discriminating between people with PD and without PD.
Specifically, our proposed architecture, named MCPD-Net, uses two data modalities, acquired from
vision and accelerometer sensors in a home environment to train variational autoencoder (VAE)
models. These are modality-specific VAEs that predict effective representations of human movements
to be fused and given to a classification module. During our end-to-end training, we minimise
the difference between the latent spaces corresponding to the two data modalities. This makes our
method capable of dealing with missing modalities during inference. We show that our proposed
multimodal method outperforms unimodal and other multimodal approaches by an average increase
in F1-score of 0.25 and 0.09, respectively, on a data set with real patients. We also show that our
method still outperforms other approaches by an average increase in F1-score of 0.17 when a modality
is missing during inference, demonstrating the benefit of training on multiple modalities.

Keywords: Parkinson’s disease; deep learning; multimodal data; missing modality; accelerometer;
computer vision; variational autoencoder

1. Introduction

Parkinson’s disease (PD) is a debilitating neurodegenerative disease with a wide range
of motor and nonmotor symptoms, such as slowness of movement, rigidity, tremor, gait
dysfunction, posture abnormality, and pain [1]. PD is typically evaluated by specialists
in controlled settings, e.g., laboratories or medical centres, where only a snapshot view
of the individual’s function can be examined. Parkinson’s symptoms, however, can fluctu-
ate significantly throughout the day, depending on factors such as medication or fatigue
levels. Recently, many approaches have been proposed for the automatic assessment
of PD [2,3]. Technologies such as the Internet of Things (IoT), which can interconnect mul-
tiple sensors in home environments, have extended the potential of these approaches into
everyday life [4,5]. Constant collection of sensor data during daily life activities via such
technologies could provide an opportunity for continuous monitoring and analysis of PD,
and thus provide new insights into the detection and progression of PD. This would not
only prevent the evaluation being affected by the fluctuations in the symptoms but also
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increase its consistency and objectivity by reducing the role of human-based expertise and
its inherent subjectivity.

In this paper, we make progress toward automatic “in the wild” PD evaluation in
home environments. We utilise an IoT-based platform [6] to collect data from multiple
sensors during common activities of daily living. We specifically use camera and wearable
inertial measurement unit (IMU) sensors to collect video and acceleration data from PD and
healthy control (HC) subjects performing cooking activities in a home environment. Our PD
subjects are well-medicated; thus, they show mild symptoms to prevent any inconvenience
while cooking. This makes the machine learning task more challenging, but also more
realistic. To comply with privacy requirements in home environments [7,8], which are
important for real-world use of such a system, we extract per-video-frame silhouettes
of the human subjects and then discard all the RGB and depth data. Using these silhouettes,
along with the accelerometer data, we propose a multimodal deep learning approach that
encodes human movements to discriminate between PD and HC subjects. Note that such
distinction between HC and mild well-medicated PD is a difficult task even for clinicians.
More specifically, HC subjects can demonstrate impairments consistent with Parkinsonism
such as slowness of movement or abnormal posture, which could be due to being elderly [9].
Furthermore, PD is a disease with heterogeneous clinical presentations where one patient
may have symptoms that are different from those of the next patient [10]. The challenge
of our PD vs. HC classification is magnified by the free-living environment and the cooking
task, where the movements and activities are relatively unstructured. In contrast to the
detection of specific PD symptoms, however, such general classification of PD vs. HC
would consider an impression of the whole body movement in a naturalistic setting, which
would be helpful for an automatic diagnosis of PD in its early stages.

Our proposed architecture for multimodal classification of PD (MCPD-Net) is based
on the fusion of the two modalities, i.e., silhouette and accelerometer data, via variational
autoencoder (VAE) neural networks [11]. Each modality goes through a different VAE
network to be reconstructed, while their latent spaces are combined to represent joint
features, used for the PD vs. HC classification. Note that such multimodal fusion helps
in dealing with the challenges mentioned for the fine-grained distinction between PD
and HC in a free-living situation. Compared to a standard unimodal approach, the joint
representations learned by MCPD-Net are more robust and effective, as they encode the
discriminative information in both modalities and, consequently, reveal different aspects
of PD. In particular, the silhouette video data capture the body posture and gait, while
the wrist-worn accelerometer records hand movements such as tremors. In our results,
we empirically show the effectiveness of these joint representations in recognising PD when
compared to single modality features.

MCPD-Net is also capable of handling missing modalities during inference. Note that,
in naturalistic settings, modalities may be missing for practical reasons such as the cost
of installing vision sensors in every room of the home, technical reasons such as malfunc-
tions, and/or privacy requirements in certain areas of the home. To deal with such missing
modalities, we propose to minimise the distance between the latent spaces corresponding
to the two modalities. We then use the VAE model of the available modality to generate
estimated features for the missing modality. In our results, we show that this approach
yields effective representations for the missing modality.

The main contributions of this work are as follows:

• We propose MCPD-Net, a multimodal deep learning model that jointly learns repre-
sentations from silhouette and accelerometer data.

• We introduce a loss function to allow our model to handle missing modalities.
• We quantitatively and qualitatively demonstrate the effectiveness of our model when

dealing with missing modalities, which, for example, due to cost or privacy reasons,
is a common occurrence in deployments.
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• We evaluate our proposed model on a data set that includes subjects with and without
PD, empirically demonstrating its ability to predict if a subject has Parkinson’s Disease
based on a common activity of daily living.

The rest of this paper is organised as follows. We first discuss the related works
in Section 2. We then explain our proposed method in Section 3. Finally, we present
our results and conclusion in Sections 4 and 5, respectively.

2. Related Works

In this section, we first discuss works that evaluate PD using machine learning al-
gorithms. We then discuss multimodal machine learning and approaches that deal with
missing modalities.

Machine Learning for Evaluating PD—At the heart of research on automatic evalua-
tion of PD, a significant contribution has been made by machine learning algorithms. Many
methods have been proposed for diagnostic or progression monitoring purposes, using
PD vs. non-PD classification [12–16] or measuring PD symptoms [14,17,18]. In the existing
literature, the most commonly used data type is acceleration from smart phones [12,19]
or wearable devices [13,15,16,20–22]. Some other works also use vision sensors [14,17,18].
Alternatively, some methods for evaluating PD rely on tablets [23,24] or scanner devices [25]
for handwriting analysis, or microphones for analysing speech [26,27].

The learning algorithms mainly use raw data or extracted features along with clas-
sification methods, such as artificial neural networks (ANN) [12,13,16,20,21,24], random
forests (RF) [14,15,19,23,26], support vector machines (SVM) [22,23], and k-nearest neigh-
bours (KNN) [26], among others. For example, in [20,21], restricted Boltzmann machines
are trained using features extracted from wrist-worn accelerometer data in a home envi-
ronment to predict PD state. Similarly, [13,16] use convolutional neural networks (CNN)
on augmented accelerometer data to classify PD motor state. Li et al. [14] use CNNs on RGB
data to first estimate human pose and then extract features from trajectories of joints move-
ments. RF is finally used to classify PD vs. non-PD symptoms and measure their severity.
Dadashzadeh et al. [18] also use vision, i.e., RGB and its extracted motion data, to train
an end-to-end CNN by which PD symptoms are measured. CNN models are also used
on other data types. For example, Taleb et al. [24] use an online handwriting data set to
train a deep CNN model for the task of PD classification. Similarly, Gazda et al. [25] train
CNN models for detecting PD from offline handwriting.

The works mentioned above report high performance for their learning methods.
However, depending on the sensor used, they focus on specific aspects of PD. For example,
those using wrist-worn sensors only evaluate PD based on symptoms that are related
to hand movements. Likewise, those using vision evaluate PD based on appearance
and motion features. In contrast, we propose to use multiple sensors, i.e., cameras and
accelerometers, to expand our input domain and capture a wider range of features. In our
results, we show that a better performance of PD vs. HC recognition is achieved by fusing
the two data modalities, compared to individual ones. Moreover, while vision has proved
to be a powerful modality for evaluating PD, privacy issues in home settings has limited
research on RGB data. To deal with this, we reduce the means for identification by taking
an approach similar to [28,29], in which human silhouettes are extracted and RGB and
depth data are discarded.

Multimodal Machine Learning—There is a long history of research in this area,
exploring different directions [30–32]. Representation learning [33–35] is one of such direc-
tions in which effective and robust joint features are learned, typically from large-scale data
sets, to be used in general downstream tasks, such as visual question answering or visual
commonsense reasoning. Multimodal fusion [36–38] is another major topic in multimodal
learning that addresses predefined tasks, such as sentiment analysis, action recognition,
image translation, and semantic segmentation, by designing specific architectures for inte-
grating the multiple input modalities.
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Despite the variety of architectures, existing multimodal networks are mostly de-
signed for combining vision and language and, less frequently, audio [39,40]. For example,
refs. [33,34] use transformer-based models to discover the inherent semantic correlations
between vision and language. However, a relatively small part of research in the mul-
timodal learning literature deviates by focusing on other data types such as vision and
body-worn IMU data [28,29,41,42], where the modalities are mainly correlated due to the
body movements of the subjects. Among these works, [28] proposes a network, called
CaloriNet, for fusing accelerometer and silhouette data to estimate the calorie expenditure
of the subjects. We find [28] particularly relevant to our work, not only due to their similar
input modalities, but also their health-related objectives. As PD affects the activity level
of the patients and, consequently, their energy consumption, CaloriNet would be also ex-
pected to perform well in discriminating between PD and HC. In our results, we compare
the performance of our proposed method with [28] on the task of PD vs. HC recognition.

Missing Modalities—Some works in the literature fuse multimodal data, while par-
ticularly considering imperfect or missing modalities [43–48]. Among them, some use the
generative capability of VAE models [44–46,48]. For example, Suzuki et al. [44] use a VAE
model to present a joint latent distribution of multimodal data. To deal with a missing
modality during inference, they also train unimodal VAEs, predictions of which are pe-
nalised for their difference with the joint latent distribution. Wu and Goodman [45] also
predict a joint latent distribution using a product-of-experts network, which multiplies
the unimodal distributions. In addition, to simulate the situation of missing modalities
during inference, they take a training regime, in which subsets of modalities are randomly
sampled to be used in the VAE optimisation objective. In a similar approach, Shi et al. [48]
compute the joint posterior as a mixture-of-experts, i.e., an average over the unimodal
latent distributions. The joint model is evaluated using samples from modality-specific
latent distributions and, finally, the resulting losses are also averaged.

Similar to these works, we also use VAE models to combine multiple modalities con-
sidering missing data. However, our work is different in two ways. Firstly, the VAE models
in the mentioned works are trained and assessed for their reconstruction performance. Our
goal, in contrast, is classification between PD and HC. Our VAE models mainly aim to
predict effective representations for such classification. We thus train the classification and
VAE models together end-to-end. Secondly, the mentioned works consider the data and
its labels, captions, or attributes as different input modalities. As these basically represent
the same entities in different domains, the joint embeddings learn to capture their seman-
tic correlation. In our approach, however, the two modalities inherently represent two
different data types, the correlation of which is due to, for example, the patterns in the sub-
jects’ movements. Hence, in our architecture, we predict the two modality embeddings
independently to be then fused for classification.

3. Materials and Methods

We now present our proposed approach for recognising PD vs. HC with its overall
scheme shown in Figure 1. We define three main phases for our approach. First, we capture
data from a camera and an accelerometer device, while the participant performs cooking
activities in a kitchen. The RGB-D camera extracts the silhouette data online, which, along
the accelerometer signal, go through a preprocessing phase. This is where the input to
the last phase, i.e., the machine learning algorithm, is constructed. While the data set
specifications (phase 1) are explained in Section 4.1, in this section, we focus on how the
network input is formed (phase 2) and the network architecture (phase 3).

MCPD-Net, illustrated in Figure 2, consists of three modules, namely silhouette,
accelerometer, and classification modules. The silhouette and accelerometer modules
are VAE models that learn effective embeddings while reconstructing their two input
modalities. These embeddings are then combined using the classification module to predict
PD and HC labels. The whole network is trained end-to-end.
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Figure 1. The overall scheme of our proposed approach for classifying PD vs. HC. First, data are recorded in a kitchen
while the participant is cooking. They are then preprocessed to be given to the proposed machine learning algorithm
for classification.

Silhouette Module

Accelerometer

Module

Classification

Module

C
o
n
ca
te
n
a
ti
o
n

sampling

Convolutional

Encoder

Convolutional

Decoder

sampling

PD

vs

HC

Dense

Layers

Figure 2. MCPD-Net: our proposed network consists of three modules: silhouette, accelerometer, and classification.
Representations learned in the two former modules are fused in the latter module, for PD vs. HC classification.

Silhouette Module: This is a VAE model that reconstructs its input to learn discrimina-
tive features from silhouette images, each of which is corresponding to one RGB-D video frame.
We generate these silhouettes from RGB-D images, using the method from Hall et al. [49],
which applies a combination of background subtraction and the OpenNI library [50].

The input is then temporally encoded by stacking temporally averaged silhouette im-
ages using different time scales (as in [28]). More specifically, consider a set of binary silhou-
ette images, S = {Si ∈ {0, 1}H×W | i ∈ {1, . . . , N}}, where N is the number of the silhouette
images in the training set and H and W represent their height and width, respectively (the
same silhouette temporal encoding approach is also applied for the test set). The set of sil-
houette inputs to the network is then defined as IS = {ISi ∈ [0, 1]H×W×D | i ∈ {tD, . . . , N}},
where D is the depth of each silhouette input ISi , and,

ISi ,(:,:,d) =
1
td

i

∑
j=i−td+1

Sj, (1)
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with td ∈ {t1, . . . , tD} representing the time interval corresponding to the depth channel d,
where d ∈ {1, . . . , D}. Thus, ISi is computed as a 3D tensor made of D channels, where its
dth channel represents the average of Si and its previous td silhouette images.

Figure 3 illustrates this approach for an example with three depth channels, i.e., D = 3,
and time interval td equal to t1 = 5, t2 = 150 and t3 = 250 silhouette frames (These
numbers match our implementation settings in Section 4.2). Note that the minimum i index
here equals tD = 250. This means that the first silhouette input is IS250 , generated from S250
and its 5, 150, and 250 previous silhouette frames, respectively.

t1
t2

t3
average

average
averageSi: 2D tensor

(size: 256 x 320)

Si
Si-t1+1

ISi: 3D tensor

(size: 256 x 320 x 3)

ISi

Si-t2+1 Si-t2+2Si-t3+1 Si-t3+2

depth channel d {1,2,3}∈

d = 3

d = 2
d = 1

Si-t1+2

H = 256, W = 320, D = 3

t1 = 5 frames

t2 = 150 frames

t3 = 250 frames

network
input

silhouette
image 

Figure 3. Illustration of the temporal encoding for the silhouette images according to Equation (1). The three depth channels
of the network silhouette input ISi consist of averaged images over 5, 150, and 250 frames, respectively.

This method is capable of encoding the mobility and posture of the subjects over time,
and thus encapsulates discriminative features for recognising PD. Moreover, this method
has shown effective performance in encoding silhouette images as binary entities [28].

The silhouette input ISi is then given to a convolutional VAE, which outputs OSi as follows:

µSi , σSi = eS(ISi ; θeS),

zSi ∼ N (µSi , σSi ),

OSi = dS(zSi ; θdS),

(2)

where eS and dS represent the encoder and decoder networks of the silhouette VAE, and
θeS and θdS are their parameter sets, respectively. According to Equation (2), the encoder
eS outputs the parameters of a normal distribution, i.e., its mean µSi and covarince σSi ,
from which a latent representation, i.e., zSi , is sampled and given to the decoder dS. The
silhouette VAE is then optimised by minimising the reconstruction loss and the Kullback–
Leibler (KL) divergence between the distribution parametrised by the encoder outputs and
a standard normal distribution,

LS = ∑
i

(
‖OSi − ISi‖

2 + KL(N (µSi , σSi ),N (O, I))
)
. (3)

Accelerometer Module: This is also a VAE model that processes the accelerometer
time series data. Similar to [28], the lengths of the accelerometer input sequences are
set to the maximum time interval (tD) used for our silhouette inputs. More specifically,
IA = {IAi ∈ RtD×3 | i ∈ {tD, . . . , N}} represents the set of accelerometer sequences, where
their first dimension represents time and their second dimension represents the three
spatial directions of the acceleration signal (x, y, z). Note that each IAi corresponds to ISi
from Equation (1), i.e., they are both given to the network as an input pair.
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Similar to the silhouette module, the accelerometer input IAi is given to the VAE
model, which outputs OAi as follows:

µAi , σAi = eA(IAi ; θeA),

zAi ∼ N (µAi , σAi ),

OAi = dA(zAi ; θdA),

(4)

where eA and dA represent the encoder and decoder networks of the accelerometer
VAE with parameters θeA and θdA , respectively. zAi is then sampled from the distribu-
tion parametrised by the encoder outputs, i.e., µAi and σAi . The loss for the accelerometer
VAE is finally defined similar to that of the silhouette module,

LA = ∑
i

(
‖OAi − IAi‖

2 + KL(N (µAi , σAi ),N (O, I))
)
. (5)

Classification Module: The means of the latent distributions, µSi and µAi , predicted
by the two encoder models, are concatenated and passed through the classification subnet-
work to output the PD vs. HC prediction as

Ri =concat(µSi , µAi ),

ci = fC(Ri; θ fC ),
(6)

where Ri is the concatenated representation, and fC and θ fC represent the classification net-
work and its parameters, respectively. The sigmoid cross-entropy loss is used to optimise
the classification objective as

LC = ∑
i
−(yilog p(ci) + (1− yi)(1− log p(ci))), (7)

where yi represents the ground truth classification label.
Missing modality: According to Equation (6), predicting a joint representation to be

passed to the classification module, requires the presence of both modalities. In the case
of a missing modality during inference, due to, for example, an accelerometer not being
worn for an entire day or a dropped signal on a random basis, the model would not be able
to represent the features corresponding to that modality and would fail to predict the PD
vs. HC label. To deal with this, we propose to estimate a representation for the missing
modality using the generative capacity of our VAE models along with the representations
predicted by the nonmissing modality. This will now be described in more detail.

The two VAE models in the current setting learn independent feature spaces, which
are fused through the classification module. Although this fusion links the two spaces, it
does not impose any constraint on the values of the learnt features. This could result in
two different latent spaces and a network prone to overfitting. Furthermore, the regularisa-
tion introduced by the KL divergence loss is not imposed across modalities. Therefore, to
address these limitations, we propose to add a cross-modality regularisation term to our
network loss, which encourages the model to minimise the distance between the latent
spaces of the two modalities. To achieve this, we minimise the cosine distance between the
latent representations of the two VAE models during optimisation as

LD = ∑
i

(
1−

µAi · µSi

‖µAi‖ × ‖µSi‖
)2. (8)

The final loss of the network will then be

L = α(LS + LA) + β LC + γ LD, (9)

where α, β, and γ represent the weights of the loss terms.
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Introducing LD to the network loss not only has a regularisation effect on its training but
also encourages the two latent spaces to be close, providing the possibility of interchanging
sampled representations between the two network branches when a modality is missing.
Note that, in this setting, we assume the data is fully present during training. However,
we use all four losses in Equation (9) in our training, while the network is trained end-to-end.
This encourages the network to keep the two latent spaces close, which prepares it for test
time, where we consider a possibility for having data with missing modalities.

Thus, during inference when there is a missing modality, we estimate its representa-
tion by sampling from the latent space of the nonmissing modality, i.e.,

zNi ∼ N (µNi , σNi ),

zMi = zNi ,
(10)

where subscripts M and N represent the missing and nonmissing modalities, respectively,
such that M, N ∈ {A, S} and M 6= N. The resulting representation is the concatena-
tion of the missing and nonmissing representations (i.e., zMi and µNi ), which can then be
used in our classification module to predict the PD vs. HC label. Note that, as an alternative
approach, one could also consider the generative capacity of the VAE model for the missing
modality itself, to generate the missing representation. We show the advantage of our
cross-modality sampling approach over this, in Section 4.3.

4. Results

In this section, we first describe our data set in Section 4.1. We then explain the imple-
mentation details of our models in Section 4.2. We finally present our experimental results
and discuss the research impact of our work in Sections 4.3 and 4.4, respectively.

4.1. Data Set

The data set used in this work is based on an IoT platform [6] in a home environment,
equipped with the privacy preserving RGB-D cameras, and a wearable sensor. The wear-
able sensor is a wrist-worn three-axis AX3 accelerometer device from Axivity [51], with
a frequency of 100 Hz. The cameras are installed in a kitchen and visualise the participants
from behind and from the side [49]. Each camera’s height from the floor is approximately 2
m. The distance between the camera and the participant is between 1 and 3 m. As men-
tioned before, due to privacy requirements, we discard the RGB and depth data after
extracting the silhouette images. The accelerometer and vision sensors are synchronised
using UTC timestamps. These timestamps are used to temporally align the two modalities
in our preprocessing phase.

Our data set includes silhouette and accelerometer data corresponding to five hetero-
sexual spousal pairs who are roughly age matched. Each pair consists of one person with
PD and one person as the HC. From the 10 participants, 2 females and 3 males have
PD, while 3 females and 2 males are the HC. The average age of the participants is 63.8
and the average time since PD diagnosis for the person with PD is 5.9 years. The dura-
tion of data recorded for PD and HC is 61.8 and 71.6 min, respectively (133.4 min in total),
which provides a relatively balanced label set for our classification.

During data collection, the participants were asked to perform an unscripted cooking
activity. While cooking, the participants performed a variety of actions such as walking
around the kitchen, which involved their whole body movement, as well as stirring, grating,
and pouring that involved more fine-grained movements of their hands. Note that while the
PD-related symptoms in the latter group of activities are better captured by accelerometers,
those related to the former activities are more visible in the silhouettes. For the video
data, the participants were recorded separately. Thus, there is only one person at a time
in the camera view. Note that the presence of multiple silhouettes in the network input is
the result of averaging over multiple frames (see Figure 3).
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4.2. Implementation Details

The silhouette module in MCPD-Net receives silhouette images of size 256× 320× 3.
The three depth channels represent temporal averages over time intervals of 5, 150, and
250 frames. As the frequency of our silhouette extraction is, on average, 8 frames per
second, these represent intervals of 0.6, 18.8, and 31.3 s, respectively. The silhouette
inputs are given to the encoder of our silhouette VAE model, which contains three 3D
convolutional layers with 2, 4, and 8 filters, each followed by sigmoid activations and
pooling layers. Following this are two dense layers, each with 64 neurons, representing µSi
and σSi . The sampled representation is finally given to the VAE decoder, symmetric to the
encoder. Note that, due to the simplistic structure of our inputs, we did not observe any
improvement in the performance of our network by increasing its depth.

The accelerometer module receives accelerometer signals corresponding to three
spatial directions (x, y, z) for 250 time instants, which makes an input of size 250× 3. The
accelerometer is resampled to 10 Hz, and thus the accelerometer input represent 25-second
windows of time. These are given to the accelerometer encoder, which consists of three
convolutional layers with 2, 4, and 8 filters, each having three 1D convolutions for the three
signals and followed by ReLU activations. The output of the last convolution is given
to pooling and dense layers to predict the latent embeddings of size 64. The decoder
is symmetric to the encoder. To synchronise the two modality inputs ISi and IAi , Si is
temporally matched with the last data point in the accelerometer sequence IAi .

Finally, the classification module consists of two dense layers of size 64 before the
final binary classification layer. The hyperparameters α, β, and γ are set to 0.1, 0.1, and
1, respectively, to encode the importance of the similarity of the joint representation. The
network training is performed for 5 epochs using the Adam optimiser. For all of our
experiments, we perform cross-validation, where we leave one pair of subjects (one PD
and one HC) out as test data, and train the network on the remaining subjects. The average
number of the training and test samples across the folds is 47,079 and 11,770, which make
80% and 20% of the whole data set, respectively. We report our classification results by pre-
cision, recall, and F1-score, all averaged across the test folds. The code was implemented in
Python using Keras with the TensorFlow backend.

4.3. Experimental Results

We now present our results as follows. First, we discuss the quantitative results of our
PD vs. HC classification. We then show the performance of MCPD-Net in dealing with
missing modalities and finally present some qualitative results for the reconstruction per-
formance of our two VAE models. In all experiments, we will be evaluating models as
binary classifiers.

PD vs. HC Classification: We compare the performance of our proposed multimodal
architecture against unimodal approaches in Table 1. We test four classification methods,
namely CNN, unimodal VAE, RF, and long short-term memory (LSTM) models, on silhou-
ette (Sil) and accelerometer (Acl) data independently.

For Sil-CNN and Acl-CNN, we use the architecture of the silhouette and accelerometer
encoders in our VAE models, respectively, along with the classification module. Sil-VAE
and Acl-VAE use both encoder and decoder of the silhouette and accelerometer VAEs, re-
spectively, before the classification module. Our LSTM models have one hidden layer with
128 units. In our RF models, we perform a cross-validated parameter search for the number
of trees (either 200 or 250) and the minimum number of samples in a leaf node (either 5
or 10). The Gini impurity is used to measure an optimal split. The RF and LSTM mod-
els are both trained on extracted features from the raw data. For Acl-RF and Acl-LSTM
models, we extract features from the accelerometer data which are frequently used in
accelerometer signal processing [52,53]. For Sil-RF and Sil-LSTM, we apply our Sil-VAE
model to extract the latent features before the classification module. The results, averaged
across the test folds, show that our proposed method outperforms all these unimodal
approaches in all metrics. Indeed, the increase in the F1-score, by an average of 0.25 (at
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least 0.18), demonstrates the ability of MCPD-Net to encode the discriminative evidence in
both modalities.

Table 1. MCPD-Net vs. unimodal architectures. Our proposed multimodal method outperforms all
of the other approaches.

Precision Recall F1-Score

Silhouette
(Sil)

CNN 0.17 0.40 0.24

VAE 0.49 0.49 0.47

RF 0.46 0.39 0.41

LSTM 0.45 0.40 0.41

Accelerometer
(Acl)

CNN 0.53 0.45 0.44

VAE 0.63 0.55 0.44

RF 0.59 0.45 0.43

LSTM 0.58 0.47 0.42

MCPD-Net 0.71 0.77 0.66

We also compare the performance of our proposed architecture with four multimodal
approaches in Table 2. In the first row, we present the results of CaloriNet [28] for classi-
fying PD vs. HC. We choose this network because its architecture is based on the same
two modalities as ours. Additionally, as it was designed for calorie expenditure estima-
tion, it is relevant to our PD recognition, as PD also affects the subjects’ movement and,
consequently, their energy expenditure. For fair evaluation, we replace the last regres-
sion layer of CaloriNet with our binary PD vs. HC classification layer. The results show
that MCPD-Net outperforms CaloriNet. Note that the latter performs particularly poorly
on the recall metric, i.e., the true positive rate or the accuracy of predicting PD in sub-
jects with PD, which highlights the suitability of MCPD-Net for recognising PD. In the
second row of Table 2, “AE without LD” uses autoencoder (AE) models with encoder and
decoder architectures similar to the ones in MCPD-Net. These, along with the classifica-
tion module, are trained with only three losses, LS (Equation (3)), LA (Equation (5)), and
LC (Equation (7)), excluding the cosine distance loss LD (Equation (8)). In contrast, for “AE
with LD” in the third row, the same AE models are trained using a loss that also includes
LD. Outperforming these two approaches on all metrics by our proposed method shows
the benefit of the modality-specific regularisation added by the KL divergence losses in our
VAE models. Finally, in the penultimate row, “VAE without LD” shows the results of VAE
and classification models with architectures similar to those of MCPD-Net, except here,
LD is excluded from the network loss. The increase on all metrics by MCPD-Net shows
the effectiveness of using our cross-modality regularisation, which helps the network
generalise better to unseen data. Overall, while all methods in Table 2 outperform the
previous unimodal ones in Table 1 (which again demonstrates the benefit of using multiple
modalities), MCPD-Net shows an average increase in F1-score of 0.09 over all the other
multimodal approaches.

Table 2. MCPD-Net vs. other multimodal architectures. This demonstrates the superiority of MCPD-
Net, due to its VAE models and cross-modality regularisation LD.

Precision Recall F1-Score

CaloriNet [28] 0.65 0.48 0.50

AE without LD 0.69 0.56 0.58

AE with LD 0.69 0.58 0.61

VAE without LD 0.61 0.67 0.58

MCPD-Net (VAE with LD ) 0.71 0.77 0.66
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Missing Modalities: Tables 3 and 4 both present our results for dealing with missing
(a) silhouette and (b) accelerometer modalities. However, these tables follow two different
scenarios for simulating the occurrence of a missing modality in test time. In Table 3,
we randomly remove 50% of the data from the modality mentioned as missing. This is
repeated 10 times and the results are reported as their average. In Table 4, we remove all
of the data of the missing modality.

Table 3. Performance of MCPD-Net when 50% of the silhouette and accelerometer data are missing.
This demonstrates an overall improvement by our proposed method.

Precision Recall F1-Score

(a) Missing Sil (Only Using Acl)

Acl VAE (unimodal) 0.69 0.66 0.58

AE with LD (multimodal) 0.61 0.40 0.46

VAE without LD (multimodal) 0.63 0.62 0.57

MCPD-Net 0.70 0.77 0.64

(b) Missing Acl (Only Using Sil)

Sil VAE (unimodal) 0.57 0.63 0.59

AE with LD (multimodal) 0.67 0.42 0.48

VAE without LD (multimodal) 0.58 0.61 0.55

MCPD-Net 0.63 0.63 0.63

Table 4. Performance of MCPD-Net when silhouette and accelerometer data are completely missing.
This demonstrates an overall improvement by our proposed method.

Precision Recall F1-Score

(a) Missing Sil (Only Using Acl)

Acl VAE (unimodal) 0.63 0.55 0.44

AE with LD (multimodal) 0.20 0.22 0.20

VAE without LD (multimodal) 0.63 0.56 0.55

MCPD-Net 0.70 0.77 0.62

(b) Missing Acl (Only Using Sil)

Sil VAE (unimodal) 0.49 0.49 0.47

AE with LD (multimodal) 0.30 0.25 0.23

VAE without LD (multimodal) 0.56 0.54 0.46

MCPD-Net 0.60 0.49 0.51

The last rows in each of these tables show the performance of MCPD-Net, using
Equation (10) for estimating the missing representations. We compare this against the re-
sults of our best performing unimodal models, which correspond to the available modality,
i.e., ‘Acl VAE’ and ‘Sil VAE’, in the first rows of Tables 3 and 4. Note that in Table 3, 50%
of the data are presented to the network with a missing modality, and 50% of the data are
presented without any missing modality. In this case, when a modality is missing, uni-
modal models “Acl VAE” and “Sil VAE” are used to predict the classification labels. For the
other half of the data, in which both modalities are present, MCPD-Net is used to predict
the classification labels. Outperforming both these unimodal models shows that, even
if a modality is missing during test time, whether all of the data are missing or 50% of
the data are missing, MCPD-Net still benefits from what is learned from both modalities
during training. In the second and third rows of Table 3 as well as Table 4, we also compare
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MCPD-Net against “AE with LD” and “VAE without LD”. These are multimodal models
capable of dealing with missing modalities in our PD classification context. We do not
consider other models such as CaloriNet, as their architectures are not designed to deal
with a missing modality, i.e., their classification requires the presence of both modalities.
For “AE with LD”, the nonmissing module is first used to predict its own latent represen-
tation during inference. This same prediction is then used for representing the missing
modality. For “VAE without LD”, in contrast, the generative capacity of the VAE model
corresponding to the missing modality is tested in generating the representation required
for classification. This is done by first sampling a latent vector from a standard normal
distribution and then feeding it through the decoder and encoder networks of the missing
modality, respectively. Note that, “VAE without LD” has not been trained with LD; thus, its
only regularisation is due to minimising the KL divergence between the encoder output and
standard normal distribution. The results show that, in both missing data scenarios, our
proposed method outperforms both these multimodal approaches on the F1-score, demon-
strating the advantage of sampling and exchanging representations across modalities,
compared to using the same nonmissing predictions or only using the missing modal-
ity to estimate the missing feature. We also find that, especially in the whole modality
missing scenario, our network achieves a better performance when silhouette is missing,
compared to missing accelerometer, with F1-score of 0.62 vs. 0.51. This shows that, via the
joint learning, the accelerometer module has been able to encode more discriminative PD
symptoms, while also capturing a good estimation of the silhouette representations. Note
that the relatively low recall for all approaches (including MCPD-Net) in Table 4b shows
the disadvantage of missing accelerometer for PD recognition in PD subjects. However,
overall, MCPD-Net outperforms all the other approaches by an average increase in F1-score
of 0.17 (0.22 and 0.12 for missing silhouette and accelerometer, respectively).

To further analyse the performance of our proposed method for the similarity that
is learned between the latent spaces of the two VAE models, we illustrate our network
for three examples in Figure 4a–c. Each of these figures is a simplified version of Figure 2,
presenting the two branches of our proposed architecture for silhouette and accelerometer
modalities as well as their connection through the classification module. However, our focus
here is on the two colour-coded vectors in between the encoder and decoder of the silhouette
and accelerometer modules. These are the mean of the latent distribution in the silhouette
module, i.e., µSi (in Equation (2)), and the corresponding values in the accelerometer module,
i.e., µAi (in Equation (4)). Note that µSi and µAi are representations corresponding to a pair
of data points in the silhouette and accelerometer input domains, respectively, which are
jointly fed through the two VAE encoder models. These inputs are shown on the left to the
encoders. The reconstructed outputs are also shown on the right to the decoders.

These results visualise the similarity between µSi and µAi feature vectors extracted
from the two branches of the network. This is due to the use of LD in the network loss
during training. In other words, this similarity is learned during training. However, during
test time, it provides a possibility for our model to use the latent space of the present
modality to generate a representation for the missing modality.

Silhouette and Accelerometer Modules: We finally present some qualitative results
to show the performance of our network in reconstructing its inputs. Figure 5 presents
three examples of success from the silhouette module in the first three columns, and an
example of failure in the last column. The first and second rows show the silhouette inputs
and their corresponding reconstructions, respectively. As seen in the success cases, both
spatial and temporal information in the input have been successfully reconstructed. More
specifically, the model has been able to reconstruct the silhouette in the correct spatial
location and capture the silhouette displacement during time. It has also removed the
noise in the input. In the failure case, however, the reconstructed output by the silhouette
module incorrectly shows the subject moving around. This could be due to overfitting
on such examples during training.
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Figure 4. Qualitative results for the similarity between the learnt representations in the two latent spaces, for three examples
in (a–c), respectively. The first and second rows in each example show the silhouette and accelerometer modules, and the
similarity between their extracted features demonstrates the effectiveness of the LD loss.
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Figure 5. Successful (first three columns) and failure (last column) examples for the silhouette VAE to reconstruct both
spatial and temporal information in the input. The first and second rows show the silhouette inputs and their corresponding
reconstructions, respectively.



Sensors 2021, 21, 4133 14 of 18

Similarly, Figure 6 presents three examples of success by the accelerometer VAE model
in the first three columns, and an example of failure in the last column. The first and second
rows show the accelerometer input and their corresponding reconstructed output signals,
respectively, both normalised between 0 and 1. Note that the input accelerometer is the raw
signal, while its reconstruction is the output of the network activation. These two signals
are normalised for the purpose of visualisation using snorm = s−min(s)

max(s)−min(s) , where s and
snorm represent the original and normalised signals, respectively. The x axis shows time
in seconds, while the y axis represents the acceleration signal. The examples of success
demonstrate good reconstruction performance by the accelerometer module, as the model
has not only captured the pattern of the input signal but also smoothed its noise. In the
failure example, though, the model shows a poor reconstruction performance, potentially
due to the high level of noise in the input.

Examples of success Example of failure
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Figure 6. Successful (first three columns) and failure (last column) examples for the accelerometer VAE to capture the input
signal pattern and remove its noise. The x axis shows time in seconds, while the y axis represents the acceleration signal
on one of the spatial directions. The first and second rows show the accelerometer inputs, and their corresponding
reconstructions, respectively.

4.4. Discussion

Evaluating PD in free living conditions has several advantages, such as reducing the
Hawthorne effect [54] of observation by a clinician on behaviour/symptoms and improving
the ecological validity of outcome measures used in clinical trials and practice to measure
symptom progression in PD. It also provides the possibility for a continuous monitoring
of the person with PD, while they are in their own home, recording rare events such as falls,
activities which occur more naturally away from the clinic environment (such as hobbies)
and capturing the hour-by-hour symptom fluctuations of this condition. The research
community has consequently shown increasing interest in PD evaluation via automatic
approaches in home settings. Many models have been trained on sensor data obtained
from PD subjects in such settings to classify or measure the severity of PD symptoms with
promising results. However, in these automatic approaches, some aspects of the assessment
are neglected. As an example, while the specialists in clinical settings would consider the
whole body movements to get an impression of how severe the symptoms are, the existing
automatic machine-learning-based approaches frequently produce their outcome measures
based on data collected from a single sensor. As a result, the symptoms captured are limited
to specific body parts depending on what and where the sensor is applied. For example,
if a wrist-worn sensor is used, it can only capture those symptoms that affect the wrist
movements. Similarly, a vision sensor would only capture the appearance of the subject
from a single viewpoint, which might cause missing important body parts such as hands.

Thus, an automatic approach would benefit from expanding its input domain to cap-
ture a more general overview of the symptoms. We propose that such expansion of the in-
put in a multimodal approach would increase the sensitivity of symptom evaluation and,
therefore, would be especially effective for evaluating PD in naturalistic setting, with
subjects who are well medicated and present mild symptoms, or similarly, for an early
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diagnosis of PD, where the symptoms are more challenging to detect, even by neurology
specialist clinicians.

In this work, we made progress toward such an evaluation approach by combining
two input modalities. We use wrist-worn accelerometer and vision sensors to capture
these two modalities. Our machine learning method leverages the potential of the VAE
models in encoding the dynamics of the performed activities in both spatial and temporal
domains and generating robust features per data modality. The correlation between the
input modalities is captured by fusing them through the classification module. In our
results, discussed in Section 4.3, we objectively demonstrate that our method outperforms
several unimodal approaches, which confirms the advantage of a multimodal approach
for evaluating PD. To present further evidence for the superiority of our proposed method,
we also show that it outperforms other multimodal approaches.

Another aspect of our work that distinguishes it from other related works is its
resiliency to missing modalities. An IoT platform with multiple sensors used for continuous
data collection is prone to technical faults that may result in missing data. Privacy or cost
factors may also prevent recording of certain data types in some areas of a home such as
bedrooms or bathrooms. Considering these possibilities, we design our method to be able
to deal with such missing modalities during inference. We specifically use the similarity
between the latent spaces of the two modalities to generate a feature for the missing
modality. In Section 4.3, we discussed the high classification results of our approach,
compared to other multi- and unimodal methods, in more detail. To the best of our
knowledge, we are the first work using multiple modalities to recognise PD vs. HC in
home environments, while resilient to a missing modality.

5. Conclusions

In this work, we proposed MCPD-Net, a multimodal deep learning model that learns
joint representations of different modalities for a classification task. We evaluated our
proposed model on data collected of people with and without Parkinson’s disease that
were performing cooking activities in a home environment. During the data collection,
subjects were wearing a wrist-worn wearable accelerometer, while the room contained
a privacy-preserving camera that extracted image silhouettes.

The novelty of our method, in the context of PD assessment, is based on using an IoT
platform to collect data from multiple sensors. The use of the two data modalities in our
approach results in capturing a wide range of PD symptoms from different body parts.
Moreover, our analysis approach is based on the data from subjects who are performing
cooking activities, while the PD subjects are well medicated. This shows the value of our
work to be used in naturalistic settings to capture activities of daily living that occur away
from a laboratory environment. Another novelty is the ability of our method in dealing
with missing modalities, which is a common issue with “in the wild” deployments of smart
home systems. In terms of the machine learning approach, we proposed the use of VAE
models to learn robust features per modality for an effective PD classification. We also
introduced a loss function to our network architecture, which enables our method to
learn a similarity between the latent spaces across modalities. Using this learnt similarity,
we propose to use the generative capacity of the VAE model of the available modality
during test time to generate features for the missing modality.

Using both the accelerometer and silhouette data, we demonstrated that our proposed
model is able to outperform existing methods at the task of predicting whether or not
the subject has Parkinson’s disease, with an average increase in F1 score of 0.25 and 0.09,
compared to unimodel and other multimodal approaches, respectively. Furthermore,
we quantitatively and qualitatively demonstrated our model’s ability to perform with
missing modalities during the inference stage, achieving an average increase in F1 score
of 0.17 over unimodal approaches when a modality is missing.

For future work, we aim to extend this work by collecting a larger data set in which the
participants stay in a house equipped with multiple sensors for a longer duration. We aim
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to record the participants while performing clinical tests and scripted activities, and more
importantly, over long periods of free living. We will use this data to build novel models
for monitoring the progression of the disease and measuring different PD symptoms [55].

Author Contributions: Conceptualisation, F.H. and R.M. (Ryan McConville); methodology, F.H.
and R.M. (Ryan McConville); software, F.H.; validation, F.H.; formal analysis, F.H. and R.M. (Ryan
McConville); investigation, F.H. and R.M. (Ryan McConville); resources, R.M. (Roisin McNaney),
A.L.W., and C.M.; data curation, R.M. (Roisin McNaney), C.M. and F.H.; writing—original draft
preparation, F.H.; writing—review and editing, R.M. (Ryan McConville), C.M., M.M., A.M., I.C. and
R.M. (Roisin McNaney); visualisation, F.H.; supervision, R.M. (Ryan McConville), I.C., A.L.W. and
M.M.; funding acquisition, C.M., I.C. and A.L.W.; Project administration, R.M. (Roisin McNaney)
and C.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the UK Engineering and Physical Sciences Research Council
(EPSRC), grant number EP/R005273/1. This work is also supported by the Elizabeth Blackwell
Institute for Health Research, University of Bristol and the Wellcome Trust Institutional Strategic
Support Fund, grant code: 204813/Z/16/Z.

Institutional Review Board Statement: The study was conducted according to the guidelines
of the Declaration of Helsinki and approved by the Ethics Committee of University of Bristol (ethical
approval number 81222).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.
Written informed consent has been obtained from the participants to publish this paper.

Data Availability Statement: The data used in this study is not publicly available, as it contains
restricted sensitive personal data.

Acknowledgments: This work was performed under the SPHERE Next Steps Project funded
by the UK Engineering and Physical Sciences Research Council (EPSRC), Grant EP/R005273/1.
This work made use of wearable biosensors (AX3, Axivity) from IXICO to collect accelerometry data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [CrossRef]
2. Rovini, E.; Maremmani, C.; Cavallo, F. How wearable sensors can support Parkinson’s disease diagnosis and treatment:

A systematic review. Front. Neurosci. 2017, 11, 555. [CrossRef] [PubMed]
3. Pereira, C.R.; Pereira, D.R.; Weber, S.A.; Hook, C.; de Albuquerque, V.H.C.; Papa, J.P. A survey on computer-assisted Parkinson’s

disease diagnosis. Artif. Intell. Med. 2019, 95, 48–63. [CrossRef] [PubMed]
4. Morgan, C.; Rolinski, M.; McNaney, R.; Jones, B.; Rochester, L.; Maetzler, W.; Craddock, I.; Whone, A.L. Systematic review looking

at the use of technology to measure free-living symptom and activity outcomes in Parkinson’s disease in the home or a home-like
environment. J. Parkinson’s Dis. 2020, 10, 429–454. [CrossRef] [PubMed]

5. Zhu, N.; Diethe, T.; Camplani, M.; Tao, L.; Burrows, A.; Twomey, N.; Kaleshi, D.; Mirmehdi, M.; Flach, P.; Craddock, I. Bridging
e-Health and the Internet of Things: The SPHERE Project. IEEE Intell. Syst. 2015, 30, 39–46. [CrossRef]

6. Woznowski, P.; Burrows, A.; Diethe, T.; Fafoutis, X.; Hall, J.; Hannuna, S.; Camplani, M.; Twomey, N.; Kozlowski, M.; Tan, B.; et al.
SPHERE: A sensor platform for healthcare in a residential environment. In Designing, Developing, and Facilitating Smart Cities;
Springer: Berlin, Germany, 2017; pp. 315–333. [CrossRef]

7. Birchley, G.; Huxtable, R.; Murtagh, M.; Ter Meulen, R.; Flach, P.; Gooberman-Hill, R. Smart homes, private homes? An empirical
study of technology researchers’ perceptions of ethical issues in developing smart-home health technologies. BMC Med. Ethics
2017, 18, 1–13. [CrossRef] [PubMed]

8. Ziefle, M.; Rocker, C.; Holzinger, A. Medical technology in smart homes: Exploring the user’s perspective on privacy, intimacy
and trust. In Proceedings of the IEEE Computer Software and Applications Conference, Munich, Germany, 18–22 July 2011;
pp. 410–415. [CrossRef]

9. Noyce, A.J.; Schrag, A.; Masters, J.M.; Bestwick, J.P.; Giovannoni, G.; Lees, A.J. Subtle motor disturbances in PREDICT-PD
participants. J. Neurol. Neurosurg. Psychiatry 2017, 88, 212–217. [CrossRef]

10. Greenland, J.C.; Williams-Gray, C.H.; Barker, R.A. The clinical heterogeneity of Parkinson’s disease and its therapeutic implica-
tions. Eur. J. Neurosci. 2019, 49, 328–338. [CrossRef]

11. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. In Proceedings of the International Conference on Learning
Representations (ICLR), Banff, AL, Canada, 14–16 April 2014.

http://doi.org/10.1136/jnnp.2007.131045
http://dx.doi.org/10.3389/fnins.2017.00555
http://www.ncbi.nlm.nih.gov/pubmed/29056899
http://dx.doi.org/10.1016/j.artmed.2018.08.007
http://www.ncbi.nlm.nih.gov/pubmed/30201325
http://dx.doi.org/10.3233/JPD-191781
http://www.ncbi.nlm.nih.gov/pubmed/32250314
http://dx.doi.org/10.1109/MIS.2015.57
http://dx.doi.org/10.1007/978-3-319-44924-1_14
http://dx.doi.org/10.1186/s12910-017-0183-z
http://www.ncbi.nlm.nih.gov/pubmed/28376811
http://dx.doi.org/10.1109/COMPSACW.2011.75
http://dx.doi.org/10.1136/jnnp-2016-314524
http://dx.doi.org/10.1111/ejn.14094


Sensors 2021, 21, 4133 17 of 18

12. Fraiwan, L.; Khnouf, R.; Mashagbeh, A.R. Parkinson’s disease hand tremor detection system for mobile application. J. Med. Eng.
Technol. 2016, 40, 127–134. [CrossRef]

13. Um, T.T.; Pfister, F.M.; Pichler, D.; Endo, S.; Lang, M.; Hirche, S.; Fietzek, U.; Kulić, D. Data augmentation of wearable
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