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Abstract

detection and SCoring of Off-Targets (VARSCOT).

Background: Natural variations in a genome can drastically alter the CRISPR-Cas9 off-target landscape by creating
or removing sites. Despite the resulting potential side-effects from such unaccounted for sites, current off-target
detection pipelines are not equipped to include variant information. To address this, we developed VARiant-aware

Results: VARSCOT identifies only 0.6% of off-targets to be common between 4 individual genomes and the reference,
with an average of 82% of off-targets unique to an individual. VARSCOT is the most sensitive detection method for off-
targets, finding 40 to 70% more experimentally verified off-targets compared to other popular software tools and its
machine learning model allows for CRISPR-Cas9 concentration aware off-target activity scoring.

Conclusions: VARSCOT allows researchers to take genomic variation into account when designing individual or
population-wide targeting strategies. VARSCOT is available from https://github.com/BauerlLab/VARSCOT.
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Background
The development of the CRISPR-Cas9 system has revolu-
tionized genome-editing [1]. The system can be targeted to
almost any genetic sequence through complementary bind-
ing to an associated gRNA. Once cleaved, the repair of the
break can be manipulated to induce small insertions or de-
letions or used for the insertion of new sequence [2, 3].
This has significant implications, particularly in the field of
medicine. However, the capacity of CRISPR-Cas9 to bind
and cleave at locations other than the target site (termed
off-targets), means great care must be taken when using it
[4-7]. For this reason, many computational tools have been
developed that seek to identify and predict potential off-
targets and help inform experimental design [8—10].
Computational detection of off-targets consists of two
components: identification and activity prediction. Identifi-
cation involves identifying alternate sites the CRISPR-Cas9:
gRNA complex may bind based on sequence complemen-
tarity. In addition to sequence similarity, potential off-
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targets must also be flanked by a Protospacer Adjacent
Motif (PAM), a short sequence that the CRISPR-Cas com-
plex must bind to in order to effect cleavage [11]. Detection
of potential targets is usually achieved using traditional
aligners such as BWA and Bowtie [8]. The likelihood that
these target sites could become active off-targets can then
be assessed using predictive models. While a number of
scoring algorithms are available, the most common models
for off-target activity prediction are the Cutting Frequency
Determination (CFD) [12], the MIT score for off-target ac-
tivity [13] and the recently developed Elevation score [9].
Bringing the search and scoring functionality together
are pipelines such as CRISPOR [8], which uses BWA to
identify potential off-targets and then evaluates them
using either the CFD or MIT scores, as well as the Eleva-
tion pipeline [9], which uses a custom search tool and
model of activity. These pipelines however do have limi-
tations. While read-alignment-based tools offer fast off-
target search, they are limited to very few mismatches
between the gRNA and the off-target (typically 5). This
is a substantial limitation as highly mutated off-targets
with up to 8 mismatches have been recorded in experi-
mental data [7, 14]. Additionally, current pipelines are
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not able to handle variant information. The genetic vari-
ations (SNPs, INDELs) found within an individual gen-
ome will change the off-target landscape [15-17]. This
was recently demonstrated by Lessard et al., who showed
experimentally that small variations in an off-target se-
quence could dramatically alter the cleavage rate of any
given site [18]. It is therefore critical that the variant
landscape of a genome be taken into account when de-
signing CRISPR-Cas9 gRNAs, particularly for more per-
sonalized applications such as gene-therapy [16] and
gene-drives [19].

To address both needs we developed VARSCOT
(VARiant-aware detection and SCoring of Off-Targets).
VARSCOT is able to process variant information pro-
vided as a VCEF file to identify off-targets that are person-
alized to an individual. Furthermore, VARSCOT uses a
novel seed-and-extend method [20] to allow more mis-
matches than other alignment-based tools (with a default
of 8). VARSCOT also offers a novel machine-learning
approach to score off-target activity by taking the se-
quence composition as well as the relationship between
on- and off-targets into account.

Demonstrating the capabilities of VARSCOT, we firstly
show how the target-site landscape dramatically changes
when taking variant information into account. We then
identify features that govern off-target activity and con-
clude by benchmarking VARSCOT against other
activity-predictors as well as the state-of-the-art search-
and-scoring pipelines.

Implementation
Construction of the variant genome
VARSCOT integrates sequence variants of an individual
from a user-defined VCEF file by constructing a so-called
variant genome that is scanned in addition to the refer-
ence genome. The variant genome sequences consist of
22bp flanking regions upstream and downstream of a
given variant that are extracted from the reference gen-
ome. For each allele, the corresponding variant is inserted
into the sequence. Closely located variants that could po-
tentially be included in a single off-target are extracted
and further evaluated within a single sequence. Otherwise
off-targets could be included that cannot exist if reference
bases are extracted where an individual variant is located.
VARSCOT is intended to be used with phased variants
since knowledge of the haplotypes is required in order
to extract sequences with multiple variants correctly for
each allele. In order to provide a method to process
unphased variants, every possible combination of vari-
ants for each allele is reported within a sequence.

Read mapping based on Optimum search schemes
Targets are mapped to the reference and variant genome
using a read aligner based on a bidirectional FM index.
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As opposed to traditional unidirectional indices, a bidir-
ectional index can search into both directions in any
given order thus improving runtime [21]. Most index-
based approximate string matching strategies are still
not practical for a large number of errors and already
exceed acceptable running times for more than two er-
rors. To allow for up to 8 errors in an index-based
search, we use Optimum Search Schemes [20]. This is a
strategy that enumerates a pattern with errors in a bidir-
ectional index in such a way, that the number of steps in
the index is reduced to a minimum. Using a recent im-
plementation of the bidirectional FM-index based on
EPR-dictionaries [22], which is faster by a factor of 2 for
DNA alphabets than standard implementations of FM-
indices based on Wavelet trees, we were able to reduce
the search time even further.

After mapping the on-targets back to the reference
and variant genome, both results are merged and filtered
for the final output. Matches to the reference genome
that lie within regions of individual variants need to be
filtered out because they do not exist in the present indi-
vidual and are covered by matches to the variant gen-
ome in the same regions. In addition, the original target
sites are filtered out since they are always found as per-
fect matches by the aligner.

For all valid off-targets either the MIT score or Ran-
dom Forest prediction can be calculated. The resulting
off-targets and corresponding scores as well as their pos-
itional information and sequence are reported in an out-
put file where the first columns correspond to a BED6
file. Each off-target that contains a variant is tagged as
such with a reference back to the input VCEF file.

Dataset curation

We employ two datasets in this study; a Training Data-
set (9 on-target and 384 off-targets from [7]) and a Test
Dataset (8 on-target and 5314 off-targets from [14]). In
these studies, active off-targets were detected using the
GUIDE-Seq or SITE-seq methods respectively. For the
Training Dataset, we defined active off-targets as any
that were detected using the GUIDE-Seq method. We
therefore assumed that any sequence with up to 8 mis-
matches to the on-targets that were not detected were
inactive off-targets. Because the number of inactive off-
targets was larger than the active class, we performed
down sampling. The sampling was weighted based on
the mismatch distribution observed in the active off-
targets to avoid any imbalances, as there are significantly
more inactive off-targets with >5 mismatches than in
the active class. We repeated the sampling a total of 10
times, creating 10 sets of off-targets to avoid any sam-
pling bias. For the Test Dataset, off-target activity was
measured using different concentrations of CRISPR-
Cas9. We defined off-targets as active if they were



Wilson et al. BMC Biotechnology (2019) 19:40

detected at a CRISPR-Cas9 concentration of 64 nM, the
“standard” concentration used in the original paper.

Model training and feature selection

A Random Forest classifier was trained using 443 features
derived from mismatch properties, sequence context and
on-target activity (Additional file 2: Table S1) for each of
the active-inactive off-target Training Dataset combina-
tions. Feature importance was extracted for each model
and then averaged across all repeats. Afterwards we per-
formed feature selection using a backwards-selection
method, where the least important feature is removed and
the new model tested. Performance was measured using
the out-of-bag error of the model and the combination of
features which gave the lowest error were selected as the
final model.

Predictive models

The standalone programs including off-target search for
Elevation and CRISPOR were downloaded from their re-
spective repositories. The CFD score was implemented
using the scripts from [8] and the MIT off-target score
was implemented in a python script using the weights
provided in the original paper [13].

VARSCOT and Elevation were run on a 64-bit Linux
system with 64 cores and 512 GB RAM. CRISPOR was
run on a Macbook Pro with OS X 10.11, two cores and
16 GB RAM.

Results

VARSCOT identifies unique off-targets using variant
information

To test VARSCOT’s ability to predict unique off-targets,
we used VARSCOT to compare the predicted off-targets
of 100 gRNAs across three individuals of the 1000 ge-
nomes project [23]. For this, we limited the prediction of
off-targets to sites with up to five mismatches (the max-
imum number allowed by current state-of-the-art tools)
and either the canonical NGG or non-canonical NGA
PAM (the most active non-canonical PAM [24]). While
the non-canonical NGA PAMA was chosen because it
was found to be the most common alternative in experi-
mental datasets [7], VARSCOT also allows users to spe-
cify additional non-canonical PAM’s to include in the
off-target search.

VARSCOT uses a supplied VCF file to generate a
“variant genome” which, along with the reference gen-
ome, is searched using a seed-and-extend method based
on Optimum Search Schemes using bidirectional FM in-
dices [20] for regions similar to a supplied target se-
quence (Fig. 1a, a more detailed workflow is provided in
Additional file 1: Figure S1). This search method allows
VARSCOT to identify similar regions with up to 8 mis-
matches in a 23 bp sequence. Once identified, regions
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from the variant genome are compared to the reference
genome to identify potential off-targets unique to the
individual.

As shown in Fig. 1b, only 0.6% off-targets (134 sites)
are consistent between all individuals and the human
reference genome (hgl9 assembly). In fact, the muta-
tions an individual carries causes on average 98.97% of
the off-targets (22,570 sites per genome, SE =30) to be
different when compared to the reference genome. Strik-
ingly, the difference among the individuals is less with
81.68% of off-targets (18,626 sites per genome, SE = 125)
unique to an individual. These results showcase the limi-
tations of using a reference genome to identify off-
targets for an individual and highlight the importance of
understanding an individual’s variant landscape.

The relationship between on- and off-target governs activity
Variants have the potential to create a significant number
of new CRISPR-Cas9 binding sites, however binding does
not always translate to cleavage. Similar to on-target activ-
ity [25], off-target activity can be predicted based on the
sequence of the gRNA and the off-target [8, 9].

We trained a Random Forest classifier on a dataset
where off-target activity was measured using the
GUIDE-Seq method [7] (the Training Dataset) to take
the single and di-nucleotide composition of a site as well
as the number, position and type of mismatches into ac-
count when predicting off-target activity. Here, we chose
to focus on off-targets with canonical PAM sequences
only, as other PAMs were not well represented in the
training set. We also limited the dataset to off-targets
with only up to 8 mismatches. While off-targets with
more mismatches have been reported, these are typically
in ex situ experiments where the genomic DNA has
been isolated and treated directly with CRISPR-Cas9 in-
creasing the activity of even heavily mutated sites. In the
Training Set, which is an in situ dataset, sites with more
than 5 mismatches have a very low activity level hence
likely rendering sites with more than 8 mismatches com-
pletely inactive (Additional file 1: Figure S2).

As the dataset only contains active off-targets, we as-
sembled a list of inactive sites by randomly sampling the
genome, matching the active off-targets in sequence
complementarity and number of sites. To avoid selection
bias, we repeat the sampling 10 times. For more details,
see the methods section.

Using these datasets, we constructed 10 different
models of off-target activity (one for each combination
of active and inactive targets) and extracted the average
feature importance across all models. Consistent with
previous reports and as shown in Fig. 1c, features such
as the number and position of mismatches were deemed
important, particularly if the mismatches fell within the
seed-region (the 12bp immediately upstream of the
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Fig. 1 Development and testing of the VARSCOT model (a) VARSCOT uses a supplied VCF to produce a variant genome which is searched
alongside the reference genome to identify variant off-targets. User supplied files are shown in blue, while files generated by VARSCOT are shown
in white. b VARSCOT was used to detect potential off-targets for 100 gRNAs using variant information from three individuals from the 1000
Genomes project. Potential off-targets were compared between individuals and with the hg19 Reference Genome to identify unique targets. ¢
Feature importance for predicting off-target activity. d Receiver Operating Characteristic (ROC) curve of the VARSCOT model tested on the
independent Test Dataset filtered for targets with 8 or fewer mis-matches and NGG or NGA PAMs (e) Correlation of the VARSCOT Predicted
Probability of Activity with the Minimal Active Concentration of CRISPR-Cas9 used in the Test Dataset

Minimal Active Concentration (nM)

PAM). In addition, it was also found to be important
whether the mismatch was caused by a purine/pyrimidine
(transversion) or purine/purine or pyrimidine/pyrimidine
substitution (transition), suggesting that structural differ-
ences between the gRNA and potential off-target influence

overall activity.

Interestingly, whether the first base of the PAM at
the off-target position matched that at the on-target
position, was the 57th most important feature in our
model. This position is known to be important for
regulating on-target activity of a gRNA [25]. We
hence hypothesize that the model uses it to estimate
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on-target activity as an influencing factor on off-
target activity.

In order to identify the minimal number of features re-
quired to accurately model off-target activity, we per-
formed feature selection using a backwards-selection
strategy, identifying 80 key features. On average a cross-
validated Area Under the Curve (AUC) of 0.956 (SE =
0.005) was achieved for training with selected features
only and 0.955 (SE =0.006) for training with all features
(Additional file 1: Figure S3). This suggests that feature se-
lection does not significantly improve performance (paired
t-test p = 0.41) but rather allows us to exclude unnecessary
information. From the 10 training sets, we selected the
best-performing model as final model for validation.

Off-target activity can be modelled using only the target
sequence

To confirm the model generalizes after feature-selection
and training we validate its performance on an inde-
pendent Test Dataset by Cameron et al. [14]. This Test
Dataset consists of off-targets that were detected across
a range of CRISPR-Cas9 concentrations. For this valid-
ation test, we considered an off-target active if it was ac-
tive at a CRISPR-Cas9 concentration of 64nM (the
standard concentration used by Cameron et al.). Testing
our model on this dataset yields an AUC of 0.85 (Fig.
1d). This is especially remarkable as our model was
trained on off-targets with canonical PAMs (AUC of
0.86 for canonical and 0.83 for non-canonical PAMs,
Additional file 1: Figure S4). This indicates that off-
target activity is primarily driven by the target sequence
of the off-target and the gRNA and not the PAM.

We also tested if the predicted activity score correlates
with the concentration-dependent activity of the off-targets
in the Test Dataset. We divided off-target sites in the Test
Dataset into groups based on the minimum CRISPR-Cas9
concentration they were active at (with a lower minimum
concentration equalling a more active off-target) and plot-
ted the corresponding average predicted activity score from
our model. Our results show a clear correlation between
activity-score and concentration-score (Fig. le), suggesting
that our model can also be used to predict activity of off-
targets at different CRISPR-Cas9 concentrations.

Comparison with other scores for off-target activity
We compared our model with the previously published off-
target activity scorers, the MIT [13] and CFD score [12] as
well as the Elevation score [9]. These were shown to out-
perform other available scores in a recent review and there-
fore represent the currently best scoring schemes [8].
Figure 2a shows the resulting ROC curves on the inde-
pendent Test Dataset. All models showed strong per-
formance with AUCs >0.83. Pairwise comparison
showed that only the MIT and Elevation as well as the
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MIT and CFD scores were significantly different, with
the MIT score outperforming both (p-values = 0.009 for
both comparisons, all other comparisons p-value > 0.05).
Because there was no significant difference between the
performance of our and the MIT model, we elected to
include both in the final VARSCOT pipeline.

The VARSCOT pipeline outperforms current off-target
detection and activity prediction pipelines

The performance of VARSCOT was compared to the
state-of-the-art off-target detection and activity predic-
tion pipelines Elevation [9] and CRISPOR [8]. VARS-
COT was run allowing up to 8 mismatches, while
CRISPOR was limited to 5 mismatches and Elevation
allowed 6 (up to 3 within the 17 bases proximal to the
PAM and any number of mismatches in the three most
distal bases) mismatches, respectively. For CRISPOR this
was due to the limitations in BWA and for Elevation this
was due to runtime as a search with comparable
mismatch-number would have taken an order of magni-
tude longer (hours for a single on-target compared to
minutes for both other methods). In order to enable a
fair comparison, VARSCOT was used without variant in-
formation and Elevation and VARSCOT were limited to
canonical NGG and non-canonical NGA PAMs.

As shown in Fig. 2b, of the 4443 sites in the Test Dataset
VARSCOT identifies the most out of all methods (1747,
39% of observed sites), followed by Elevation (1103, 25%)
and CRISPOR (790, 18%). Of the missed sites, 77% (2078
sites) were missed due to VARSCOT limiting detection to
off-targets with up to 8-mismatches, and the remaining
23% (618 sites) were missed due to the presence of non-
canonical PAMs. Critically, the missed sites were predom-
inantly low-activity off-targets confirming that VARSCOT
identifies the active off-targets of interest (Additional file 1:
Figure S5).

All three pipelines report more off-targets than are re-
ported in the Test Dataset. VARSCOT identifies an add-
itional 1,354,308 sites, while CRISPOR and Elevation report
an additional 14,212 and 23,447 sites respectively. In order
to filter out false-positives, a probability cut-off based on
our predicted score can be used. Using a cut-off threshold
of 0.5 reduces the number of false positives from 1,356,055
to 18,764 (a reduction of approximately 98%). While a
higher threshold will reduce this further, it also reduces the
number of true positives. Care must therefore be taken
when choosing a threshold, although it is critical to note
that the false positives reduces at a faster rate than the true
positives (Fig. 2c). Using a cut-off of 0.4 yields a true-
positive rate of 23% and a false-positive rate of 5%.

Discussion
VARSCOT is a newly developed off-target detection and
scoring tool for CRISPR-Cas9, which incorporates the
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variant information of individuals into the search. We
have shown that when considering the specific genetic
landscape of an individual, 99% of off-targets are
unique and would be missed when scanning a refer-
ence genome only. Hence SNP-aware off-target detec-
tion is critical for any application of CRISPR which
requires an element of personalization, such as gene-
therapy [16]. VARSCOT is also capable of handling popu-
lation level variant information. This will be of great use
in fields such as gene-drives [19], where individual gen-
ome variants about the targeted species cannot be known
but population level information on genetic variation at
specific loci is available.

VARSCOT detects off-targets in the variant and refer-
ence genome using a method based on Optimum Search
Schemes using a bidirectional FM index, which is more
sensitive and identifies off-targets with more mismatches
than traditional aligners. While the default of allowing
up to 8 mismatches means VARSCOT captures more
validated off-targets than other pipelines, this cutoff can
be increased to identify more divergent off-targets. How-
ever, this would increase the possibility of false positives
which must then be accounted for.

The effect of false positives can be mitigated by using a
model to predict the activity of a potential off-target such
as the one we developed. While we limited the Training
data of our model to only off-targets with NGG or NGA
PAMs, critically our model could accurately predict the
activity of off-targets with other PAMs (Additional file 1:
Figure S4b). In the Test Dataset, applying a standard cut-
off of 0.5 reduced the number of false positives by ap-
proximately 98%. Deciding on a probability threshold will
be a critical step for future experimental design and the
correct threshold will depend on the parameters.

Our results showed that the predicted on-target activ-
ity of a gRNA is an important factor of off-target activ-
ity, suggesting that more care should be taken with
gRNAs selected for on-target activity as they will likely
have more active off-targets. Similarly, an experiment
that uses a higher concentration of CRISPR-Cas9 should
be cautious, as previously inactive off-targets could be-
come active.

Conclusions
Natural genomic variants can have a profound impact
on the off-target activity of CRISPR-Cas9 and
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accounting for this variation is therefore critical. VARS-
COT is the first off-target detection tool that can ac-
count for genetic variation and identify off-targets
unique to an individual genome. This will be critical for
future work seeking to apply CRISPR-Cas9 to wild type
populations or potentially in the clinic.

Availability and requirements Project name: VARSCOT.

Project home page: https://github.com/BauerLab/
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License: CSIRO Non Commercial Source Code Li-
cense Agreement v1.0.

Any restrictions to use by non-academics: License re-
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