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Localized magnetic fields (MFs) could easily penetrate the scalp, skull, and meninges, thus inducing an electrical current in both the
central and peripheral nervous systems, which is primarily used in transcranial magnetic stimulation (TMS) for inducing specific
effects on different regions or cells that play roles in various brain activities. Studies of repetitive transcranial magnetic stimulation
(rTMS) have led to novel attractive therapeutic approaches. Neural stem cells (NSCs) in adult human brain are able to self-
renew and possess multidifferential ability to maintain homeostasis and repair damage after acute central nervous system. In the
present review, we summarized the electrical activity of NSCs and the fundamental mechanism of electromagnetic fields and
their effects on regulating NSC proliferation, differentiation, migration, and maturation. Although it was authorized for the
rTMS use in resistant depression patients by US FDA, there are still unveiling mechanism and limitations for rTMS in clinical
applications of acute central nervous system injury, especially on NSC regulation as a rehabilitation strategy. More in-depth
studies should be performed to provide detailed parameters and mechanisms of rTMS in further studies, making it a powerful

tool to treat people who are surviving with acute central nervous system injuries.

1. Introduction

In 1985, Barker et al. demonstrated the possibility of nonin-
vasively influencing both the central and peripheral nervous
systems via localized magnetic fields (MFs) that could easily
penetrate the scalp, skull, and meninges, thus inducing an
electrical current in the brain or peripheral nervous system
[1]. Now, this technique is primarily used in transcranial
magnetic stimulation (TMS), which can be administered in
different forms and appears to induce specific effects on
different regions or cells that play roles in various brain activ-
ities. Studies of repetitive transcranial magnetic stimulation
(rTMS) have led to novel and attractive therapeutic
approaches [2, 3]. Different rTMS techniques, such as single,
paired, or repetitive trains of intermittent theta burst stimu-
lation (iTBS), have been commonly applied to many refrac-
tory neuropathy conditions, such as degenerative diseases,
malignant tumors, and traumatic diseases, and especially in
neurology and psychiatry for both diagnostic and therapeutic
purposes [4]. Interestingly, the various means of stimulation
exert completely different regulatory effects because high-
frequency rTMS (defined as >5Hz) stimulates enhanced

cortical excitability and produces long-term potentiation
(LTP). In contrast, low-frequency rTMS (defined as <1 Hz)
decreases cortical excitability and induces long-term depres-
sion (LTD) [5]. However, the intrinsic cellular and molecular
mechanisms underlying rTMS(MF)-based therapies are still
elusive.

Neural stem cells (NSCs) are a type of self-renewing stem
cell which possess the multidifferential ability to produce
neurons and glia in the nervous system during the embryonic
period. Some NSCs persist in the adult mature brain, and
their capacity to differentiate into multiple cell types allows
them to produce neurons throughout the lifespan [6]. They
maintain homeostasis and repair damage [7]. Compared to
differentiated cells, adult stem cells can proliferate to sustain
themselves and differentiate into one or more specialized cell
types within a certain cell lineage [8]. As such, for the ulti-
mate purpose to regenerate and recover normal functions,
stem cells are a promising tool for tissue or organ repair. In
particular, adult stem cells are most often in a quiescent state
and can be triggered by intrinsic or extrinsic factors or their
complicated combination to initiate self-renewal and differ-
entiation [9, 10]. The current consensus is that a series of
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niche signals and cellular intrinsic processes are involved,
and several researchers have made great efforts to identify
the roles of these signals and processes in brain physiology
and explore their potential use in cell-based therapies to treat
neurological or neurodegenerative diseases [11, 12]. In the
adult mammalian brain, the subgranular zone of the hippo-
campal dentate gyrus and the subventricular zone of the
lateral ventricles are two of the main areas where NSCs reside
[13, 14]. The production of new neurons maintains the NSC
pool [15], and thus, NSCs or neural progenitor cells (NPCs)
are the most important component in brain regeneration
and plasticity. The nervous system is perhaps the most diffi-
cult system to repair in regenerative medicine. In addition,
adult NSCs are located deep in the body and are few in num-
ber. Although SCs have been studied for decades, how to
influence these cells noninvasively and efficiently for specific
applications remains a challenge. The latest research has
reported that rTMS(MF) has a variety of effects on adult
NSCs, shedding light on possible cures for intractable
diseases, cerebral trauma, stroke, depression, dementia,
Parkinson’s disease, and so forth Therefore, strategies to
generate a MF to stimulate endogenous processes of NSCs
have gained considerable interest, but the behavior of NSCs
in the context of rTMS(MF) therapy needs further elucida-
tion [16]. Focused on the integration of two promising
approaches, MFs and NSCs, this review will discuss the
effects of MFs on NSCs and the potential mechanisms as well
as provide an outlook regarding future directions. Thus, non-
invasive MF stimulation, specifically transcranial magnetic
stimulation (TMS) on NSCs, may be a promising option.

2. The Electrical Activity of Neural Stem Cells

NSCs are a type of immature, undifferentiated cells. Due to
their property of “stemness,” their physiological features,
especially electrophysiological characteristics, are distinct
from well-known neurons, and they realize their functions
mainly based on electrical activities. It is widely known that
neural cells have specific excitability and that ion channels
are the molecular foundation enabling them to generate elec-
trical activities. Neural cells and NSCs participate in intercel-
lular signaling transitions and transmembrane signaling
transduction, which are the prerequisites for cells to become
physically activated to exert their functions (Figure 1). Dur-
ing the course of NSC differentiation, the expression of ion
channels and their states are continually varied to accommo-
date the microenvironment (niche) of different periods.
Although studies of NSCs have become gradually more in-
depth, the characteristics of NSCs cultured and differentiated
in vitro have been primarily explored based on morphology
and immunocytochemistry, whereas few studies have per-
formed functional identification of NSCs. Studies indicate
that neural cells under different conditions are characterized
by different electrophysiological features, and the develop-
ment and differentiation of ion channels are precise indica-
tors of specialized NSCs. Their unique electrophysiological
properties not only provide a new and efficient functional
means to better identify NSCs and types of differentiated
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neural cells but also help to elucidate the mechanisms under-
lying MF stimulation and NSCs.

2.1. Passive Membrane Properties of NSCs. Resting mem-
brane potential (RMP), membrane input resistance (Rin),
and membrane capacitance (Cm) are major parameters of
the passive membrane properties of cells. Liu et al. [17]
reported that epidermal growth factor/basic fibroblast
growth factor- (EGF/bFGF-) reactive neural progenitor cells
originate from the subventricular zone (SVZ) or spinal cord
of rats and can be classified into three types based on their
I-V curve: type I exhibits delayed outward currents, type II
exhibits no rectification, and type III exhibits outward and
inward rectifying currents. Significant differences in the pas-
sive parameters have been found among the three types of
cells. Compared with other types, type I cells are character-
ized by a high Rin and a low RMP. Liu hypothesized that
immature type II neurons may be glial cells, while type III
cells may be undifferentiated NSCs. This hypothesis corre-
sponds with the work of Doetsch et al. [18] on the morphol-
ogy of NSCs. The major transmembrane channels of glial
cells are dense passive K™ channels, which result in a higher
RMP and a lower Rin. As NPC differentiate, RMP increases
while Rin decreases due to the addition of passive K" chan-
nels, but they are still distinct from mature neurons, reflect-
ing immature differentiation. By studying hippocampal
slices of nestin promoter-GFP transgenic mice to directly
observe fluorescent cells, Fukuda et al. [19] classified neurons
into two species according to the levels of Rin and RMP: type
I with low Rin and high RMP and type II with high Rin and
low RMP. In addition, Fukuda et al. performed a classical
morphological identification and found that type I cells are
GFAP-positive and polysialic acid neural cell adhesion mole-
cule- (PSA-NCAM-) negative, while type II cells are GFAP-
negative and PSA-NCAM-positive, in agreement with the
reported functional outcomes of NSCs at different stages.
Certainly, NSCs/NPCs can be distinguished from each
other during different periods of life. Compared to adult
NSCs, neonatal and embryonic NPCs exhibit a more depo-
larized RMP between —55mV and —40mV [20-24]. The
Rin of neonatal NPCs is different under different circum-
stances; for connected cells, the Rin is 150 MW, whereas for
isolated cells, it is 650 MW in the presence of a gap junction
blocker [20]. In addition, in vitro, the Rin of embryonic NPCs
is 1 GW [23]. Thus, adult NSCs/NPCs have a more hyperpo-
larized RMP and a lower Rin than embryonic and neonatal
NSCs/NPCs. This disparity may indicate the morphological
and functional changes that the neonatal or embryonic SVZ
undergoes during developmental shifts in the neurogenic
niche that are distinct from the adult SVZ. Above all, these
studies indicate that different types of neural cells have differ-
ent electrophysiological features of their passive membrane.

2.2. Ability to Generate the Action Potentials (APs). Neural
cells transmit excitatory signals via APs, but the ability of
NPCs to generate APs significantly differs across stages of
life. Neurons can be evaluated based on their action potential
duration (APD) 50 and APD 90, namely, the time required
for 50% and 90% repolarization of the AP, respectively. A
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F1GURE 1: The electrophysiological differences between NSCs and neurons. Compared to mature functional neurons, NSCs exhibit a higher
RMP and a lower Rin due to shortage of Kir; moreover, it is not easy for NSCs to generate AP because of a lack of VGSCs. VGCCs,
mostly functional L-type and LGCC, are probably the main roles in modulating intracellular Ca** concentration especially L-type
VGCCs, Ca**-dependent K* channel SK3 abundantly expressed in NSCs is responsible for the migration and proliferation.

shortage of Na* channels makes it difficult to induce Aps;
however, as the expression of ion channels increases, the
I-V curve begins to show a rectified performance, and
transmembrane ionic currents prompt the opening of
more channels, resulting in positive feedback. Compared
with mature neurons, the majority of studies have shown
that there is no spontaneous AP in NSCs, and APs are

induced by depolarization of distant mature neurons. Liu
et al. [17] found that further differentiated cells hold a
greater ability to generate APs, longer duration APs and
higher amplitude APs, which are related to a lack of
voltage-gated Na® channels (VGSCs), particularly tetrodo-
toxin- (TTX-) sensitive Na® channels. In the process of
specialization, as the expression of Na* channels increases,



the amplitude of APs is augmented. Therefore, the devel-
opment of Na* channels is closely related to shortened
durations of APs, indicating that more Na® channels are
involved for the same level of depolarization stimuli.

2.3. Voltage-Gated Ion Channels of NSCs. There are four
major types of voltage-gated ion channels: Ca®*, Na*, K",
and CI” channels. Some of these channels are opened
through membrane depolarization, while some are opened
through membrane hyperpolarization. In terms of their volt-
age sensitivity, researchers most often focus on excitable cells.
In neurons, these channels play a key role in neuronal func-
tions, such as in synaptic transmission, the generation of
APs, membrane current transmission, long—term potentia-
tion, and the modulation of gene expression. However, the
role of VGSCs in NSCs has been ignored because of their
inexcitability. It is well known that glial cells are the insula-
tion of the central nervous system and also exhibit VGSC
currents. However, the quantity or quality of VGSC currents
in glial cells are too small to generate APs, and their func-
tional connectivity is controversial [25]. Furthermore, as an
immature cell type, adult NSCs are unable to produce APs
in response to depolarizing currents [26, 27]. Similarly,
embryonic and neonatal NSCs exhibit neither VGSC cur-
rents nor APs upon depolarizing current injection [20, 24,
28, 29]. Interestingly, some (13-55%) cultured NPCs have
small transient inward VGSC currents [23, 26, 27, 30]. Given
that experiments carried out in vitro may not translate to
in vivo situations, the expression of VGSCs in NSCs/NPCs
required confirmation by electrophysiological studies in situ.
K" channels, whose gene expressed before differentiation
corresponds to both voltage- and Ca®*-dependent types, are
widely found throughout the brain, regardless of the cell type
(neurons or glial cells). K" currents can be probed both
before and after differentiation. In addition to their primary
role in the routine modulation of neuronal excitability, K*
channels also generally participate in the regulation of critical
processes such as membrane potential, proliferation, and
apoptosis across a wide range of cellular activities [31-34].
K" channel currents are usually recognized as two classes:
inward and outward K" currents. Outward currents include
rapidly activated and inactivated transient currents such as
A-type K" (KA) channel currents, which are highly sensitive
to 4-aminopyridine, and slowly inactivated or non-
inactivated currents such as delayed rectifying K* (KDR)
channel currents, which are rarely inactivated and are tetra-
ethylammonium- (TEA-) sensitive due to their unique prop-
erties. Inward currents include inwardly rectifying potassium
channel (Kir) currents that are mainly responsible for the
RMP. KDR channels play a critical role in repolarization
and are rarely found in immature cells. Wang et al.
probed KDR and Ca*'-dependent K* channels in mouse
brain slices 15~25 days after birth. Liebau et al. [35] found
hyperexpression of a class of Ca**-dependent K* channel
(SK3), which plays a variety of roles in many physiological
processes of NSCs.

Voltage-gated Ca** channels (VGCCs) comprise three
major subfamilies: CaV1.x, CaV2.x, and CaV3.x. They are
extensively expressed in neurons and are responsible for
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modulating gene expression, neurotransmission, and various
fundamental Ca®*-dependent intracellular events such as dif-
ferentiation, apoptosis, and proliferation [26, 27, 34]. VGCCs
are considered to play functional roles in early neuronal
development [36]. In adult NPCs, however, the functional
modulation and roles of VGCCs are unclear. Most recent
studies have investigated L-type (CaV1.2) and T-type
(CaV3.1) VGCCs in adult cultured NSCs and have detected
their expression at the transcriptional or translational levels
[37]. In vivo, ischemia-induced neurogenesis in adult mice
can be blocked using L-type VGCC antagonists, but there is
no evidence to show that they exert an effect on basal neuro-
genesis, suggesting a special role of VGCCs in disease-related
neurogenesis [38]. Ca®* transients are rarely found in the
majority of NSCs, whereas small VGCC currents (Ca* tran-
sients) can be detected using a higher depolarization level
induced by high K+ concentration (100 mM) in adult NPCs
[37]. Furthermore, no reports have detected a significant
VGCC inward current in NPCs using physiological record-
ing methods [27]. However, considering that large outward
K" currents may mask small Ca** currents, conditions
should be changed to detect such small currents. Previous
studies of changes in the concentration of intracellular Ca*"
caused by activation of Ca®** channels in NSCs are limited
despite the importance of Ca®" in migration, proliferation,
and differentiation. One can question the functional role of
masked small VGCC currents and the mechanism of mem-
brane depolarization that activates VGCCs. In the future, it
is important to determine the clear mechanism by which
intracellular Ca®* concentrations can effect cellular activities,
particularly those that affect NSC function. In addition to
VGCCs, NSCs also express another type of channel at the
transcript level. The canonical transient receptor potential
channel 1 (TRPC1) channel, a voltage-gated Ca** channel
[37], plays a key role in Ca®" influx and proliferation of NSCs
[39]. The above findings may suggest that Ca** may be the
key factor in studying the mechanisms of NSC functional
activities. In addition, even the outcomes among studies
may differ, and interfering factors such as animal species, tis-
sue origin, tissue parts, immediately extracted NSCs versus
cultured NSCs, and single-cell recordings versus brain slice
recordings should be noted. In general, it is widely accepted
that undifferentiated NSCs exhibit a high RMP, a low Rin,
and inward-rectifying potassium currents without inward
Na™ currents.

3. The Fundamental Mechanism of
Electromagnetic Fields

Noninvasive transcranial magnetic stimulation (rTMS) pro-
duces an electromagnetic field that can easily penetrate the
skin and skull to influence the brain with little decay [40].
Electromagnetic fields act on the brain and induce currents
based on the Faraday electromagnetic effect. Repeated elec-
tromagnetic fields can also affect the refractory period and
influence connective horizontal neurons to modulate the
balance between excitation and inhibition. In addition, elec-
tromagnetic fields induce electric currents whose function
in the brain to change the excitability of cells depends on
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the intensity and frequency of the stimulation. It is currently
accepted that low-frequency rTMS (defined as <1 Hz) dimin-
ishes the excitability of neuronal cells, whereas high-frequency
rTMS (defined as >5Hz) enhances neuronal excitability,
resulting in the modulation of brain activity [41, 42]. Solid evi-
dences from clinical tests such as positron emission tomogra-
phy (PET) [43] and functional magnetic resonance imaging
(fMRI) [41] also support this fact. Different frequencies of
stimulation may exert different effects on brain metabolism;
high frequency may increase the metabolism level, while low
frequency may decrease the metabolism level and cerebral
flow. Furthermore, electromagnetic fields can regulate neuro-
transmitters both at the transcript level and expression level,
which may provide an alternative route to help elucidate
potential mechanisms. In studying the activities of cells
involved in signal transduction, we should consider physical
mechanisms combined with transduction, and ion channels
may be the fundamental factors that are initially modulated.

4. Effects of Electromagnetic Fields on Neural
Stem Cells

A general survey of the present study shows that a series of
different parameters, including intensity, frequency, orienta-
tion, and distance, and models, have been extensively applied
and studied. Many of these studies are specific to the model;
therefore, rTMS and NSC studies are complicated and diffi-
cult to classify. Fortunately, the number of studies in the field
is small, the details of which are reported above.

Francis et al. found that the exposure of adult mice
to ELFEFs in vivo produces a significant enhancement
in the number of newborn neurons in the GCL of the
DG [44-46]. The vast majority of those that survive dif-
ferentiate into immature neurons and then mature gran-
ule cells, which migrate into the GCL. The expression of
NeuN (commonly considered a marker of differentiated
neurons) was investigated 4 weeks after protocol. Com-
pared with estimates based on DCX labeling right after
exposure, the total number of newly generated neurons was
markedly reduced. In exposed and control mice, less than
half (45% and 48%, resp.) of the newly generated immature
neurons (DCX+) had become mature NeuN-expressing cells.
These observations are consistent with previous reports
showing that later-born granule cells localize predominantly
in the inner core of the GCL [47].

The BrdU and nestin-corporation method shows us
that EMFs can also increase the number of BrdU and
nestin-positive cells within the area between the SVZ and
lesion at 7 and 14 days after lesioning, indicating that
EMF exerts a positive effect on the proliferation and
migration of NSCs [48]. Cuccurazzu et al. [49] showed
that extremely low-frequency and low-intensity EMF stim-
ulation promotes adult hippocampal neurogenesis. In
addition, Arias-Carrion et al. [50] showed that transcranial
magnetic field stimulation promoted neurogenesis by the
SVZ cells in nigrostriatal lesions.

Abbasnia et al. [16] found that with both low (1 Hz) and
high (30Hz) frequency rTMS, there is a marked rise in the
proliferation of NSCs in the adult murine intact brain 2

weeks after application. An increase in the frequency of
neurosphere formation and the size of the neurosphere
was also observed in the rTMS-treated animals throughout
the experiment. Furthermore, differentiation of the
induced neurospheres showed that both NSCs treated with
either the one-week or two-week rTMS protocol were
more neurogenic than those of the sham-treated group.
Moreover, in vitro, both 1Hz and 30 Hz rTMS treatments
applied for one week promoted NSC proliferation and
neuronal differentiation. Interestingly, their findings also
showed that there is no difference between low-frequency
rTMS and high-frequency rTMS in terms of promoting
NSC proliferation and increasing their neurogenesis. How-
ever, a marked increase in the quantity and size of neuro-
spheres was observed for one week following both low- and
high-frequency rTMS, indicating that only the discrepancy
in neurosphere size (diameter) with low-frequency rTMS
reached statistical significance. This implies that even one
week of low-frequency rTMS stimulation results in a subtle
increase in NSC proliferation. To understand these findings,
the authors prolonged the application time (2 weeks) of the
low- and high-frequency rTMS application. Given that low-
frequency rTMS and high-frequency rTMS are similarly
effective, they concluded that compared to high-frequency
r'TMS, low-frequency rTMS may be a safer and more tolera-
ble therapeutic option with fewer risks [16]. In addition,
intermittent theta burst stimulation (iTBS), which is a newly
developed rTMS therapeutic protocol, was studied by Luo
et al. [51], who compared it to the conventional 20Hz
high-frequency rTMS in an ischemic model. Their results
showed iTBS significantly enhanced NSC migration and dif-
ferentiation in the peri-infarct striatum, indicating that dif-
ferences among different parameters may exist, and further
studies are needed to clarify the effects of rTMS on NSCs.
However, experiments investigating only one parameter
while controlling for all other parameters have drawn some
useful conclusions. Studies focusing on the effects of high-
intensity pulsed electromagnetic stimulation (HIPEMS) on
the proliferation and differentiation of neonatal rat NSCs
in vitro were carried out by Meng et al. [52]. NSCs isolated
from neonatal rats were exposed to HIPEMF (0.1 Hz, 0.5-
10 Tesla (T), 5 stimuli). A control group was correspondingly
included. Given that a high number of stimulations (>30)
might exert a suppressive effect on the growth of NSCs, Meng
set the stimulus number to a low value—5 times per experi-
ment. After a series of protocols were performed, they found
that with 5 0.1 Hz frequency stimulations, rat NSCs showed
poor in vitro growth in the HIPEMF 6.0-10.0 T peak inten-
sity group, whereas a significant enhancement in the prolifer-
ation of rat NSCs was observed in the 0.5-4.0T peak
intensity, HIPEMF-stimulated group. The results showed
that NSC proliferation in the 3.0 T and 4.0 T HIPEMS groups
were remarkably higher than that of the other groups after 24
to 168h of stimulation. Therefore, no linear relationship
exists between the groups in terms of the proliferation of
NSCs; the 6.0T, 8.0T, and 10.0T groups were lower than
the control group, indicating that high-intensity stimulation
restricts the growth of NSCs. Flow cytometry was applied
to detected the rate of neuron-specific enolase-positive



neurons, and the results showed there were no differences
between the HPEMS groups and the control group. There-
fore, we can conclude that HIPEMF promotes the prolifera-
tion of rat NSCs in vitro under a certain range of intensities
and fixed parameters. Furthermore, there is a window
effect, with 4.0 as the critical value, suggesting a linear
strength-effect relationship within the peak intensity range
of 0.5-4.0T in promoting the proliferation of NSCs.

There are few related studies of the effects of r*TMS on
NSCs, few of which have investigated the effects of prolifera-
tion and differentiation in vivo [53-55]. Ueyama et al. [53]
employed a BrdU-labeling method to investigate the effect
of high-frequency (25 Hz) rTMS (1000 pulses/day) on neuro-
genesis after 14 days of application. The results showed
increased cell proliferation in the dentate gyrus of the hippo-
campus, with most cells expressing the neuronal marker. A
similar study was carried out by Feng et al. [54] in a chronic
rodent model of depression. The author applied high-
frequency (15Hz) rTMS (1000 pulses/day) for a period of
approximately 21 days and found an incremental increase
in hippocampus cell proliferation, indicating increased neu-
rogenesis. In a rat model of focal cerebral ischemia, 7 days
after the application of high-frequency (10Hz) rTMS (300
pulses/day), Guo et al. [55] observed a significant increase
in the proliferation of NSCs in the SVZ of the lateral wall of
lateral ventricle.

Although several studies of the effect of TMS(MF) on
NSCs have been performed, there is no systematic analysis
of MFs and NSCs due to the complexity of NSCs or to the
large scale of the MF parameter. Nevertheless, according to
the present study, we can conclude that rTMS(MF) is able
to promote proliferation, differentiation, migration and
inhibit apoptosis of NSCs in a conventional way. We also
show that different strengths and different numbers of
stimuli can induce different effects of HIPEMF on NSCs,
indicating that there exist several potential routes for fur-
ther exploration.

5. Potential Mechanisms of Electromagnetic
Field Regulation on NSCs

Possible mechanisms behind the effects of rTMS NP/SCs
have not yet been very well characterized. A thorough under-
standing of the underlying mechanism may help to optimize
the stimulation protocol, characterize how EMF exerts its
effect in animal models at the molecular level, and increase
the translation of results to humans, thereby increasing their
application in the clinic and proving an effective tool for
clinicians.

5.1. High-Frequency rTMS Enhances the Expression of BDNF.
Several studies have reported that BDNF is a key factor for
increased hippocampal cell proliferation and neuronal differ-
entiation after the application of rTMS [54]. In addition,
reports show that in several brain areas of rats, including
the hippocampal CAl and CA3 subfields, high-frequency
rTMS (20Hz) stimulates the expression of BDNF [56]. In
addition to the increase in BDNF expression, the expression
of pERK1/2 was also increased [57], indicating rTMS might
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activate the BDNF/ERK signaling pathway to upregulate cell
proliferation in the hippocampus.

5.2. The miRNA-106b-25 Cluster in a Model of MCAO
Stimulated by High-Frequency rTMS. A number of miRNAs
play a role in the determination of NSC fate, including NSC
differentiation and proliferation [58-60]. Given the signifi-
cant effects that rTMS exerts on gene expression, it is possible
that rTMS also has the potential to modulate miRNAs. Guo
et al. found that 10 Hz rTMS stimulation in a rat model of
cerebral ischemia resulted in a remarkable enhancement of
miR-25. Brett et al. demonstrated that the miRNA-106b-25
cluster could also promote the proliferation of adult NSCs
[61, 62]. However, there was a significant decrease in its cor-
responding factor-target gene p57 [63, 64]. As we previously
illustrated, p57, which can be suppressed by mir-25, is a Cdk
inhibitor (CKI) that binds to Cdks to modulate transitions
between cell cycle phases. Proteins of the Cip/Kip family
inhibit the transition from G1 to S, thereby regulating the cell
cycle; therefore, they proposed that rTMS might increase the
expression of miR-25 in order to repress its target gene p57,
thereby, as mentioned above, promoting adult NSC prolifer-
ation and inhibiting cell-cycle arrest. Moreover, the
researchers also found that when miR-25 is inhibited, the
proliferation of NSCs located in SVZ was also blocked. In
summary, rTMS mainly activates the miR-25/p57 signaling
pathway, which is responsible for the enhancement of adult
NSC proliferation after focal cerebral ischemia. However,
Liu et al. [65] performed a corresponding experiment for
miR-106b and demonstrated that in rats with focal cerebral
ischemia, the miR-106b-25 cluster increased NSC prolifera-
tion in vitro after high-frequency rTMS, the effects of which
were dose-dependent [6]. They also showed that the miR-
106b/p21/Cdk/cyclin pathway plays as an important role in
this process. Interestingly, they also found that the trend for
miR-25 after rTMS in vitro is completely different compared
with those for miR-106b and miR-93. As such, the results of
Liu dramatically disagree with Guo’s. Taken together, miR-
25 may have a more elaborate and complex role in the prolif-
eration of NSCs after rTMS, despite the discrepancy between
the two experiments. However, further studies are required
to determine how miR-25 is affected after rTMS in NSCs.

5.3. Epigenetics May Be the Central Mechanism of ELFMF.
More and more proof suggests that epigenetic mecha-
nisms, particularly chromatin modifications, may act as
critical modulators of differentiation and proliferation in
NSCs [66, 67]. Leone et al. [68] demonstrated a marked
increase in the expression of the proproliferative gene
Hes-1 as well as the neuronal determination genes Neu-
roD1 and Neurogeninl. Several studies have illustrated
that Hesl is a repressive bHLH transcriptional factor that
prolongs the stemness of NSCs by repressing proneural
gene expression [69]. In contrast, inactivation of Hesl
weakens the repression of proneural genes and corre-
spondingly upregulates the expression of proneural genes
(as Mashl, Neurogeninl, and NeuroD1), resulting in
acceleration of neuronal differentiation [70-72]. Further-
more, in vitro studies have also demonstrated that Hesl
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is a switch for NSC proliferation and neuronal differentia-
tion. These results are consistent with the results of previ-
ous studies. Interestingly, Hesl can also repress its own
expression by binding to its promoter, leading to the dis-
appearance of Hesl mRNA and protein. This negative
feedback mechanism may mediate the switch between
differentiation and proliferation. However, before the initi-
ation of these events, there is an initial increase in the
acetylation of H3K9 and binding of the phosphorylated
transcription factor cAMP response element-binding pro-
tein (CREB) on the regulatory sequence of these genes.
In addition, electromagnetic field-dependent epigenetic
modifications can be inhibited by the Cavl channel
blocker nifedipine, which also involved increased occu-
pancy of CREB-binding protein (CBP) to the same locus.
Leone et al. also found that NSCs isolated from the hippo-
campus in vitro and exposed to ELFEFs showed enhanced
proliferation and neuronal fate specification through
changes in pCREB levels at specific bHLH neuronal gene
promoters and Cavl channel-dependent modulation of
H3K9 acetylation. CBP, a histone acetyltransferase that is
recruited by pCREB, is therefore involved in the epigenetic
changes. Furthermore, similar results were observed in
in vivo studies. Piacentini et al. demonstrated that ELFEF
applied to cortical NSCs could enhance the quantity and
function of voltage-gated Ca®" channels, resulting in an
increase in the concentration of intracellular Ca**, and
Ca’"-mediated signaling generated by Cavl channels plays
an important role in several fundamental cellular functions
including the proliferation and differentiation of NSCs
[73-76]. The potential mechanisms by which Ca®" signal-
ing regulates the transcription of numerous genes include
bHLH transcriptional factors and the activation of CREB
[77-80]. CREB, as a Ca“-dependent transcription factor,
modulates the initiation of transcriptional programs,
thereby exerting an important influence on adult neuro-
genesis [81, 82]. Furthermore, exposure to ELFEFs also
leads to the accumulation of Cavl-dependent CREB phos-
phorylation at Ser133 in differentiating NSCs. The signifi-
cance of the phosphorylation of CREB includes effectively
promoting the expression of neuronal genes (NeuroDl
and Neurogeninl) and recruiting the histone acetyltrans-
ferase CBP, which can be prevented using the Cavl chan-
nel blocker, nifedipine.

To prove this function of histone acetylation and to
illustrate how CREB acts as a recruiter of histone acetyl-
transferases, Leone et al. [68] exposed differentiating NSCs
to ELFEF and found increased H3K9 acetylation and
pCREB binding to the promoters of proneuronal genes;
these events could be significantly inhibited by nifedipine,
thereby significantly enhancing the mRNA expression of
Cav-1-dependent proneuronal genes. H3K9 is an impor-
tant type of histone acetylation that loosens the compact
structure of chromatin, thereby promoting the binding of
regulatory sequences and increasing transcription. CBP
cooperates with CREB in several molecular pathways
[83], particularly those that regulate embryonic neural dif-
ferentiation in the central nervous system [84]. Chatterjee
et al. [85] recently showed that a CBP activator could

enhance neurogenesis in adult mice. Therefore, epigenetic
chromatin modifications at specific neuronal gene regula-
tory sequences may mediate the effect of ELFEFs on adult
hippocampal neurogenesis in vivo.

5.4. Neurotransmitter Distribution Could Also Be Involved.
Alternatively, another contributing factor modulating the
proliferation of NSCs in the SVZ could be the variety of neu-
rotransmitters released by axon terminals innervating that
region [86]. To our knowledge, several studies have found
that nerve endings are intensively distributed in the SVZ,
originating either from the local neural circuitry such as
GABAergic neurons of the adjacent striatum [87-89] or from
distant brain regions such as dopaminergic neurons of the
substantia nigra and ventral tegmental area [90, 91], and
serotonergic neurons of the raphe nuclei [92]. Importantly,
it is well known that GABA is an inhibitory neurotransmitter
but it could also preserve the balance in proliferation and reg-
ulate the biological states of NSCs in the SVZ [88]. Moreover,
dopamine [57, 93] and serotonin [92] have been shown to
have a positive influence on NSC proliferation in the SVZ.
Therefore, several neurotransmitter systems could be acti-
vated by rTMS to modulate the niche of NSCs in the SVZ
(or other region with NSCs) to cause an increase in cell pro-
liferation after rTMS treatment. In terms of the previous
in vitro studies mentioned above, showing that both low-
and high-frequency rTMS increase cell proliferation and
neuronal differentiation, these findings suggest that electro-
magnetic fields in the human body itself could be a potential
mechanism by which the body regulates cell proliferation
and differentiation [94]. In support of this perspective and
to further illustrate the mechanisms, findings at the molecu-
lar and cellular level are discussed.

5.5. Ca®* Ion Channels Are Proposed as a Link between These
Mechanisms. However, based on the present studies and the
electrophysiology features of NSCs, some conclusions can
be drawn: Ca’* and CREB might be the hinge of effects
because of a lack of excitability of NSCs. According to the
Faraday effects, a possible mechanism could be that MF facil-
itates the intracellular and extracellular exchange of ions
through long-term opened ion channels and upregulates
the expression of voltage-gated Ca** channels (VGCCs) or
TRPC1 channels could result in a current and potential dif-
ference of NSCs due to Ca** that floods from the extracellular
matrix or endoplasmic reticulum through voltage-dependent
channels or the force of MF itself. On one hand, intracellular
Ca®* stimulates phosphorylation of the transcription factor
CREB, activating the CREB signaling pathway, and pCREB
recruits more CBP to initiate the transcriptional machinery,
including histone acetyltransferases. At the same time,
histone modifications secondary to electromagnetic field-
activated signals, particularly calcium, lead to chromatin
unravelling, thereby promoting the binding of pCREB to
the promoter region. On the other hand, pCREB is able to
bind to the promoter of a series of miRNA to modulate their
expression. In addition, miRNA as well as epigenetic mecha-
nisms could affect the expression of BDNF, which plays a
critical role in the activities of NSCs.
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FIGURE 2: Potential mechanisms of electromagnetic field regulation on neural stem cells. Ca** and CREB might be the hinge of effects, because
of a lack of excitability of NSCs, and according to the Faraday effects, a possible mechanism could be that the MFs facilitate the exchange of
intracellular and extracellular ions through these long-term opened ion channels and upregulate the expression of voltage-gated Ca®"
channels (VGCCs) or TRPCI result in a current and potential difference of NSCs, Ca®* flood into from extracellular matrix or
endoplasmic reticulum through the voltage-dependent channel or the force of MF itself; on the one hand, intracellular Ca** stimulates
phosphorylation of transcription factor CREB activating the CREB signaling pathway, pCREB recruits more CBP, and p300 initiates the
transcriptional machinery, including histone acetyltransferase. Alternatively, calcium or other ELFEF-activated signals could induce
histone modifications and chromatin unravelling, leading to the pCREB binding and the start of transcription. On the other hand, the
pCREB is able to bind to the promoter of a series of miRNAs to modulate their expression. In addition, CREB itself as well as the
epigenetics mechanisms could affect the expression of BDNF which plays a critical role in the activities of NSCs.

Overall, these mechanisms discussed above have the
potential to mediate rTMS effects on NSCs (Figure 2). How-
ever, there might be some enigmatic affiliation among them,
suggesting that further investigations should explore the
underlying interactions among these mechanisms in order
to fully understand the rTMS effects on NSCs, thereby eluci-
dating the additional pathways involved.

6. Clinical Applications

6.1. Overview of the Current Applications. The growing inter-
est in noninvasive brain stimulation generated by TMS has
led to its widespread application in various neurological
and psychiatric disorders and to rehabilitation applications
for better diagnostic and therapeutic purposes. rTMS has

been used for diagnostics and treatments of refractory brain
diseases, including depression, Parkinson’s disease, multiple
sclerosis, dementia, stroke, auditory hallucination, neural tin-
nitus, anxiety, sleep disorder, obsessive-compulsive disorder,
epilepsy, schizophrenia, PSTD, substance addiction, and so
forth. In particular, rTMS is a treatment used worldwide,
with definite therapeutic effects for depression patients resis-
tant to antidepressant medications, and it was authorized for
use in treatment-resistant depression by the US Food and
Drug Administration (FDA) in 2008. In addition, Alzhei-
mer’s disease (AD) is a widespread degenerative disease
whose early diagnosis and prevention is critically important.
The diagnosis of early AD has been achieved using TMS
coupled with peripheral magnetic stimulation [22]. Addi-
tionally, the effective treatment of the cognitive problems
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and language deficits caused by AD has been realized using
low- and high-frequency repetitive magnetic stimulation
(MS) [9, 12]. Currently, more and more researchers are
actively studying rTMS in the clinic with the hope of using
it as a promising treatment for several psychiatric and neuro-
logical disorders [18, 23].

6.2. Opportunities and Challenges of EMF-Based NSC
Therapy. As discussed above, EMF is widely used in different
types of diseases due to the diverse effects it exerts on the
human body. The interaction between EMF and NSCs were
the focus of this article. EMF’s positive effects on the natural
properties of NSCs, including the ability to self-renew and
multidifferentiate, suggests that stem cell therapy is a power-
ful method to treat refractory diseases. To some degree, it
may be the ultimate weapon to fight these diseases. There-
fore, we propose that EMF-based NSCs are the future of stem
cell therapy and should be the focus of research on the devel-
opment of biological science technology. However, their use
could face barriers such as ethical considerations, the isola-
tion of the stem cells, and the safety or stability of their appli-
cation. In contrast, the application of EMF, as a noninvasive
technique, could easily and remarkably influence NSCs, par-
ticularly endogenous NSCs, thereby providing a new way to
solve the current issues associated with the use of stem cells
as a therapy for neurological diseases. Opportunities come
with challenges; for example, (1) a broad range of parameters
requires additional clinical tests and animal experiments. (2)
The safety of EMF-based NSC therapy is unclear, and there is
no doubt that high-intensity EMF can cause damage to cells
and may induce the mutation of the cells. (3) The relation-
ship between the biological parameters and the physical
parameters should be elaborated in the future.

7. Limitations

r'TMS has a definite positive effect on the brain and has been
widely exploited in the clinic. However, rTMS is character-
ized by certain limitations that restrict the use of the tech-
nique and its applications. (1) Lack of focus: it is difficult to
stimulate precise regions. (2) As an interdisciplinary field
requiring extensive knowledge of physiology, its mechanisms
are complicated and remain elusive. We lack the requisite
understanding of how rTMS regulates biological processes.
Therefore, in the future, researchers from different fields
are encouraged to cooperate with one another and to com-
bine their studies for a better understanding of the underly-
ing mechanisms. (3) There is essentially little nonhuman
experimental data demonstrating how TMS works at the
cellular and molecular levels (Table 1) [2]. Thus, a better
understanding of rTMS-induced neural plasticity is needed
to optimize treatment protocols and to develop new diagnos-
tic and therapeutic strategies using rTMS [3]. Thus, there is
an enormous parameter space to explore by conducting
appropriate experiments and clinical practices, carefully
recording the data, which will provide novel insight into the
dose, orientation, frequency, intensity, period, and so
forth, offering numerous diverse possible applications. (4)
Because of the high voltage and strong currents, the safety
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of TMS needs further discussion. It is generally recognized
that single-pulsed TMS is safe, while high-frequency or
high-intensity TMS may cause unexpected side effects,
which means that unified clinical guidelines and more
tests are required.

8. Perspective and Conclusion

Despite its limitations, TMS is a promising therapeutic tool
for many refractory neural diseases. It is noninvasive and
has a clear positive influence on different parts of the brain,
especially on NSCs. Nevertheless, NSCs are promising for
traumatic, degenerative, and psychiatric diseases. All these
findings contributed to TMS being deemed as a brain science
technology of the 21st century. In the near future, we should
perfect the technique of TMS, and more in-depth studies
should be performed. Clinical applications must be expanded
to collect more data regarding the modality.

All the assumptions made in this review are based on
previously reported studies, although there are many dis-
crepancies among reported results. However, we must
mention that different research circumstances, for instance,
will help guide us toward a more detailed understanding
of rTMS. We believe that the efforts of excellent
researchers will accelerate the development of TMS appli-
cations, making it a powerful tool to treat people who are
surviving with painful diseases.
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