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Objective. Chinese herbs play a positive role in the management of hepatocellular carcinoma (HCC) in China. However, it is not
clear which of Chinese herbs are critical for the treatment of HCC. Besides, mechanisms of CCHs in the treatment of HCC remain
unclear. Hence, our goal is to identify the core Chinese herbs (CCHs) for treating HCC and explore their antitumor mechanism.
Methods. Firstly, clinical traditional Chinese medicine (TCM) prescriptions for HCC were collected from Chinese National
Knowledge Infrastructure (CNKI) database, and then, data mining software was used to identify CCHs. After that, bioactive
compounds and corresponding target genes of CCHs were obtained using three TCM databases, and target genes of HCC were
acquired from MalaCards and OMIM. Subsequently, common target genes of CCHs and HCC were screened. Moreover, bi-
ological functions and pathways were analyzed, and Cytoscape plugin cytoHubba was used to identify hub genes. Finally,
prognostic values of hub genes were verified by survival analysis, and the molecular docking approach was utilized to validate the
interactions between targets and bioactive compounds of CCHs. Results. Eight CCHs were determined from 630 prescriptions,
and 100 bioactive compounds (e.g., quercetin and luteolin) and 126 common target genes were screened. Furthermore, common
target genes of CCHs andHCCweremainly enriched in cancer-associated pathways, and six hub genes with statistical significance
in survival analysis were selected as key target genes for molecular docking. Additionally, molecular docking showed that the
bioactive compounds docked well with the protein receptors of key target genes. Conclusion. By combining data mining, network
pharmacology, molecular docking, and survival analysis methods, we found that CCHs may play a therapeutic role in HCC
through regulating the target genes and pathways related to cancer occurrence and development, angiogenesis, metastasis,
and prognosis.

1. Introduction

As one of the most common cancers, hepatocellular carci-
noma (HCC) is characterized by high morbidity and
mortality rates. HCC is predicted to be the sixth most
frequent cancer and the fourth most common cause of
cancer death worldwide in 2018 [1]. In addition, advanced-
stage HCC has a 5-year survival rate of only 5–15% [2]. -e
chief etiologies for HCC include chronic infection with
hepatitis B virus (HBV) or hepatitis C virus (HCV), alcoholic
liver disease, and nonalcoholic fatty liver disease [3]. Cur-
rently, the therapeutic options for patients with HCC are

poor and mainly include surgery, liver transplantation,
chemoembolization, and molecularly targeted therapy [4, 5].
Moreover, most patients with late-stage HCC have lost the
opportunity of surgical resection, and not all patients with
advanced HCC are suitable for chemotherapy or targeted
therapy.-us, it is necessary to develop novel approaches for
HCC control.

More and more researchers are paying significant in-
terest in traditional Chinese medicine (TCM) which has
been used to treat cancer in China for a long time [6].
Furthermore, TCM is effective in improving symptoms,
reducing side effects of chemotherapy, suppressing cancer
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cell growth, and regulating key intracellular signaling
pathways [7]. As an important part of TCM, Chinese herbs
play a positive role in the management of HCC in China [8].
Previous literature indicated that several TCM prescriptions
consisting of Chinese herbs had anti-HCC effects in both
basic and clinical research [9, 10]. Moreover, evidence
demonstrated that TCM combined with chemotherapy
showed significant efficacy and safety in improvement of life
quality and reduction of chemotherapy side effects [11].
Nevertheless, TCM prescriptions for treating HCC are often
based on the experience of TCM doctors, and it is unclear
which core Chinese herbs (CCHs) are effective treatments
for HCC. Additionally, the molecular mechanisms under-
lying the anti-HCC activity of CCHs are not completely
clear.

Currently, data mining analysis of TCM prescriptions
has become a research focus in the TCMfield [12], which can
be used to identify CCHs from a large number of clinical
prescriptions. In the past, the complicated interactions be-
tween “multi-components” and “multi-targets” of Chinese
herbs hindered the mechanism study of these herbs. At
present, network pharmacology provides an effective solu-
tion to overcome these obstacles and can reveal the syn-
ergistic effects of complex Chinese herbs on human systems
from a holistic view [13]. In the present study, data mining
software was applied to determine CCHs for the treatment of
HCC, and mechanisms of CCHs on HCC were analyzed by
network pharmacology. Besides, survival analysis and mo-
lecular docking methods were used to validate the results of
network pharmacology analysis.

2. Materials and Methods

2.1. Data Mining of TCM Prescriptions. Clinical TCM pre-
scriptions intended solely for HCC were collected from
studies in the Chinese National Knowledge Infrastructure
(CNKI) database. -e search was conducted using the fol-
lowing search terms: “(Chinese medicine OR prescription
OR decoction) AND (hepatocellular carcinoma OR liver
cancer) AND clinical” (date: 1979 to 3 March 2020). -e
inclusion criteria for the studies included the following: (1)
the first diagnosis of cancer patients being HCC; (2) clinical
research on oral TCM prescriptions or oral TCM pre-
scriptions combined with Western medicine in the treat-
ment of HCC; (3) experience of TCM experts. Besides,
exclusion criteria were as follows: (1) repeated literature and
animal experiments; (2) TCM prescriptions in the literature
being primarily for treating acute symptoms (e.g., cold and
cough); (3) external prescriptions or Chinese patent med-
icine. Subsequently, eligible studies were screened, and TCM
prescriptions were extracted from the included studies.
Furthermore, Traditional Chinese Medicine Inheritance
Support System (TCMISS, from the Institute of Chinese
Materia Medica, China Academy of Chinese Medical Sci-
ences, version 2.5) was employed to identify the CCHs from
all prescriptions. TCMISS software has been widely used to
analyze TCM prescriptions, and it has the function of text
mining, association rules, and complex system entropy
clustering methods [12]. In the present study, association

rules in TCMISS were utilized to determine CCHs under the
condition of support degree ≥126 (20%).

2.2. Screening Bioactive Compounds and Target Genes.
Bioactive compounds and corresponding targets of CCHs
were obtained using Traditional Chinese Medicine Systems
Pharmacology Database and Analysis Platform (TCMSP,
http://tcmspw.com/tcmsp.php) [14], Integrative Pharma-
cology-Based Research Platform of TCM (TCMIP, http://
www.tcmip.cn/) [15], and Bioinformatics Analysis Tool for
Molecular Mechanism of TCM (BATMAN-TCM, http://
bionet.ncpsb.org/batman-tcm/) [16]. In this study, all
TCM prescriptions composed of Chinese herbs were given
orally, and the bioactive compounds were selected under the
conditions of drug-likeness (DL) ≥0.18 (mean value for all
molecules within the DrugBank database) and oral bio-
availability (OB) ≥30% [17]. Additionally, all compounds are
numbered using Mol ID from TCMSP, and all target names
were converted to official gene names using the UniProt
database (https://www.uniprot.org/). Moreover, potential
therapeutic target genes associated with HCC were obtained
from the MalaCards (https://www.malacards.org/) [18] and
OMIM databases (https://omim.org/) [19] using “hepato-
cellular carcinoma” as the keyword, and known target genes
for HCC were screened after removing duplicates.

2.3. Constructing the Network of CCHs and Targets. Venn
diagrams were used to determine common target genes of
CCHs and HCC by “VennDiagram” package in R 3.6.0
(https://www.r-project.org/). -en, the interaction network
of CCHs bioactive compounds and common target genes
was built using Cytoscape 3.7.1 (https://cytoscape.org/), and
the relationships between bioactive compounds of CCHs
and common target genes were displayed in the interaction
network.

2.4. Signaling Pathway and Gene Ontology Analyses. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomics (KEGG) pathway analyses for common target
genes were done using the Database for Annotation, Vi-
sualization, and Integrated Discovery (DAVID, https://
david.ncifcrf.gov/) [20], and false discovery rate (FDR)
<0.05 was accepted as significant. In addition, GO analysis
was performed according to three categories, namely, bio-
logical process (BP), cellular component (CC), and mo-
lecular function (MF), and the results were shown as a bar
plot using the “ggplot2” package in R 3.6.0.

2.5. Protein-Protein Interaction Analysis and Screening for
Hub Genes. Protein-protein interaction (PPI) network
analysis of the common target genes was completed using
Search Tool for the Retrieval of Interacting Genes (STRING)
database (https://string-db.org/) [21] with the highest con-
fidence (score >0.9).-en, hub genes were screened from the
PPI network by degree, maximum neighborhood compo-
nent (MNC), and maximal clique centrality (MCC) algo-
rithms in the Cytoscape 3.7.1 plugin, cytoHubba [22, 23].
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-e overlap genes, predicted by all three algorithms, were
selected as hub genes.

2.6. Evaluation of Prognostic Values of Hub Genes. -e
prognostic values of hub genes were assessed by survival
analysis using the Kaplan–Meier plotter (http://kmplot.com/
analysis/) [24]. -e Kaplan–Meier plotter includes data on
HCC survival in the Cancer Genome Atlas (TCGA). In
survival analysis, overall survival (OS) was analyzed by the
Kaplan–Meier (KM) method (log-rank test), and a p value
less than 0.05 was considered to be a significant difference. In
this study, the hub genes that displayed statistically signif-
icant differences were considered to be the key target genes.

2.7. Molecular Docking of Key Target Proteins and Bioactive
Compounds. In the present study, molecular docking was
used to verify the interactions between protein receptors of
key target genes and bioactive compounds of CCHs. -e
corresponding protein receptors of key target genes were
acquired using Protein Data Bank (PDB) database (https://
www.rcsb.org/) [25], and we included protein receptors
based on the following criteria: (1) -e structure of protein
receptors was determined by X-ray diffraction approach. (2)
X-ray resolution <3 Å was preferred. (3) Protein structure
with initial ligand was also preferred. AutoDockTools
(version 1.5.6, http://autodock.scripps.edu) was utilized to
remove the original ligands (if any), excess protein chains,
and water molecules of protein receptors [26], and then
hydrogens were added to the protein receptors. Further-
more, grid boxes in AutoDockTools were used to identify the
docking coordinates. After that, bioactive compounds of
CCHs corresponding to key targets were used as ligands, and
the “mol2” files of compounds were obtained using TCMSP.
Moreover, the files of protein receptors and ligands were
converted into “PDBQT” format using AutoDockTools.
Finally, AutoDock Vina program (http://vina.scripps.edu/)
[27] was used to dock bioactive compounds into the cor-
responding protein receptors. Besides, docking results were
analyzed and visualized using PyMOL (http://www.pymol.
org/) and Discovery Studio 2016 (BIOVIA, San Diego, USA).
-e workflow of our study is displayed in Figure 1.

3. Results

3.1. Results of Data Mining. A total of 1472 studies were
identified through CNKI database search. According to the
criteria described above, 630 TCM prescriptions for the
treatment of HCC were obtained from 527 studies. In ad-
dition, the result of TCMISS analysis showed that there were
180 different Chinese herbs used in all prescriptions, and a
total of 19 combinations of Chinese herbs that were most
commonly used in the TCM prescriptions were found
(Table 1). -en, nine CCHs were identified by TCMISS,
namely, Largehead Atractylodes Rhizome (Bai Zhu), Poria
(Fu Ling), Radix Bupleuri (Chai Hu), Radix Astragali
(Huang Qi), Herba Hedyotis (Bai Hua She She Cao), Radix
Codonopsis (Dang Shen), Radix Paeoniae Alba (Bai Shao),
Radix Glycyrrhizae (Gan Cao), Herba Scutellariae Barbatae

(Ban Zhi Lian), which were shown in a network
(Figure 2(a)). According to the theory of TCM, Radix
Glycyrrhizae (Gan Cao) is often used as a harmonizing (Tiao
He) drug, so it was not included in the following analysis.
Finally, excluding Radix Glycyrrhizae (Gan Cao), eight
CCHs were selected for further analysis.

3.2. Bioactive Compounds and Targets. Bioactive compound
counts of each core Chinese herb from the three databases
are shown in Table 2. After merging the data and removing
duplicates, a total of 100 bioactive compounds were iden-
tified, and 840 target genes of eight CCHs were identified.
Additionally, 191 and 745 HCC-related target genes were
obtained from OMIM and MalaCards databases, respec-
tively. Following the removal of duplicates, a total of 918
therapeutic target genes for HCC were found.

3.3. Network of Bioactive Compounds and Common Targets.
A total of 126 common target genes of CCHs and HCC were
identified using Venn diagram (Figure 2(b)), and the in-
teraction network of CCHs bioactive compounds and
common target genes was established, including 198 nodes
(72 bioactive compounds and 126 genes) and 510 edges
(Figure 3). As shown in Figure 3, eight CCHs were divided
into 3 types: health-strengthening (Fu Zheng), heat-clearing
and detoxicating (Qingre Jiedu), and relieving liver Qi
stagnation (Shu Gan). Furthermore, the top 30 bioactive
compounds are presented in Table 3 according to the gene
count, and the results showed that quercetin, stigmasta-5,22-
dien-3-one, luteolin, wogonin, kaempferol, beta-sitosterol,
baicalein, stigmasterol, pyrethrin II, etc. connected with
most of the common target genes.

3.4. GO and KEGG Analyses Results. -e result of GO
analysis revealed that common target genes were mainly
enriched in negative regulation of apoptotic process, positive
regulation of gene expression, response to drug, positive
regulation of transcription from RNA polymerase II pro-
moter, and cellular response to hypoxia (BP); enzyme
binding, protein binding, transcription factor binding,
identical protein binding, and protein heterodimerization
activity (MF); cytosol, nucleus, cytoplasm, nucleoplasm, and
phosphatidylinositol 3-kinase complex (CC). Top 5 GO
terms of each category are shown in Figure 4. Besides, KEGG
pathway analysis demonstrated that most common target
genes were related to pathways in cancer, proteoglycans in
cancer, hepatitis B, PI3K-Akt, HIF-1 signaling pathway, etc.,
and the results of the top 20 signaling pathways are listed in
Table 4.

3.5. PPI Analysis and Hub Genes. -e PPI network with 126
nodes and 698 edges was constructed by STRING and vi-
sualized by Cytoscape v. 3.7.1 (Figure 5(a)). -en, hub genes
were identified based on MNC, degree, and MCC methods
(Figure 5(b)). -e interaction network of eight hub genes is
shown in Figure 5(c). According to the result of cytoHubba
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in Cytoscape, the eight hub genes included SRC, PIK3CA,
RHOA, PIK3R1, EGFR, VEGFA, EGF, and CTNNB1.

3.6. Results of Survival Analysis. KM survival curves showed
that high expressions of PIK3R1 and EGFR were correlated
with longer OS in patients with HCC, and high expressions
of SRC, RHOA, VEGFA, and EGF were associated with
shorter OS. Additionally, CTNNB1 and PIK3CA showed no
significant differences. -e results of survival analysis for the
hub genes are presented in Figures 6(a)–6(h). Moreover, six
hub genes with statistical significance are defined as key
target genes and selected for molecular docking.

3.7. Results of Molecular Docking. After validating the
prognostic values of key genes, protein receptors of key
target genes were chosen for molecular docking with cor-
responding six bioactive compounds of CCHs. -e affinity
binding values of molecular dockings calculated by Auto-
Dock Vina are demonstrated in Table 5. In the present study,

the binding between the receptor (protein receptor of key
target gene) and the ligand (bioactive compound) was
considered to be good if the affinity value <−5.0 kcal/mol,
and the lower the affinity value was, the higher the affinity of
the bioactive compound and the protein receptor was. As
shown in Table 5, stigmasta-5,22-dien-3-one, luteolin,
quercetin, pyrethrin II, palbinone, and baicalein had strong
binding affinities for the corresponding proteins, and mo-
lecular docking results are shown in Figures 7(a)–7(f).

4. Discussion

According to the data mining results, eight Chinese herbs,
including Largehead Atractylodes Rhizome, Poria, Radix
Bupleuri, Radix Astragali, Herba Hedyotis, Radix Codo-
nopsis, Radix Paeoniae Alba, and Herba Scutellariae Bar-
batae, were identified as the CCHs for the treatment of HCC.
Based on the TCM theory, it is believed that the pathogenesis
of HCC is due to “deficiency of healthy Qi,” “liver Qi
stagnation,” “heat-toxicity,” etc. In TCM, Largehead

TCM prescriptions from CNKI

Core Chinese herbs for HCC

Bioactive compounds and target genes 

Support degree ≥ 115 

OB ≥ 30 and DL ≥ 0.18

Common target genes of core Chinese herbs and HCC

Venn

TCMISS so�ware

BATMAN-TCM

HCC targets from MalaCards and OMIM

STRINGCytoscape DAVID

Hub genes

Screening for key target genes by survival analysis

Molecular docking verification

Cytoscape

Kaplan–Meier plotter

Discovery studio

PPI network

AutoDock Vina

TCMSP TCMIP

Bioactive ingredients-
common targets network

GO and KEGG analysis

Figure 1: Flowchart of the present study.
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Table 1: Top 19 commonly used combinations of Chinese herbs according to the association rules.

No. -e combinations of Chinese herbs Freq.
1 Largehead Atractylodes Rhizome, Poria 284
2 Radix Astragali, Largehead Atractylodes Rhizome 195
3 Radix Codonopsis, Largehead Atractylodes Rhizome 188
4 Radix Codonopsis, Poria 170
5 Largehead Atractylodes Rhizome, Radix Bupleuri 163
6 Radix Bupleuri, Poria 160
7 Radix Astragali, Poria 158
8 Radix Codonopsis, Largehead Atractylodes Rhizome, Poria 158
9 Largehead Atractylodes Rhizome, Radix Paeoniae Alba 145
10 Radix Paeoniae Alba, Radix Bupleuri 145
11 Herba Hedyotis, Largehead Atractylodes Rhizome 142
12 Largehead Atractylodes Rhizome, Radix Glycyrrhizae 141
13 Herba Hedyotis, Poria 140
14 Radix Astragali, Largehead Atractylodes Rhizome, Poria 139
15 Radix Glycyrrhizae, Poria 136
16 Largehead Atractylodes Rhizome, Radix Bupleuri, Poria 135
17 Herba Hedyotis, Radix Astragali 133
18 Radix Paeoniae Alba, Poria 131
19 Herba Hedyotis, Herba Scutellariae Barbatae 126

Radix Bupleuri
(Chaihu)

Poria
(Fuling)

Radix Glycyrrhizae
(Gancao)

Herba Scutellariae Barbatae
(Banzhilian)

Herba Hedyotidis
(Baihuasheshecao)

Radix Astragali
(Huangqi)

Radix Codonopsis
(Dangshen)

Radix Paeoniae Alba
(Baishao)

Largehead Atractylodes Rhizome
(Baizhu)

(a)

HCC

Core Chinese herbs

792 126 714

(b)

Figure 2:-e network of CCHs and the Venn diagram of HCC and CCHs. (a)-ere are 16 edges and nine nodes in the network. Each edge
represents a direct combination of CCHs, and each node represents a core Chinese herb. (b) Venn diagrams showing overlapping target
genes between HCC and CCHs.

Table 2: Information on bioactive compounds from three TCM databases.

CCHs TCMSP TCMIP BATMAN-TCM Total
Largehead Atractylodes Rhizome 7 3 1 7
Poria 15 7 6 18
Radix Bupleuri 17 2 10 18
Radix Astragali 20 5 9 25
Herba Hedyotis 7 — 1 7
Radix Codonopsis 21 4 12 24
Radix Paeoniae Alba 13 7 9 18
Herba Scutellariae Barbatae 29 5 5 32
CCHs: core Chinese herbs; TCMSP: Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform; TCMIP: Integrative Phar-
macology-Based Research Platform of TCM; BATMAN-TCM: Bioinformatics Analysis Tool for Molecular Mechanism of TCM.
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Atractylodes Rhizome, Poria, Radix Astragal, Radix Codo-
nopsis, and Radix Paeoniae Alba can be used for “supporting
the healthy energy”; Herba Hedyotis and Herba Scutellariae
Barbatae have the effect of “clearing heat and removing
toxicity”; Radix Bupleuri can be used for “relieving liver Qi
stagnation.”-us, data mining results were highly consistent
with the TCM theory. In addition, the bioactive com-
pounds–common targets network showed that the critical
bioactive compounds of CCHs could be quercetin, stig-
masta-5,22-dien-3-one, luteolin, wogonin, kaempferol, beta-
sitosterol, baicalein, Stigmasterol, Pyrethrin II, for-
mononetin, (+)-catechin, and palbinone according to the
gene counts (genes ≥10). Previous studies indicated that
quercetin and luteolin could inhibit the growth of HCC cells
and enhance chemotherapy efficacy [28, 29]. Also, wogonin
and kaempferol could effectively suppress the proliferation
and invasion of HCC cells by regulating EGFR signaling
pathways and PI3K/AKT/mTOR pathway, respectively
[30, 31]. Stigmasterol, beta-sitosterol, and baicalein have
been found to induce apoptosis of HCC cells by upregulating
proapoptotic gene (Bax) and downregulating antiapoptotic
gene (Bcl-2) [32–34]. Experimental research showed that
formononetin could impede the epithelial-mesenchymal
transition (EMT) and malignant progression of HCC [35].
Besides, (+)-catechin could inhibit the proliferation of HCC
cells via the caspase-dependent pathway [36]. Overall,
previous studies strongly support our findings.

-e results of GO analysis showed that common target
genes were significantly involved in cellular components and

biological processes which are related to cell apoptosis,
proliferation, differentiation, and various cellular functions.
Moreover, the molecular functions of common target genes
may be correlated with the physiological and metabolic
processes of liver. KEGG analysis revealed that most of the
common target genes were mainly enriched in cancer-
related signaling pathways. Previous literature reported
that the PI3K/Akt pathway was activated in 30–50% of
HCC and the upregulation of p-Akt was correlated with
poor survival, metastasis, and vascular invasion in HCC
patients [37, 38]. -erefore, PI3K/Akt pathway could shed
light on a novel strategy for drug development for HCC.
Furthermore, a positive correlation between HBV infection
and HCC was observed, and HBV infection can result in
the activation of protooncogenes and inactivation of tumor
suppressor genes [39, 40]. Proteoglycans are extracellular
matrix components of liver microenvironment which play
an important role in the progression of HCC and have the
potential to be the HCC therapeutic target [41]. It is also
reported that kindlin-2 is a member of the focal adhesion
protein family which promotes HCC invasion, metastasis
[42]. MicroRNA dysregulation has been found to be in-
volved in all stages of HCC, and some microRNAs, such as
miR-17-92, miR-21, and miR-221, are generally upregu-
lated in HCC [43]. In addition, HIF-1 plays a critical role in
immune escape and EMT of HCC [44]. Literature has
shown that the interaction between thyroid hormone and
its receptor plays an important role in the regulation of
development and proliferation, and metastasis of HCC
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Figure 3: A network of common target genes and CCHs bioactive compounds. In the network, blue diamonds represent the common target
genes. Pink, green, and yellow represent the compounds of health-strengthening (Fu Zheng) CCHs, heat-clearing and detoxicating (Qingre
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[45]. Research also showed that the occurrence of HBV-
related HCC activates the Ras/MAPK signaling pathway
which is correlated with a poor prognosis [46, 47]. Besides,
patients with cancer are more likely to suffer from various
infections due to low immune function, which may be
related to HTLV-I infection, Chagas disease, and Influenza
A pathways. Taken together, our results are in line with
previous studies, suggesting that CCHs may exert their
antitumor effect in HCC by regulating the occurrence,
progression, angiogenesis, and metastasis of HCC.

Based on the results of the PPI network and survival
curves, we identify six key target genes of CCHs in the
treatment of HCC, namely, SRC, RHOA, PIK3R1, EGFR,
VEGFA, and EGF. An experiment showed that HBV core
protein could promote tumorigenesis of HCC cells by
upregulating the expression of SRC protooncogene and
then activating SRC/PI3K/Akt pathway [48]. A previous
study demonstrated that RHOA (Ras homolog gene family
member A) is commonly overexpressed in HCC, and its
expression is associated with poor prognosis [49]. Addi-
tionally, evidence showed that knockdown of PIK3R1
promoted apoptosis of HCC cells and downregulated
p-PI3K and p-AKT expressions in HCC cells [50]. As a
growth factor, EGF plays a crucial role in cell proliferation
and migration by binding to its receptor EGFR, and high

expression of EGF could induce highly malignant HCC
[51]. Previous studies suggested that EGFR is overex-
pressed or mutated in HCC and may be closely related to
the formation, invasive growth, and clinical characteristics
of HCC [52, 53]. Angiogenesis is closely related to tumor
growth and invasion, and HCC is recognized as a typical
angiogenic tumor [54]. VEGFA is an inducer of angio-
genesis in HCC, and the expression of VEGFA in HCC was
significantly higher than that in normal liver tissues [55].
Overall, previous studies made our results more reliable to
some extent.

-e results of network pharmacology were also con-
firmed by molecular docking. Table 5 shows that the affinity
values of all docking results were less than −5.0 kcal/mol,
which indicated that the protein receptors of nine key target
genes were docked well with the six different compounds of
CCHs. As shown in the three-dimensional mode of Figure 7,
six active compounds were successfully docked to the active
pocket of protein receptors (SRC, PIK3R1, EGFR, RHOA,
VEGFA, EGF), and the two-dimensional diagram in Fig-
ure 7 also demonstrates the interactions between active
compounds and protein receptors. According to our find-
ings, van der Waals forces, hydrogen bonds, Alkyl, π-Alkyl,
π-Cation, π-Sigma, etc. were shown to be involved in the
interactions between receptors and compounds. For

Table 3: Data of the top 30 bioactive compounds in CCHs (gene count ≥6).

Mol ID Bioactive compounds OB DL Genes Database
MOL000098 Quercetin 46.43 0.28 58 TCMSP/BATMAN
MOL008407 Stigmasta-5,22-dien-3-one 45.40 0.76 33 TCMSP/TCMIP/BATMAN
MOL000006 Luteolin 36.16 0.25 31 TCMSP
MOL000173 Wogonin 30.68 0.23 26 TCMSP/TCMIP
MOL000422 Kaempferol 41.88 0.24 19 TCMSP/BATMAN
MOL000358 Beta-sitosterol 36.91 0.75 16 TCMSP/BATMAN
MOL002714 Baicalein 33.52 0.21 14 TCMSP
MOL000449 Stigmasterol 43.83 0.76 12 TCMSP/TCMIP/BATMAN
MOL002710 Pyrethrin II 48.36 0.35 12 TCMIP/BATMAN
MOL000392 Formononetin 69.67 0.21 10 TCMSP/BATMAN
MOL000492 (+)-Catechin 54.83 0.24 10 TCMSP/TCMIP/BATMAN
MOL001919 Palbinone 43.56 0.53 10 TCMSP/TCMIP/BATMAN
MOL000378 7-O-Methylisomucronulatol 74.69 0.30 9 TCMSP
MOL000417 Calycosin 47.75 0.24 9 TCMSP/BATMAN
MOL003896 7-Methoxy-2-methyl isoflavone 42.56 0.20 9 TCMSP
MOL004355 Spinasterol 42.98 0.76 9 TCMSP/BATMAN
MOL006554 Taraxerol 38.40 0.77 9 TCMSP/TCMIP/BATMAN
MOL008400 Glycitein 50.48 0.24 9 TCMSP/BATMAN
MOL012250 7-Hydroxy-5,8-dimethoxyflavone 43.72 0.25 9 TCMSP/TCMIP/BATMAN
MOL000300 Dehydroeburicoic acid 44.17 0.83 8 TCMIP/BATMAN
MOL000351 Rhamnazin 47.14 0.34 8 TCMSP
MOL000354 Isorhamnetin 49.60 0.31 8 TCMSP/BATMAN
MOL002588 Eburicol 42.37 0.77 8 BATMAN
MOL002910 Carthamidin 41.15 0.24 8 TCMIP/BATMAN
MOL002933 5,7,4′-Trihydroxy-8-methoxyflavone 36.56 0.27 8 TCMIP/BATMAN
MOL004644 Sainfuran 79.91 0.23 8 BATMAN
MOL008206 Moslosooflavone 44.09 0.25 7 TCMSP
MOL000275 Trametenolic acid 38.71 0.80 6 TCMSP/TCMIP
MOL000280 Dehydrotumulosic acid 31.07 0.82 6 TCMIP
MOL012266 Rivularin 37.94 0.37 6 TCMSP/TCMIP
DL: drug-likeness; OB: oral bioavailability; TCMSP: Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform; TCMIP: In-
tegrative Pharmacology-Based Research Platform of TCM; BATMAN: Bioinformatics Analysis Tool for Molecular Mechanism of TCM.
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Table 4: Results of KEGG pathways (top 20).

ID KEGG pathways Gene count FDR
hsa05200 Pathways in cancer 70 1.13E− 51
hsa05205 Proteoglycans in cancer 45 1.75E− 34
hsa05161 Hepatitis B 44 9.76E− 40
hsa04151 PI3K-Akt signaling pathway 36 7.78E− 15
hsa05166 HTLV-I infection 34 3.92E− 17
hsa05206 MicroRNAs in cancer 32 1.44E− 13
hsa04510 Focal adhesion 30 1.17E− 15
hsa05215 Prostate cancer 29 1.75E− 25
hsa05210 Colorectal cancer 26 1.69E− 25
hsa05212 Pancreatic cancer 26 7.14E− 25
hsa05222 Small cell lung cancer 26 1.79E− 21
hsa04919 -yroid hormone signaling pathway 26 6.72E− 18
hsa05203 Viral carcinogenesis 26 1.37E− 11
hsa05223 Non-small-cell lung cancer 24 1.81E− 23
hsa05220 Chronic myeloid leukemia 24 1.75E− 20
hsa04066 HIF-1 signaling pathway 24 2.71E− 17
hsa05142 Chagas disease 24 1.92E− 16
hsa05164 Influenza A 24 3.13E− 11
hsa04014 Ras signaling pathway 24 8.72E− 09
hsa05214 Glioma 23 4.03E− 20
FDR: false discovery rate.
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Figure 4: Top five significantly enriched GO terms of each category in GO analysis.
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Figure 5: PPI network and hub genes. (a) PPI network of common target genes, consisting of 126 nodes and 698 edges. (b) Top 15 genes
were calculated from the PPI network by the degree, MNC, and MCC, respectively. -en, the overlapping genes were screened by Venn
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Figure 6: Continued.
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Figure 6: Prognostic values of eight hub genes for OS in patients with HCC. KM survival curves for the hub genes. High expressions of
PIK3R1 (a) and EGFR (e) were associated with longer OS in HCC patients, and high expressions of VEGFA (b), SRC (c), EGF (f), and
RHOA (h) were correlated with shorter OS. No significant differences were observed in other genes.

Table 5: Molecular docking between the target proteins and bioactive compounds of CCHs.

Target Compound Affinity (kcal/mol)
PIK3R1 Stigmasta-5,22-dien-3-one −9.9
SRC Stigmasta-5,22-dien-3-one −9.4
EGFR Luteolin −8.8
EGFR Quercetin −8.7
SRC Pyrethrin II −8.2
RHOA Palbinone −8.2
VEGFA Quercetin −7.8
VEGFA Luteolin −7.6
VEGFA Baicalein −7.5
EGF Luteolin −6.0
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Figure 7: Continued.
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instance, Figure 7(a) indicates that two hydrogen bonds
between stigmasta-5,22-dien-3-one and amino acid residues
(ARG-358 and SER-361) of PIK3R1 protein were generated.
In addition, the van der Waals force, alkyl, and π-alkyl
interactions between stigmasta-5,22-dien-3-one and other
residues also play an important role. -e interpretation of
other molecular docking results could use this similar
method. -ese results have successfully validated the
network pharmacology data from the perspective of
molecular interactions. However, this paper lacks bio-
logical experimental confirmation. Both in vivo and in
vitro experiments are required to validate our results, and
we should take it into consideration in future work. Last
but not least, there are few reports about some bioactive
compounds (e.g., stigmasta-5,22-dien-3-one, pyrethrin II,
palbinone), and further research of these compounds is
still needed.

5. Conclusions

To sum up, based on a combination of TCM prescription
data mining, network pharmacology, KM survival analysis,
and molecular docking, we identified eight CCHs for
treating HCC and found that CCHs may play a therapeutic
role in HCC by regulating the genes and pathways associated
with cancer occurrence and development, angiogenesis,
metastasis, and prognosis.
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