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Abstract: To adapt to the tumor environment or to escape chemotherapy, cancer cells rapidly repro-
gram their metabolism. The hallmark biochemical phenotype of cancer cells is the shift in metabolic
reprogramming towards aerobic glycolysis. It was thought that this metabolic shift to glycolysis
alone was sufficient for cancer cells to meet their heightened energy and metabolic demands for
proliferation and survival. Recent studies, however, show that cancer cells rely on glutamine, lipid,
and mitochondrial metabolism for energy. Oncogenes and scavenging pathways control many of
these metabolic changes, and several metabolic and tumorigenic pathways are post-transcriptionally
regulated by microRNA (miRNAs). Genes that are directly or indirectly responsible for energy pro-
duction in cells are either negatively or positively regulated by miRNAs. Therefore, some miRNAs
play an oncogenic role by regulating the metabolic shift that occurs in cancer cells. Additionally,
miRNAs can regulate mitochondrial calcium stores and energy metabolism, thus promoting cancer
cell survival, cell growth, and metastasis. In the electron transport chain (ETC), miRNAs enhance
the activity of apoptosis-inducing factor (AIF) and cytochrome c, and these apoptosome proteins
are directed towards the ETC rather than to the apoptotic pathway. This review will highlight
how miRNAs regulate the enzymes, signaling pathways, and transcription factors of cancer cell
metabolism and mitochondrial calcium import/export pathways. The review will also focus on the
metabolic reprogramming of cancer cells to promote survival, proliferation, growth, and metastasis
with an emphasis on the therapeutic potential of miRNAs for cancer treatment.

Keywords: miRNA; cancer metabolism; TCA; glucose oxidation; pentose-phosphate pathway; fatty
acid oxidation

1. Introduction

The uncontrolled growth of a tumor increases the demand for energy and metabolites
in the cells, and both are achieved by metabolizing extracellular nutrients. The dysregulated
uptake and catabolism of metabolites that supply energetically demanding biosynthetic
fluxes is a hallmark of cancer metabolism [1], and increasing the understanding of how
cancer cells meet these metabolic demands has been a consistent focus of research over the
past several decades. Since the discovery of aerobic glycolysis in cancer cells by Warburg in
the 1920s [2,3], the field of cancer metabolism has grown exponentially and has presented
numerous therapeutic possibilities for fighting this disease. Glutamine metabolism pro-
vides the carbon and amino-nitrogen biomass that is required for protein, nucleotide, and
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lipid biosynthesis in tumor cells. In cancer cells, the uptake of exogenous lipids or lipopro-
teins and endogenous lipogenesis are upregulated to meet their demand for lipids. These
metabolic changes are controlled by oncogenic signals including the myelocytomatosis
oncogene cellular homolog (MYC), hypoxia-inducible factor 1-α (HIF-1α), protein kinase B
(AKT), and 5′ AMP-activated protein kinase (AMPK). Additionally, scavenging pathways
(e.g., autophagy) also maintain tumor cell growth by supplying metabolites to meet these
requirements. Apart from these canonical regulations, microRNAs have recently emerged
as key regulators of cancer metabolism.

MicroRNAs are small noncoding RNAs with an average length of 22 nucleotides.
they are involved in the regulation of biological processes as posttranscriptional regula-
tors of gene expression, RNA silencing, etc. [4]. To date, approximately 2200 conserved
miRNAs have been identified and are reported to interact with mRNAs [5,6], implying the
significance of miRNAs in essentially all developmental processes including cell growth,
differentiation, metabolism, viral infection, and tumorigenesis [7]. Although they are highly
significant for the normal functioning of the cells, miRNAs have also been investigated
in depth in numerous pathological settings, with cancer certainly leading the way. These
developments in miRNA profiling and sequencing techniques have overcome one of the
most provocative challenges and led to the discovery that miRNA expression is dysregu-
lated in human cancers and that its signatures could be used for understanding the miRNA
classification and prognosis for cancer development [8]. As the chief regulators of the
mRNAs, healthy miRNAs regulate the energy metabolism in tumors either directly or
indirectly by regulating the genes and enzymes involved in metabolic pathways [9,10].
MicroRNAs have been reported to regulate a plethora of enzymes involved in glucose,
fatty acid, and amino acid metabolism, which is prone to being reprogrammed in cancer
cells to meet the heightened metabolic demands. Therefore, it is imperative to understand
the role of miRNAs in these metabolic pathways to generate new therapeutic avenues to
combat this disease and to identify potential biomarkers for cancer diagnosis.

This review will discuss in detail the role of miRNAs in cancer with special emphasis
on energy metabolism and the mechanistic role of mitochondrial calcium regulation in
supporting the energy demands of cancer cells. We have also addressed the importance
of metabolic reprogramming in cancer cells as a means of survival, proliferation, and
metastasis and the regulatory role of miRNAs in cancer cell energy metabolism. This
review will provide a better understanding of the miRNA-based regulation of cancer
energy metabolism.

2. Energy Metabolism in Cancer Cells

The energy metabolism differs significantly between cancer and normal cells. To meet
their energy demands, healthy cells rely primarily on mitochondrial oxidative phosphoryla-
tion (OXPHOS), while cancer cells rely heavily on glucose and aerobic glycolysis. Although
mitochondrial oxidative phosphorylation generates adenosine triphosphate (ATP) more
efficiently than glycolysis, the cancer cells resort to this ineffective pathway for energy
production in a phenomenon known as the Warburg effect [11–13]. Cancer cells can be
distinguished from normal cells by their metabolic needs and metabolic regulation. Nor-
mal cells have in place a plethora of regulatory mechanisms like multiple feedback and
feedforward regulatory loops and a capacity to undergo quiescence when deprived of
nutrients, whereas the cancer cells’ characteristic of growth and proliferation results in
nutrient uptake due to sustained bioenergetic demand [14]. As proposed by Warburg,
there is a long-standing impression that cancer cells have enhanced glycolysis due to the
impairment of mitochondrial OXPHOS, but this thought has been challenged by recent
studies that show the mitochondrial OXPHOS to be intact in several cancer cells [14–17].
Furthermore, mitochondria are versatile organelles with an inert ability to produce ATP
and can adjust their metabolic phenotype according to the energy requirement and macro-
molecular synthesis [18,19]. Therefore, it is conceivable that the cancer cell mitochondria
indeed can switch between glycolysis and OXPHOS for their survival. Recent studies have
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proven that cancer cells devoid of mitochondrial DNA lack their tumorigenic potential [20].
It has also been found that the cells can regain this ability by acquiring healthy mtDNA
from host stromal cells via the horizontal transfer of whole mitochondria [21] to recover
respiratory function. There is scientific evidence that the glycolytic phenotype in cancer
cells might be due to the overpowering of OXPHOS by active glycolysis rather than defects
in the mitochondrial function itself [16,22,23]. There is also a hypothesis called the reverse
Warburg effect that inhibits the function of OXPHOS in cancer cells. The so-called reverse
Warburg effect states that epithelial cancer cells can induce aerobic glycolysis in carcinoma-
associated fibroblasts (CAFs) to produce lactate, ketones, and pyruvate to replenish the
TCA cycle in cancer cells for OXPHOS [24,25]. Recently, another theory was proposed
wherein cancer cells deploy metabolic symbiosis that involves the transfer of glycolysis-
derived lactate to oxygenated tumor environments as a means of fueling OXPHOS and
avoiding the competition for glucose. The preferential utilization of lactate would indeed
save the glucose for the cells in the hypoxic environment [26,27]. Several studies have
provided compelling evidence that glutamine plays an important role in the cellular growth
of many cancers [28,29]. Many cancer cells have been thought to undergo metabolic repro-
gramming to use glutamine for survival and proliferation [30,31]. Glutamine-dependent
cancer cells take up glutamine as the preferred anaplerotic substrate and convert it into
TCA cycle metabolites in a process called glutaminolysis [31]. Yet another recent study has
postulated that cancer cells produce NADH in cytosol using carbohydrates, fatty acids,
and glutamine and transport it to the mitochondria to fuel the ATP production using the
mitochondrial electron transport complex (ETC) [32]. Thus, cancer cells can continuously
reprogram their metabolism to adapt well to environmental pressures and alterations in
their growth conditions.

3. MicroRNAs Involved in Glucose Metabolism
3.1. MicroRNAs and Glucose Uptake

Glucose enters the cell through glucose transporters (GLUTs/SLC2A). The GLUT is
the most important protein, controlling glycolysis, and 14 GLUTs have been identified
so far [33]. GLUTs are found to be overexpressed in several tumors. Compared with the
normal surrounding tissues, GLUT1, GLUT2, and GLUT3 are highly expressed in cancer
tissues [34–36]. The potentially increased levels of GLUTs in malignant cells seem to facili-
tate accelerated glucose metabolism. Several factors can regulate GLUTs; for example, the
ovarian hormone estrogen regulates GLUT by modulating its expression [37]. In addition,
hypoxia and metabolic-stress-induced signaling pathways trigger GLUT expression [34,38].
Apart from these regulatory activities, GLUTs can be regulated by several miRNAs, and the
GLUT-targeting miRNAs are thought to be downregulated to favor various cancer types
including ovarian cancer, lung cancer, colon cancer, bladder cancer, prostate cancer, and
renal cell carcinoma (Figure 1). For instance, miR-132 has been known to be a GLUT1 sup-
pressor, and its expression was found to be downregulated in malignancy, which ultimately
resulted in higher expression of GLUT1 and enhanced glycolysis [39]. Additionally, Lui
et al. reported a decreased expression of miR-144 in lung cancer wherein it was found to
increase the glucose uptake [40]. The overexpression of miR-138, miR-150, miR-199a-3p,
and miR-532-5p has been connected with decreased GLUT1 levels. On the contrary, the
downregulation of miR-19a, miR-19b, miR-130b, and miR-301a are linked to the enhanced
expression of GLUT1 in renal cell carcinoma [41]. The 3′ UTR of GLUT1 is known to be
directly targeted by miR-495, miR-340, miR-186, miR-22, miR-328, and miR-1291 [42–46].
In most cancers, the reporting miRNAs were found to be downregulated, resulting in
the increased expression of GLUT1 and thus facilitating a metabolic switch in favor of
tumor development [39,47,48]. GLUT3 is known to be directly regulated by miR195-5p by
targeting the 3′-UTR [49]. The dysregulated metabolism in colorectal carcinoma was at-
tributed to the altered expression of miR-19a and miR-133 and their role in regulating GLUT
levels [50]. In pancreatic tumors, the upregulation of GLUT1 expression and increased
glucose uptake was linked to the downregulation of miR-130b [51], and miR-129-5p was



J. Pers. Med. 2022, 12, 1329 4 of 22

identified as directly targeting GLUT3 and acting as a suppressor of glucose metabolism
and cell proliferation in gastric cancer (GC) cells [52]. It was also identified that the miR-
129-5p/SLC2A3 axis exerts its suppressor function by regulating the PI3K-Akt and MAPK
signaling pathways.

Figure 1. The regulation of glucose uptake, glucose oxidation and lactate metabolism by miRNAs.

3.2. Regulation of Glycolysis by miRNAs

In addition to the GLUTs, other glycolytic enzymes are also regulated by miRNAs
(Figure 1). Several studies have emphasized the miRNA-mediated regulation of glycolysis
in tumor cells. The conversion of glucose to glucose-6-phosphate by the enzyme hexokinase
(HK) marks the first step of glycolysis. Four different isoforms (HK1-HK4) of hexokinase
have been identified so far [53–55]. HK1 and HK2 are high-affinity enzymes, and their
distribution varies between different tissues. HK2 is overexpressed in a variety of tumors
and is a characteristic feature of cancer cells [56–59]. The overexpression of HK2 is known
to drive tumor cell proliferation by supporting aerobic glycolysis. Thus, HK2 is a critical
regulator of the Warburg effect and is now emerging as an important target for cancer
metabolism [60,61]. Primarily, HK2 was identified as being regulated by miRNAs by Fang
et al.; interestingly they demonstrated HK2 to be regulated by miR-125a and miR-143
and to modify glucose metabolism and cell proliferation in lung cancer cells [62]. The
regulation of HK2 by miRNA was further confirmed in head and neck squamous cell
carcinoma (HNSCC)-derived cell lines [63]. In colon cancer cells, miR-143 was identified as
targeting HK2 directly [64]. Apart from these studies, the role of miR-143 in modulating
HK2 has been reported in various cancers like colon cancer, esophageal squamous cell
carcinoma, lung cancer, cervical carcinoma, liposarcoma, bladder cancer, osteosarcoma,
and gastric cancer [62,63,65,66]. A common subtype of myelodysplastic syndrome is 5q
syndrome, which is characterized by the interstitial deletion of chromosome 5q. This locus
is often deleted in several other malignancies and was also identified as the locus where the
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miR-143 gene resides [67,68]. These reports all illustrated the role of miR-143 in regulating
HK2 and glucose metabolism in cancer cells.

HK2 expression is also known to be modulated by another miRNA, miR-199a-5p,
which was identified to be downregulated in liver cancer cells by mechanism-mediated
HIF1α overexpression. Decreased miR-199a-5p expression promoted glycolysis and lactate
production via HK2 regulation [69]. In addition, HK2 has also been reported to be regulated
by miR-155, which is found to be upregulated in various tumors. It also acts as an oncomiR
and negatively regulates tumor-suppressive genes like TP53INP1, RhoA, and socs1, thus
promoting malignant transformation and cancer progression [70,71]. Two distinct mecha-
nisms have been proposed to describe how miR-155 upregulates the expression of HK2:
(i) miR-155 enables the activation of STAT3, which in turn promotes the transcription of
HK2; (ii) miR-155 represses miR-143 by targeting C/EBPβ (a transcriptional activator of
mir-143) and subsequently enhances the expression of HK2. Both miR-143 repression and
STAT3 activation are essential for miR-155 to enhance glycolysis in breast cancer cells [51].
This phenomenon has been observed in other cancers like liver and lung. Interestingly,
miR-155 expression has been reported to be upregulated via JNK, nuclear factor-κB (NF-
κB), and activator protein-1 (AP-1) pathways [72,73], implicating a relationship between
inflammation and altered metabolism in cancer cells. The miRNA-dependent regulation of
HK is not limited to HK2 because HK1 is targeted by miR-138 [63].

Other important intermediate steps in glycolysis are also known to be regulated by
miRNAs. The enzyme glucose-6-phosphate isomerase (GPI) is known to be regulated
by miR-200 and miR-302b/miR-17-5p in breast cancer cells [74] and chicken primordial
cells [75], respectively. Phosphofructokinase 1 (PFK1), another glycolytic enzyme is also
regulated by miRNA. For instance, miR135 was identified as targeting PFK1, inhibiting
aerobic glycolysis, and suppressing tumor growth [76]. In NCI-H460 lung cancer cells,
phosphofructokinase liver type (PFKL) was known to be regulated by the miR-128–PFKL–
AKT axis. The regulation of PFKL resulted in a metabolic shift from glycolysis to oxidative
phosphorylation (OXPHOS) in lung cancer cells [77]. The enzyme aldolase (Ald A) cat-
alyzes the reversible aldol reaction in which fructose 1,6-bisphosphate is broken down into
glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. Ald A is known to be regu-
lated by miR-122 in liver cells [78,79], the miR-15a/16-1 cluster in leukemia [80], miR-31,
and miR-200a in Y79 retinoblastoma cells [81]. Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) catalyzes the glycolytic step that releases reducing equivalent NADH. GAPDH is
also regulated by miRNAs including miR-644a and miR-155 [82,83] in cancer cells. Cancer
cells re-express the embryonic isoform of pyruvate kinase (PK), PKM2, which dephospho-
rylates phosphoenol pyruvate (PEP) to pyruvate. PKM2 is known to be upregulated in
many tumors due to the downregulation of various miRNAs that downregulate PKM2.
The microRNAs miR-133a, miR-133b, miR326, and miR-122 are known to directly regulate
PKM2 [84–86]. In glioblastoma cells, the upregulation of PKM2 is directly correlated with
the decreased expression of miR-326 [84]. Likewise, miR-122 targets PKM2 and inhibits
HCC proliferation. It was also shown that the increased methylation of a miR-122 promoter
in HCC attenuates its expression and relieves PKM2 suppression [87]. Additionally, the
decreased expression of miR-133a and miR133b in tongue SCC was associated with the
increased expression of PKM2 [86]. In colorectal cancer, miR-124, miR137, and miR-340
regulate the switch of PKM gene expression from PKM2 to PKM1 [88]. Under hypoxic
conditions, miR-210 represses ISCU1/2, thus decreasing the activity of proteins involved
in mitochondrial metabolism [89]. Hence, miR-210 represses mitochondrial respiration
and might indirectly facilitate aerobic glycolysis. In prostate cancer PC3 cells, miR-124 has
been reported to regulate the PKM2 gene and thus suppress cancer cell proliferation [90].
Other miRNAs, miR-99a, miR-124, miR-137, and miR-340, are known to indirectly regulate
PKM2 [88,91]. Taking these findings together, it is very evident that the deviances in glucose
metabolism play a crucial role not only in cancer survival but also in tumor metastasis.
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3.3. MicroRNAs Involved in Lactate Metabolism

Another important step in glycolysis is the final step: catalysis by lactate dehydroge-
nase (LDH) which converts pyruvate to lactate. This step is crucial in deciding the fate
of glucose, where pyruvate can either enter the TCA cycle to yield 36 ATP molecules or
be converted to lactate to produce just 2 ATPs. High levels of lactate production are often
associated with enhanced tumorigenesis, and therefore the regulation of LDH is critical
in cancer cells [92–94]. In recent years, the miRNA-based regulation of LDH has been
established in cancer cells (Figure 1). In the maxillary sinus and esophageal anaplasias,
the subunit B of LDH (LDHB) was identified as being regulated by miR-375 [95]. In ad-
dition, miR-34a, miR-34c, miR-369–3p, miR-374a, miR-4524a/b, miR-323a-3p, miR-200c,
miR-30d-5p, and miR-30a-5p regulate subunit A of LDH (LDHA) in breast, colorectal, and
pancreatic cancer cell lines and osteosarcoma tissues [96–101]. In some circumstances, a
point mutation was found to occur in the binding site of miR-374a in 3′UTR of LDHA. As
a result of this point mutation, the miR-374a fails to suppress LDHA expression [99] and
thus to show its inhibitory effects, leading to tumor development. Therefore, microRNAs
miR-142-3p, miR-200c, miR-30a-5p, miR-33b, miR-323a-3p, miR-489 and miR-383 can be
exploited as therapeutic possibilities to combat respective cancers [97,98,102–105].

Monocarboxylate transporters (MCTs) are membrane proteins that maintain the lactate,
pyruvate, and ketone bodies fluxes in cells. There are four MCT isoforms (MCT1-MCT4)
described in humans, and the isoforms differ in their cellular distribution. Similar to
LDH, MCTs are also regulated by miRNAs (Figure 1). MCT1 is targeted by miR-29a,
miR-29b, miR124, and miR-495 in pancreatic β cells [106,107]. MCT1 is regulated by miR-
343-3p and promotes alterations in lactate and glucose flows. In addition, miR-342-3p
overexpression significantly decreased cell proliferation, viability, and migration in breast
cancer cell lines [108]. MCT4 is regulated by miR-145, which causes the accumulation
of lactate within hepatocellular carcinoma cells (HCC) [109]. During the progression of
malignant melanoma, the highly expressed protein basigin (Bsg) interacts with MCT1 and
4. Bsg is targeted by Let-7b and is known to inhibit the invasiveness of melanoma cells,
potentially through the disruption of this interaction [110].

4. Amino Acid Metabolism and miRNAs

The metabolic networks of amino acids have widespread effects in cancer cells and
are involved in protein biosynthesis and purine and pyrimidine synthesis; they also act
as neurotransmitters and play a role in epigenetic modifications, ATP production, and the
detoxification of ammonia by conversion to urea. Hence, any alterations in the amino acid
metabolism play diverse roles in metabolic control and the regulation of the tumor mi-
croenvironment [111]. Apart from glucose, cancer cells exhibit increased glutamine intake
and metabolism (glutaminolysis) (Figure 2). It is thought that the proliferative phenotype
of the cancer cell is maintained by this adaptive accelerated glutamine metabolism as it
provides substrates for lipogenesis and nucleic acid biosynthesis [1,112]. Glutamate and
then α−ketoglutarate (α-KG) are formed from glutamine by glutaminase (GLS) and gluta-
mate dehydrogenase (GDH), respectively. In addition, glutamine metabolism produces
increased levels of succinate, fumarate, malate, NADH, and ATP.

The transcription factor c-Myc has been identified as repressing the expression of
miR-23a and miR-24b, and that results in the increased expression of glutaminase and
the upregulation of glutamine catabolism in cancer cells [113]. MicroRNA miR-203 was
reported to regulate glutaminase protein and also to sensitize malignant melanoma cells to
temozolomide chemotherapy [114]. Glutamate can also be converted directly to glutathione
(GSH) by the enzyme glutamate-cysteine ligase (GCL). GCL is considered the rate-limiting
enzyme in GSH synthesis and is known to be regulated by miR-18a and miR153 in liver
cancer and glioblastoma [115,116]. Additionally, miR-450a is known to target a set of
mitochondrial mRNAs, decrease glycolysis and glutaminolysis, and limit the metastatic
potential of ovarian cancer cells [117].
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Figure 2. The regulation of amino acid cancer metabolism by miRNAs.

Apart from glutaminolysis, the serine, glycine, and one-carbon (SGOC) metabolic
network is said to drive cancer pathogenesis, and this metabolic network promotes the
methylation of DNA/RNA and ATP synthesis in cancer cells [118,119]. Additionally,
3-phosphoglycerate is converted to serine and then to glycine by serine hydroxymethyl-
transferase 1 (SHMT-1) and SHMT-2 [120]. Meanwhile, miR-193b has been shown to target
SHMT2 and reduce MCF-7 breast cancer cell growth. In contrast, the overexpression of
miR-198 decreases the SHMT1 expression in lung adenocarcinoma and also inhibits cell
proliferation, apoptosis, and cell cycle arrest [121]. In an esophageal squamous cell carci-
noma xenograft mouse model, phosphoserine aminotransferase (PSAT1) was identified as
being directly regulated by miR-340 [122].

The branched-chain amino acids (BCAAs) including leucine, isoleucine, and valine
also play important roles in cancer cells. Branched-chain α-ketoacid dehydrogenase (BCKD)
catalyzes the irreversible step in BCAA catabolism. In mammals, miR-29b prevents the
translation of the dihrolipoyl branched-chain acyltransferase component of the BCKS
complex [123]. Separately, miR-218 is known to negatively regulate branched-chain amino
acid transaminase 1 (BCAT1) levels and increases the sensitivity of PC3 and DU145 PCa
cells to cis-diaminedichoroplatinum treatment [124]. Further pieces of evidence suggest that
miR-494 sensitizes colon cancer to 5-FU by targeting dihydropyrimidine dehydrogenase
(DPYD), an enzyme involved in β-alanine metabolism [125]. In colorectal cancer, miR-29a,
miR-21, and miR-30d are known to reduce sensitivity to 5-FU by targeting amino acid
metabolism [125].

Apart from targeting enzymes of amino acid metabolism, miRNAs are known to
target amino acid transporters. Amino acids are transported into a cell via specific or
nonspecific transporters and antiporters. The membrane protein SLC1A5 strictly regulates
the transport of glutamine into the cell. A wide variety of tumors overexpress SLC1A5.
The exogenous expression of miR-137 and miR-122 markedly inhibited SLC1A5 expression
in a dose-dependent manner and was identified as altering glutamine metabolism in
cancer [126]. In Huh7 cells, the cationic amino acid transporter (CAT-1) was identified as
being translationally repressed by miR-122 [127]. The glutamine transporters in plasma
membrane ASCT2 are gatekeepers for several amino acids’ entry into the cytosol region.
The expression of ASCT2 was found to be higher in cancer cells than in normal cells. In
colorectal carcinoma, glioblastoma, neuroblastoma, and prostate and pancreatic cancers
the expression of ASCT2 was elevated, and the miR-137 was relatively downregulated. It is
conceivable that by downregulating the expression of ASCT2, miR-137 inhibits glutamine
metabolism, which is critical for cancer cell proliferation and survival [126]. Collectively,
these data show that miRNAs are capable of regulating multiple genes involved in amino
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acid metabolism, and it is therefore hard to ignore the fact that the miRNA regulation
of amino acid metabolism can be explored to find new therapeutic opportunities in the
treatment of various cancers.

5. MicroRNAs Involved in the Regulation of Pentose Phosphate Pathway

The pentose phosphate pathway (PPP) is required for the synthesis of ribonucleotides
and is a major source of NADPH. The PPP supplies NADPH and ribose 5-phosphate (R5P),
the most important metabolites for cell survival and proliferation [128], thus playing a ver-
satile role in cancer metabolic reprogramming (Figure 3). Various studies have talked about
PPP directly or indirectly as promoting cell survival and proliferation [129,130]. The pri-
mary regulatory step in the PPP flux is the step catalyzed by glucose 6-phosphate dehydro-
genase (G6PD). It involves the irreversible oxidation of G6P into 6-phosphogluconolactone
with the generation of NADPH [131]. G6PD has been considered the pacesetter for NADPH
production and is overexpressed in various cancers like hepatocellular carcinoma and breast
and lung cancer [132–136]. The miR-122, a highly conserved liver-specific miRNA, nega-
tively regulates G6PD. G6PD is a functional miR-122 target: the loss of miR-122 has been
linked to an altered hepatic metabolic profile [137,138]. Another muscle-specific miRNA,
miR-1, has also been shown to negatively regulate G6PD [139,140]. A combined reduction
of miR-122 and miR-1 contributes to the dysregulation of glucose metabolism in hepatocel-
lular carcinoma (HCC) and results in rapid tumor progression [141]. He et al. [101] show
that in pituitary tumors, the overexpression of miR-1 suppressed cell growth by targeting
G6PD and inhibited the cancer cell metabolism. In colorectal cancer cells, miR-124 di-
rectly targets phosphoribosyl pyrophosphate synthetase 1 (PRPS1) and ribose-5-phosphate
isomerase-A (RPIA) and thus inhibits DNA synthesis and proliferation [142]. Another
important enzyme in the PPP is 6-phosphogluconate dehydrogenase (6PGD). Studies have
reported 6PGD upregulation in a wide variety of tumors [143,144]. In lung tumor cells,
6PGD has been characterized as a functional target of miR-206 and miR-613 [145], and miR-
206 and miR-613 are known to regulate 6PGD expression and metabolic reprogramming in
cisplatin-resistant ovarian and lung cancer cells [144]. Therefore, the differential regulation
of PPP and how cancer cells circumvent the PPP regulation represent a novel target for the
diagnosis and treatment of tumors.

Figure 3. The miRNA-based regulation of the pentose-phosphate pathway in cancer cells.
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6. Lipid Metabolism in Cancer and miRNAs

Lipids form a diverse group of non-water-soluble molecules and include triglycerides
(TG), phospholipids (PL), sterols, and sphingolipids (SPL). TG serves as the major energy
source, whereas PL, sterols, and SPL form the major structural components of biological
membranes. Lipids are important signaling molecules; they function as second messengers
and hormones. Increasing evidence in recent years shows cancer cells to specifically alter
different aspects of lipid metabolism (Figure 4). One characteristic feature that marks cancer
cells is that irrespective of the concentrations of extracellular lipids, de novo lipogenesis was
identified as increasing [146]. Another characteristic is that some tumor types exhibit
the increased oxidation of lipids as their energy source instead of higher rates of glycoly-
sis. Prostate cancer generally has a lower rate of glucose metabolism with a concomitant
increase in fatty acids uptake and oxidation [147,148]. Thus, the increased availability
of lipids contributes to cell growth, proliferation, survival under oxidative and energy
stress, chemoresistance, support of a high glycolytic rate by promoting the redox bal-
ance and stimulation of signaling pathways that lead to invasion and metastasis [145,149].
MicroRNAs including miR-122, miR-33, miR-27a/27b, miR-34a, miR-21, and miR-378
were shown to regulate lipid homeostasis in cancer cells [150–155]. In cancer cells, tran-
scription factors like c-Myc, TGF-β, and NF-κB transcriptionally inhibit miR-29 [156–158].
Separately, miRNA-29 was identified as a regulator of the negative feedback mechanism
that modulates SREBP-cleavage activating protein and sterol regulatory element-binding
protein-1 (SCAP/SREBP-1) signaling in glioblastoma growth [159]. Treatment of glioblas-
toma xenografts with miR-29 significantly suppressed tumor growth by inhibiting the
SCAP/SREBP-1 and lipogenesis [159]. PPAR co-activator 1-alpha (PGC-1α) plays a pivotal
role in regulating cancer development [160]. PGC-1α is known to be inversely regulated
by miR-217. In MCF-7 and MDA-MB-231, both mRNA and protein levels of PGC-1α are
increased in correlation with a decrease in miR-217 expression [161]. Additionally, in a
mouse model of esophageal squamous cell carcinoma xenograft, phosphoserine amino-
transferase (PSAT1) was found to be directly regulated by miR-340 [115]. The miR-181a
targets isocitrate dehydrogenase 1 (IDH1) and modulates the expression of genes involved
in lipogenesis and β-oxidation [162]. Furthermore, miR-22 is known to inhibit ATP citrate
lyase (ACLY) in osteosarcoma and cervical, prostate, and lung cancer cells [163]. Addition-
ally, miR-33a/b has been reported as a master regulator of cholesterol/lipid metabolism.
The miR-33a/b-encoding genes are present within the intron sequences of human SREBF
genes, and miR-33a/b is known to regulate the expression of ATP-binding cassette trans-
porter ABCA1 [164,165]. In this regard, SREBP and miR-33 co-operatively regulate cell
proliferation and cell cycle progression [166]. Furthermore, miR33a/b also regulates lipid
homeostasis by controlling the expression of genes involved in fatty acid oxidation and
the energy homeostasis regulators like AMPK and SIRT6 [167]. It was shown that during
hepatocellular transformation, the transient inhibition of HNF4α becomes a stable event,
and the feedback loop consisting of miR-124, IL6R, STAT3, miR-24, and miR-629 maintains
the transformed phenotype both in vitro and in vivo. Thus, the systemic administration
of miR-124 is known to prevent and suppress HCC development in murine liver cancer
model [168].
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Figure 4. The miRNA-based regulation of lipid and mitochondrial metabolism in cancer cells.

7. Mitochondrial Metabolism and miRNA
7.1. MicroRNAs Involved in the Regulation of the TCA Cycle

In tumor cells, aerobic glycolysis results in the conversion of glucose into pyruvate
and subsequently into lactic acid. Acetyl CoA is committed to a truncated tricarboxylic
acid (TCA) cycle, with the net outcome that acetyl CoA will be disseminated to the cytosol
as citrate and cleaved by ATP citrate lyase (ACL) to produce oxaloacetate and acetyl CoA.
Oxaloacetate is reduced to malate and imported back into the mitochondrial matrix and
converted to oxaloacetate again in the matrix (generating NADH that serves to repress
the TCA cycle). One of the common and widely accepted events in cancer cells is a shift
in glucose metabolism from oxidative phosphorylation to aerobic glycolysis. Although
cancer cells circumvent the TCA cycle and mainly rely on aerobic glycolysis for their energy
demands, various studies endorse that cancer cells rely profoundly on the TCA cycle
for their energy requirements. The TCA cycle can be described as the central metabolic
hub of energy metabolism and the synthesis of macromolecules. The role of the TCA
cycle and its regulation has been overlooked until recently [49,169] (Figure 4). Pyruvate
dehydrogenase protein X component (PDHX) has been identified by Chen et al. as a direct
target of miR-26a in colorectal cancer (CRC) cells, and miR-26a is known to modulate
PDHX expression by directly targeting the 3′UTR of PDHX [170]. PDHX located in the
mitochondrial matrix is a non-catalytic subunit of the PDH complex and is central to
mitochondrial energy metabolism [171]. The PDH complex catalyzes the oxidative removal
of glucose and pyruvate under aerobic conditions. Therefore, miR-26a has been shown
to regulate glucose metabolism in colorectal cancer cells by inhibiting the conversion of
pyruvate to acetyl CoA and entering the tricarboxylic acid cycle [170].

In addition, the enzyme pyruvate dehydrogenase B (PDHB) has been a known target
of miR-370 and miR-146-5p in melanoma and colorectal cancer, respectively. The elevation
of miR-370 and miR-146-5p has been reported to downregulate PDHB [172,173]. Other
PDH subunit PDHA1 is regulated directly by Lin28A/Lin28B and indirectly by let-7. Let-7
is known to activate the PDH complex by directly inhibiting PDK1 [174]. Additionally, the
suppression of isocitrate dehydrogenase 2 (IDH2) by miR-183 in glioma cells decreases
the cellular levels of α-KG and in turn leads to an increase in aerobic glycolysis [175].
Several miRNAs, including miR-19a, miR-19b, miR-148a, miR-148b, miR-152, miR299-5p,
miR-122a, miR-421, and miR-494, have been shown to regulate the citrate synthase gene.
Another miRNA, miR-210, specifically induced by HIF-1α, represses the iron-sulfur cluster
assembly proteins (ISCU1/2) [89]. It decreases the activity of the TCA cycle by facilitating
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the assembly of [4Fe-4S] and [2Fe-2S] iron-sulfur clusters, which are incorporated into the
TCA cycle-related enzymes like aconitase.

7.2. MicroRNAs in Mitochondrial Calcium Regulation in Cancer Cells

Although cancer cells are thought to exclusively rely on glycolysis for ATP production,
they still require the oxidation of α-ketoglutarate (α-KG) in the mitochondria to produce
the reducing equivalents essential for facilitating the reductive carboxylation pathway
and and generating the metabolic intermediates [176]. Cancer cells tend to uptake higher
amounts of the non-essential amino acid glutamine [177], which is then converted to
glutamate by glutaminases and later to α-KG [178]. Then, α-KG enters the TCA cycle,
where it serves as the substrate for α-KG dehydrogenase (α-KGDH). The activity of α-
KGDH is strongly Ca2+ dependent [179]. Meanwhile, mCa2+ in its physiological state is
known to activate three major mitochondrial matrix dehydrogenases, namely, pyruvate
dehydrogenase (PDH), isocitrate dehydrogenase (ICDH), and α-KGDH. The regulation
of these three key enzymes by Ca2+ has a strategic task in coordinating cellular workload
and ATP generation [180–182]. Thus, cancer cells meet their energy demands by the
activation of TCA cycle dehydrogenases through increased mCa2+ uptake [183]. On the
contrary, pulmonary arterial cancer cells and colon cancer cells avoid mCa2+ overload to
confer resistance to cell death. Oncogenes such as Ras and Akt are known to regulate
apoptosis by modulating mCa2+ entry and thus inhibiting mCa2+ overload [184]. Although
studies suggest mCa2+ uptake is a double edge sword and to regulate both metabolic
shift and cell death pathways, mCa2+ signaling is considered to play a vital role in the
progression of various cancers by promoting proliferation and cell migration, metastasis,
and vascularization and conferring apoptosis resistance [183,185].

The outer mitochondrial membrane (OMM) has a large channel that is readily per-
meable to Ca2+. Ca2+ entry from the intermembrane space (IMS) to the mitochondrial
matrix is primarily through a very selective, low-conductance Ca2+ channel known as the
mitochondrial Ca2+ uniporter (MCU) [186,187]. The molecular identity of the channel was
unknown for several years, and simultaneous publications from Rizzuto and Mootha’s
laboratory revealed that CCDC109A is the pore-forming subunit of the MCU complex. That
is the moment when the mCa2+ signaling field started to witness an abundance of discov-
eries aimed at elucidating both the composition and functionality of the MCU complex.
Once known only as a phenomenon that could be inhibited by ruthenium red derivatives,
the mCa2+ influx machinery has now grown into the multiprotein assembly known as the
uniporter MCU complex. The Ca2+ that enters the mitochondria will be pumped back to
the IMS by a Na+/Ca2+ exchanger (NCLX) [188–194] or the H+/Ca2+ exchanger (HCX).
The role of HCX, otherwise known as LETM1 (the leucine zipper-EF-hand containing
transmembrane protein 1), as an H+/Ca2+ exchanger or a K+/H+ exchanger is still debated.
Thereby, mCa2+ is established by the dynamic equilibrium between MCU-mediated Ca2+

entry and NCLX/HCX-mediated Ca2+ extrusion.
MicroRNAs are considered important regulators for mCa2+ uptake. In silico analy-

sis has shown that five miRNAs, namely, miR-15, miR-17, miR-25, and miR-137, could
target MCU and/or MICU1 in tumor cells [195]. Specifically, the inhibition of mCa2+ en-
try by cancer-related miR-25 represents the first evidence for the regulation of MCU by
miRNA [195] and offers preliminary clues to the significance of miRNAs in regulating
mCa2+ entry. For instance, miR-25 affects mCa2+ homeostasis by downregulating MCU,
prompting a strong decrease in mCa2+ uptake and conferring resistance to Ca2+-dependent
apoptotic challenges [195]. Prostate cancer cell lines expressing high levels of miR-25
display very low levels of MCU expression, and this same phenomenon (high miR-25
and low MCU) is also maintained in colon cancer cell lines. The inhibition of miR-25 in
HCT116 cells increases mCa2+ levels and is known to re-sensitize the cells to apoptosis.
Similarly, a connection has been established through the detection of high miR-25 and
undetectable MCU levels in stage II and stage III colonic adenocarcinoma. Other members
of the miR-25 family such as miR-92a and miR-363 have been found to have the same effect
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as miR-25 on the expression of MCU and Ca2+ signaling. These findings not only empha-
size the profound involvement of the whole family of this miRNA in the regulation of
mCa2+ homeostasis but also propose how MCU downregulation favors cancer cell survival.
Furthermore, miR-25-5p that originates from the opposite arm of the same pre-miRNA
and members of the same pre-miRNA cluster such as miR-106b were predicted to target
MCU mRNA, although their activity has not yet been tested. In contrast to miR-25, the
downregulation of miR-340 is correlated with increased MCU expression in breast cancer.
By targeting MCU miR-340 increases the rate of glycolysis, resulting in a metabolic shift
and promoting cell migration and invasion [196]. Pulmonary arterial hypertension (PAH)
results in a cancer-like phenotype as it is characterized by increased pulmonary artery
smooth muscle cell proliferation, migration, and apoptosis resistance [197]. In this model,
the authors noted a decreased expression of MCU that resulted in increased cytosolic
Ca2+ and diminished mCa2+. The decrease in MCU level was found to be associated with
increased expression levels of miR-25 and miR-138.

Although OMM is permeable to Ca2+, studies show VDAC to play a critical role in
regulating mCa2+ uptake. In many cancer cells, the expression of VDAC1 is found to be
profoundly high. The miR-7 that negatively regulates VDAC1 mRNA is downregulated in
cervical cancer and hepatocellular carcinoma [198]. Both cervical cancer (CC) tissues and
cell lines have shown higher expression of lncRNA SOX21 antisense RNA 1 (SOX21-AS1), a
long noncoding RNA. This long noncoding RNA has been involved in CC cell proliferation,
migration, and invasion. It was found that miR-7 interacts with the miRNA-binding site of
SOX21-AS1 and that the overexpression of SOX21-AS1 decreases the expression of miR-7
in cervical cancer cells. That study also reported that miR-7 directly targets the 3′-UTR of
VDAC1 [199]. Likewise, miR-320a was downregulated in NSCLC cells, and miR-490-3p
was downregulated in colorectal cancer, both of which can directly target VDAC1 mRNA
and regulate its expression [200,201]. In cervical cancer, miR-613 was downregulated, and
it was found to directly target LETM1 in many cancer cells. Additionally, the expression of
LETM1 was high [202].

7.3. MicroRNAs in Mitochondria-Mediated Apoptosis in Cancer Cells

Mitochondria-mediated apoptosis is completely regulated by intrinsic apoptotic sig-
nals. When cells undergo oncogenic stress, DNA damage, and uncontrolled proliferation,
it triggers apoptosis. Thus, the inhibition of cell growth by apoptosis is an ideal cancer
treatment [203,204]. The mitochondria-mediated apoptosis pathway involves the release of
apoptosis-inducing factors (AIF) and cytochrome c from mitochondria, leading to caspase-
dependent cell death. The AIF and cytochrome c act as a double-edged sword by contribut-
ing to the cell death pathway and also regulating mitochondrial energy metabolism by
increasing the oxidative phosphorylation reaction (OXPHOS). Importantly the function of
AIF includes the posttranscriptional regulation of complex 1 in the mitochondrial respira-
tory chain and of cytochrome c in transferring the electrons from complex 3 to complex 4 in
the electron transport chain. In a wide variety of cancers, both mRNA and protein levels
of AIF and cytochrome c are found to be elevated and to help in the survival of cancer
cells with poor prognosis [205–208]. As previously discussed, in the mCa2+ metabolism
of cancer cells, aerobic glycolysis is also an important contributor to cancer cell survival.
To support this, the BAX and BAK present in OMM are suppressed by several miRNAs
in cancer cells. BAX and BAK are the gateways for the release of AIF and cytochrome
c from mitochondria into the cytosol of a cell [209]. Simultaneously, the anti-apoptotic
proteins Bcl-2 and Bcl-x levels are elevated, and some miRNAs that directly target these
anti-apoptotic proteins are suppressed.

The expression of miR-365 was found to be high in pancreatic cancer cells; it directly
targets the pro-apoptotic regulator BAX and thus prevents cancer cell death by blocking the
release of AIF and cytochrome c [210]. Radiation-induced mouse thymic lymphomas show
high expression of miR-467a and result in the downregulation of BAX [211]. The expression
of BAK was significantly reduced in breast cancer, and elevated miR-125b was observed,
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which explains the inhibition of Taxol-induced cytotoxicity and apoptosis [212]. The
downregulation of miR-574-3p and restoration of miR-574-3p induce apoptosis by reducing
the anti-apoptotic protein Bcl-xl in prostate cancer cell lines and clinical PC tissues [213].
Similarly, the Bcl-xl targeting miRNAs like miR-608, miR-133a, miR-491-5p, let-7, and
miR-491 have been reported to be downregulated in different cancers, causing aggressive
cancer progression [214–218]. The expression of Bcl-2-targeting miRNAs was found to
be decreased in MALT lymphomas and in diffuse large B-cell lymphoma (DLBCL) with
higher expressions of Bcl-2 in stages 3 and 4 of both types of lymphomas. The decreased
expression of miR-34a and increased FOXP1, p53, and BCL2 co-expression have been linked
to poor overall survival in MALT lymphoma and DLBCL patients. The same outcomes
were observed in different cancers, where miR-15, miR-16, miR-30b, miR-125a-5p, miR-182,
and miR-206 were found to be downregulated. They directly target the 3’UTR sequence of
Bcl-2 mRNA [219–224].

8. Conclusions

MicroRNAs have emerged as one of the key players in regulating cellular metabolic
pathways. In the last 15 years, research in the field of miRNAs has brought us immense
information on the roles of miRNA in cancer cell pathophysiology. It became evident from
several studies that all described hallmarks of cancer are related to some miRNA imbal-
ance [225]. In this review, we list a number of miRNAs that act on metabolic molecules
and pathways and contributes to tumor metabolic reprogramming. Despite our improved
understanding of the role of miRNAs on individual enzymes, proteins, and metabolic
molecules, a detailed and deep understanding of the overall impact of miRNA-mediated
metabolic effects on various hallmarks of tumor is still required. In most of the studies
selected for this review, changes in specific miRNA were assessed by significant changes
in metabolic reprogramming and in tumor size or volume (increase or decrease). The
knowledge that these miRNAs regulate cancer metabolism was largely obtained on the
basis of in vitro cell culture and mouse models. Althoug, ~60% of mouse miRNA loci are
conserved in humans evolutionarily [226,227], the identification of a large proportion of
“species-unique miRNAs” [228] questions the accuracy of the knowledge of miRNAs ob-
tained on the basis of mouse models. Thus, the biological outcomes of these miRNAs need
to be re-examined in species-dependent and global contexts. To translate these miRNAs to
clinical trials, we also see the importance of non-rodent models, as the immunostimula-
tion triggered by oligonucleotides (miRNAs) is significantly different in nature in rodents
and primates. Though significant obstacles still lie in the way of using these miRNAs
in clinical practice, the results from rodent studies are promising, and two experimental
miRNA-based therapies are now listed on clinicaltrials.gov. Several other miRNAs are now
being tested in clinical trials. Most of them are in phase I and II. Together with the efforts
directed towards the generation of model systems, by exploring the facts of how miRNAs
regulate mCa2+ homeostasis, mCa2+-mediated metabolic shift, and mCa2+-mediated cell
death mechanism in cancer cells will further accelerate the identification of therapeutic
agents that target mitochondria to efficiently and robustly treat cancer.
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