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Analysis of Indoor Radon Data Using
Bayesian, Random Binning, and Maximum
Entropy Methods
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Piotr Kukulski5, Michael P. R. Waligórski6, and Ludwik Dobrzyński1

Abstract
Three statistical methods: Bayesian, randomized data binning and Maximum Entropy Method (MEM) are described and applied in
the analysis of US radon data taken from the US registry. Two confounding factors—elevation of inhabited dwellings, and UVB
(ultra-violet B) radiation exposure—were considered to be most correlated with the frequency of lung cancer occurrence. MEM
was found to be particularly useful in extracting meaningful results from epidemiology data containing such confounding factors. In
model testing, MEM proved to be more effective than the least-squares method (even via Bayesian analysis) or multi-parameter
analysis, routinely applied in epidemiology. Our analysis of the available residential radon epidemiology data consistently
demonstrates that the relative number of lung cancers decreases with increasing radon concentrations up to about 200 Bq/m3,
also decreasing with increasing altitude at which inhabitants live. Correlation between UVB intensity and lung cancer has also been
demonstrated.
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Introduction

A considerable number of epidemiology studies on low doses

of ionizing radiation has been focused on radon—a naturally

occurring radioactive gas. Knowledge of the influence of resi-

dential radon on human health, and especially on lung cancer

occurrence, is of significant social importance. In Europe, the

European Commission Directive 59/2013/EURATOM

(EURATOM 2013),1 to be implemented by all EU member

countries, has been driven by the conviction that radon

adversely affects the health condition of indoor inhabitants.

Therefore, this Directive specifies in detail the maximum leg-

ally permissible concentrations of radon in buildings—as dis-

cussed in a recent paper “Radon and lung cancer: What does

the public really know?”2

This particular concern with radon stems from a number of

epidemiology studies which have stated a positive

dose-response relationship, i.e. increase in lung cancer occur-

rence with increasing radon concentration.3-10 Several

radon-related legal requirements worldwide, including EU

member countries, have been based on the results of these

studies. However, in formulating these requirements authori-

ties in some of these countries have not considered several

other published studies where no radon-connected lung cancer

risk, or even a decrease of lung cancer incidence or mortality

with increasing radon concentration, have been found.11-15

In short, most researchers are convinced that radon exposure

at any level causes lung cancer, as clearly demonstrated at

higher radon levels in studies of miner populations. This is also

the position of international expert bodies, such as
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UNSCEAR.16 In distinct contrast to this opinion, Dobrzyński

et al17 in their meta-analysis stated that the analyzed data do not

permit such a conclusion to be made at environmental levels of

radon concentration. Moreover, according to a recent paper by

Scott,18 neither epidemiology nor case-control studies are able

to disclose the actual dose-effect dependence at low radon

concentrations. This conclusion supports our earlier findings.

Therefore, introduction of legislation which imposes remedia-

tion of houses even if relatively low levels of indoor radon

concentration are observed, will result in unnecessary expen-

diture at no discernible profit.

This divergence of results and lack of consistency between

individual studies make it very difficult to arrive at any con-

clusive and generally accepted opinion concerning the effect of

radon on human health. Moreover, several technical and inter-

pretative issues remain, creating additional biases to be

resolved.19 Therefore, we propose and apply 3 different meth-

ods of radon data analysis, namely:

� the Bayesian approach (either in its outlier-resistant,

robust form, or to determine the relative strength of the

proposed hypotheses—as measured by the ratio of their

posteriors, via Bayes factor),20

� randomized data binning (as applied to large numbers of

data points, to prevent data manipulation, possible in the

case of arbitrary binning choices), and

� the Maximum Entropy Method (to seek for any correla-

tion between parameters within a large volume of data).

By applying these methods, we made an attempt at resolving

some issues raised by classical ecological and case-control

epidemiology studies.

Methods

Bayesian Analysis

We have already applied a method based on Bayesian statistics

to analyze radon data.17,21,22 The Bayesian approach was used

there as a robust Bayesian regression method to find a unique

model best fitting the epidemiology data, and as a model selec-

tion procedure—to choose among models which fit the data

with the highest posterior probabilities2— by averaging the

likelihood of model parameter choices, using the prior

function.

The robust Bayesian regression method20,23 allows one to

fit the proposed function (curve) to all types of data. Here, the

term “robustness” relates to the sensitivity of the fitted para-

meters to outliers in the analyzed data. Of course, the Baye-

sian approach is not the only method to preserve robustness

of regression analysis: other Bayesian (and frequentist)

approaches to robustness may also be applied.24 However,

while the Bayesian method is quite demanding due to its

mathematical complexity, it has been selected having veri-

fied its power on phantom data.23 Fortunately, it is not nec-

essary to use the Bayesian method to analyze data which

show a regular trend. In such a case the results of Bayesian

regression should not differ from those obtained using clas-

sical least squares regression. On the other hand, application

of the Bayesian method is recommended in the analysis of

scattered data points or of data with apparent outliers. How-

ever, if this scatter is too large, there may be no advantage to

be gained by the Bayesian approach, as shown by

Reszczyńska et al.22

Within the Bayesian methodology, determination of the

validity of a given theoretical hypothesis T commences by

establishing the relationship between its prior and its posterior

probability functions, as a new set of experimental data, E, is

delivered:

Posterior T jE; Ið Þ ¼ const � L EjT ; Ið Þ � Prior T jIð Þ (1)

where L EjT ; Ið Þ denotes the likelihood function of obtaining

data E to support the validity of the hypothesis T, with any

available additional information I (such information must also

be included in the prior). This likelihood is simply the

well-known Gaussian function

L EjTð Þ * 1Y
i
si

exp � w2

2

� �
(2)

where w2 denotes the misfit function

w2 ¼
XN
i¼1

Ei � Tið Þ2

si
2

(3)

In Eq. (3). Ei and Ti denote experimental and theoretical

(expectation) values of the i-th datum, respectively, while si

denotes one standard deviation (equivalent to 68% confidence

interval) of the datum Ei. In other words, the T function, com-

posed of Ti points, is the expected best fit to experimental data

points Ei, in the simple form of linear regression, T¼ l0þ l1 x,

where values of l correspond to the sought parameters of

T.20,23

Minimization of the w 2 function with respect to the para-

meters (l) of the function T is known as the Least Squares

fitting procedure. To find such a minimum, the following set

of equations needs to be solved:

qw2

qlj
¼ �

XN
i¼1

2

si
2
Ei � Tið Þ qTi

qlj
¼ 0 (4)

for every parameter l.

If the declared values of si, abbreviated further by s0i, are

too small to explain the scatter of the data, one may suspect that

the real values of s (temporarily omitting the index i) differ

from those declared by the experimentalist. This may occur if

an experimental point is a so-called outlier, meaning that this

point departs significantly from the main trend of the data. If

this is the case, one should procure the probability of having a

more appropriate value of s to replace s0, which is essential in

the Bayesian approach. There are many ways to procure this

probability. As suggested by Sivia and Skilling,20 for such
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uncertainties one may decide to use a prior probability function

of the form:

p sð Þ ¼ s0

s2
for s � s0 (5)

The posterior probability function (called simply the poster-

ior) then becomes an integral:

Posterior T jEð Þ ¼
Zsmax

smin

L EjTð Þ p sð Þ ds (6)

where the proportionality constant has been omitted. Consid-

ering equations (2) and (5) for a single point i, the integral

(6) may be calculated analytically for smin ¼ s0 and

smax ¼ 120,23:

Pi ¼
s0i

Ei � Tið Þ2
ffiffiffiffiffiffi
2p
p 1� exp

� Ei � Tið Þ2

2s2
0i

 !" #
(7)

For a data set containing outliers, the robust Bayesian prob-

ability distribution given by Eq. (7) and a classical Gaussian

distribution given by Eq. (2), are compared in Figure 1.

After some mathematical operations, maximization of the

posterior leads to equation (4) with the weights 2=s2
i substituting

the factors gi which are dependent on the difference Ri¼Ei – Ti for

each of the i’th experimental point:

gi ¼
1

R2
i

2� o
eo=2 � 1

� �
(8)

where

o ¼ R2
i

s2
0i

(9)

To solve Eq. (8) an iterative procedure is required, usually

readily accomplished with a simple numerical algorithm

(Figure 2). As shown by Sivia and Skilling,20 if such an

approach is applied to a monotonically varying curve, the out-

liers lose their weights and the parameter values of the curve,

obtained according to the flow chart shown in Figure 2, are

very close to the true ones.

Sivia and Skilling20 have also shown that a change in the

prior, Eq. (5), to the so-called Jeffrey’s prior does not result in

any essential change of the final conclusions. Thus, such a

procedure can be used for radon analysis—where outliers are

frequently found—to determine proper values of the fitted

curve parameters, l ¼ {l1, l2, . . . , ln}, with their estimated

uncertainties sl ¼ {s1, s2, . . . , sn}. To make this procedure

effective, the number of outliers cannot exceed the number of

“true” points. Otherwise, distinction between these 2 classes of

points is not possible.23

Proper curve fitting is not the only advantage of the Baye-

sian method. Additionally, the Bayes theorem may connect the

probabilities of P(T|E) * P(E|T), which may then be used to

estimate the relative reliability (i.e., Bayes factors) of 2 theo-

retical models, Ts, if the same experimental data, E are

applied.25 The posterior probability (reliability) of a model T

with the fitting parameter l, using the marginalization proce-

dure can be written20 as:

P T jEð Þ / P EjTð Þ ¼
Z

P E;ljTð Þ dl ¼
Z

P Ejl;Tð Þ � P ljTð Þ dl

(10)

P(E|l, T) corresponds to the likelihood function of a single

model, represented by the Gaussian distribution around the

expected value l0 + sl with maximum probability of the

likelihood function equal to P(E|l0, T). The prior probability

P(l|T) can be assumed as a uniform distribution U(lmin,

lmax).
20 Because such form of P(l|T) is independent of l

(within its range), the integral (10) can be approximated by

P Ejl0;Tð Þ sl
ffiffiffiffiffiffi
2p
p

.20,25 As l0 corresponds to the parameter

found by the robust Bayesian best fit method for model

(curve) T (Figure 2), the maximum value of the likelihood

function P(E|l0, T) can be replaced by the set of Pi given by

Eq. (7) and the final form of the reliability function can be

approximated21 by:

P T jEð Þ / P EjTð Þ �
X

Pi �
sl

ffiffiffiffiffiffi
2p
p

lmax � lmin
(11)

Equation (11) corresponds, however, to the case where

model T has only one (n ¼ 1) fitting parameter, l0 + sl. In

the case of fitting n model parameters l¼ {l1, l2, . . . , ln} with

their estimated uncertainties sl ¼ {s1, s2, . . . , sn}, the most

general form of Eq. (11) can be presented21,25 as:

P T jEð Þ /
XN
i¼1

1

R2
i

1� exp �o
2

� �h i
�
Yn
j¼1

slj

ffiffiffiffiffiffi
2p
p

lmax � lminð Þj
(12)

Figure 1. Comparison between a robust Bayesian probability
distribution (Eq. (7)) and a classical Gaussian distribution for a given
exemplary set of experimental data points (shown above the plotted
distributions). This purely qualitative example shows that the robust
Bayesian regression method suppresses apparent outliers, while the
Gaussian distribution assigns equal significance to all data points.

Pylak et al 3



Here n represents the number of experimental points (xi, Ei)

with “vertical” uncertainties s0i each, to which model T is

fitted using n fitted parameters l+ sl. The selection of values

of lmin and lmax, for all ls is however quite difficult. In the

simplest case they may be taken as the smallest/largest possible

values of the considered parameter l using the highest span that

can be tolerated by the data.

In the final step of this analysis the Bayes factor is calcu-

lated for the 2 models, say A and B, to test which of them is

more likely to describe the data:

WT ¼
PðT ¼ AjEÞ
PðT ¼ BjEÞ (13)

where probabilities in Eq. (13) are composed of posterior

probabilities of models including their respective prior prob-

abilities. If WT is greater than 1, model A wins over B. If WT�1,

both models have the same credibility.21,25 This approach was

applied in our earlier meta-analyses of radon data.17,21,22

Randomized (Monte Carlo) Data Binning

In many epidemiological studies, especially in the so-called

pooled-studies and meta-analyses, several hundred or even sev-

eral thousand data points representing lung cancer risk against

radon concentration need to be analyzed. Many issues arise

when analyzing such large numbers of data points, such as

simply their readability or selection of suitable methods of

handling their statistical fluctuations. Most authors merge sev-

eral data points into a single value. This results in a reduced

number of bins or classes which, in the opinion of authors who

undertake such reduction, are much easier to read and more

practical in further data analysis, as far fewer merged data

points then need to be handled.3,9 By merging many data points

into single point values, one may apparently reduce their uncer-

tainty and considerably facilitate their analysis. However, any

claim that such aggregation is more practical is erroneous,

because every binning selection invariably leads to loss of

information.

Such a data merging process is illustrated in Figure 3, where

Figure 3A presents the original data of an ecological study of

the relative risk of lung cancer related to low radon concentra-

tions in Poland.26 The same data are presented in Figure 3B, but

now reduced to 4 points only by applying arbitrarily selected

binning ranges. The mean values of the slopes are different,

however, without any statistical significance.

In data analysis, data binning may be tempting, but may also

raise questions, not only connected simply with information

loss. For example, in the case of largHueD_Ref3e scatter of data

points, as generally observed in many radon studies, merging

data inevitably raises questions as to the manner according to

which data are binned: ranges of bins (ranges of radon concen-

trations or doses to lungs) need to defined and justified. Oth-

erwise, any bin selection may be considered to be subjective

and arbitrary.

Proper binning is of crucial importance if a model (function)

is to be fitted to such merged data points, because it opens the

gate to data manipulation. For example, in a recent paper,22 we

demonstrated the case of establishing best linear fits to data

originally described in the meta-analysis by Dobrzyński et al,17

using 2 different data binning selections. This clearly demon-

strates the importance of proper binning: after one choice of

binning a linear increase is favored, while after a different bin

selection, favored is a linear decrease (Figure 4). Note that in

Figure 2. Numerical algorithm of robust Bayesian regression analysis.
The parameter E should be as low as possible, however, in practice it
suffices that E is approximately one order of magnitude smaller than
the significance of l.
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both cases, the same original 32 case-control data underwent

analysis—the only difference being in bin selection.

Figure 4A and B present the best linear (2-parametric) fits

using the classic least squares method.22 One should note that

the difference between values of the slopes of these 2 fitted

lines is not statistically significant—thus supporting the gen-

eral conclusion drawn by Dobrzyński et al17— irrespective of

the manner of bin selection. Nevertheless, depending on the

choice of binning strategy, widely differing conclusions may be

drawn, despite their weak statistical significance.

The example presented in Figure 4 clearly shows that bin-

ning selection may lead, even unintentionally, to misinterpreta-

tion of data—2 completely different conclusions may be drawn

from analysis of the same data set. Therefore, the simplest

solution is to avoid data binning and to fit the model to the full

set of original data. However, as mentioned above, this may not

be possible or be impractical for other reasons. Therefore, the

choice of proper binning needs to be justified by verification of

the sensitivity of the final result on bin selection.

The most objective and appropriate way is then to analyze

every possible ordinary binning and to verify which bin selec-

tion is most representative. However, with sets containing hun-

dreds of data points, the only way to analyze such data is by

numerical randomization, e.g. by applying Monte Carlo

techniques.

The proposed methodology is quite simple and consists of a

few numerical steps, as illustrated by the flowchart in Figure 5:

� select a random number of bins, which should be less

than the number of data points;

� select at random the borders (ranges) of bins (verifying

that this selection of bins has not been made earlier);

� gather data points within each bin into a single point

value with its proper uncertainty (inverse-variance

weighting);

Figure 4. A re-analysis of 32 case-control data points listed by Dobrzyński et al,17 excluding ecological data, after merging groups of experi-
mental points into single values within bins under arbitrarily defined boundaries: (A) bin ranges (Bq/m3): 0-37, 37-50, 50-75, 75-125, 125-175,
175-270 and 270-800, resulting in a positive slope fit (“pro-LNT” conclusion); (B) bin ranges (Bq/m3) 0-37, 37-53.5, 53.5-65, 65-100, 100-124,
124-150.1, 150.1-200, 200-600 and 600-800, resulting in a negative slope fit (“pro-hormetic” conclusion). In both cases, the same input data were
used.22

Figure 3. Ecological data on the relative risk [%] of lung and bronchus cancers, versus low concentrations [Bq/m3] of radon in Poland26:
(A) original data, (B) data merged to 4 points after arbitrarily selected binning (bin ranges: 0-33, 33-45, 45-70 and above 70 Bq/m3). The slopes, a,
of the linear (1þax) fits are (�0.177 + 0.134) [Bq�1 m3] and (�0.260 + 0.141) [Bq�1 m3] for plots (A) and (B), respectively. All uncertainties
(both vertical and horizontal) represent one standard deviation.

Pylak et al 5



� use Orthogonal Distance Regression to fit the same

appropriate model (curve) to the new set of binned data

points, after merging points in all bins;

� plot the fitted parameters (e.g., in the form of a

histogram of slopes, in the case of a linear fit);

� repeat all above steps, ensuring that every possible

binning was analyzed, within the available computing

power.

The Maximum Entropy Method

Lung cancer may be caused not only by radon alone, but also

by many other factors, acting independently or synergistically

with radon. Thus, in the interpretation of lung cancer versus

radon concentration epidemiology data, confounding factors

should be taken into account. Simeonov and Himmelstein27

estimated the relative strengths of various correlations between

lung cancer and factors other than radon, indicating the pres-

ence of a strong correlation between radon concentration,

altitude at which inhabitants lived, and the level of UVB.27 It

is clear that within a sufficiently narrow range of altitudes, any

correlation with radon concentration should be weak. One

could then undertake an analysis of lung cancer versus radon

concentration over such a limited height region. However, if

such an analysis were to be carried out, the number of

“experimental” points should be sufficient to achieve a reliable

result. In a similar fashion, one could limit the ranges of other

parameters (elevation and/or level of UVB) in a thus stratified

analysis of lung cancer versus radon concentration.

Although the above methodology, employed in our recent

paper,22 appears to be simple, in reality one has to consider the

scatter of points with respect to their claimed accuracy, which

may lead to questionable final results. Therefore, we decided to

use the Maximum Entropy Method (which is also, as described,

a Bayesian method20) to analyze cancer probability against 2

simultaneous parameters, i. e. radon concentration and altitude,

or radon concentration and level (intensity) of UVB. Here, we

first made an attempt to verify whether the correlation of lung

cancer with the level of UVB (irrespectively of altitude) and

radon concentration, given in the paper by Simeonov and Him-

melstein,27 is—or is not—essential to contract lung cancer. We

first performed this verification in a manner described earlier.22

In our second step, we also took the inaccuracy of the input data

into account. Full details of this non-standard procedure are

given in the following paragraph.

Maximum entropy approximation procedure. Approximation

algorithms, commonly applied in data analysis, are usually

based on minimization of some metric value (e.g., least-

squares) with respect to the coefficients of an a priori assumed

function. Being very useful in most cases, this approach how-

ever fails if no trivial form of the approximating distribution is

known. Moreover, any assumption of a specified analytical

form of this approximating distribution function introduces

some bias and may lead to non-physical artifacts.

The Maximum Entropy Method used here, is free from

such drawbacks. Having the set of nodal points {ri} (in

D-dimensional space) in which the measured values of the

function are equal to {fi}, approximation at point r within the

convex hull (ConvH) span by the nodes {ri} may be defined via

the transformation:

g rð Þ ¼
XN
i¼1

si rð Þ � f i (14)

The functions si(r), for a given vector r, assume the role of

weights for fi values and are called shape functions. Reprodu-

cing the reasoning of Arroyo and Ortiz,28 si(r) functions are

chosen to be positive and to maximize the information entropy:

S rð Þ ¼ �
XN
i¼1

si rð Þlog si rð Þð Þ (15)

Figure 5. Algorithm of the random binning procedure which delivers
a histogram of fitted parameters and their distribution.

6 Dose-Response: An International Journal



A normalization condition must also be observed:

8r 2 ConvH :
XN
i¼1

si rð Þ ¼ 1 (16)

as well as the so-called first consistency condition:

8r 2 ConvH :
XN
i¼1

si rð Þ � r i ¼ r ,
XN
i¼1

si rð Þ � r i � rð Þ ¼ 0

(17)

which is introduced to reproduce affine functions. The 2 forms

of Eq. (16) are equivalent as long as the shape functions form a

normalized base. It should also be apparent that the value of

this shape function at any given point r becomes its expected/

expectation value. Taking these 2 additional constraints into

account, one may seek the maximum of the Lagrange function:

L ¼ �
XN
i¼1

si rð Þlog si rð Þð Þ � l1

XN
i¼1

si rð Þ � 1

 !

�l2

XN

i¼1si rð Þ � r i � rð Þ ð18Þ

In general, the dimension of the l2 vector is equal to the

dimension of r. The shape function si maximizing the above

functional, given in exponential form, is:

si rð Þ ¼
e�l2 r i�rð Þ

Z r ; l2ð Þ (19)

with Z r ; l2ð Þ ¼
PN

i¼1e
�l2 r i�rð Þ being the partition function. It

can be shown that the vector of Lagrange’s multipliers should

be chosen in such a way that the free energy for each point r is

minimized independently:

F l2½ � ¼ logZ r ; l2ð Þ (20)

Minimization of the functional given by Eq. (20) is equiv-

alent to fulfilment of the first consistency condition. However,

from the technical point of view, numerical minimization is

usually easier than numerical solution of a set of nonlinear

equations.

Having obtained the vector l2, one can find the shape func-

tions si and, finally, approximate the value of the distribution g(r).

The above-described procedure applies to a uniform prior

distribution of the shape functions. This allows the obtained

distribution g(r) to be the flattest possible (according to the

maximum entropy principle). However, in some cases, if

Gaussian prior shape functions are chosen with arbitrary

widths, β, centered at a given nodal point, then29:

si rð Þ ¼
e�l2 r i�rð Þ�βðr i�r Þ2

Z r ; l2; βð Þ (21)

Although β can be treated as the next parameter of mini-

mization, in most cases it is fixed. Tuning this multiplier allows

one to better reproduce the experimental intensities, given by

the set {fi}, simultaneously eliminating experimental noise. In

this approach β is not universal, but depends on the uncertainty

si of the i-th intensity fi and the point spacing (Dx; Dy):

βi ¼ si Dx;Dy½ �ð Þ�1, where Dx and Dy denote the components

of ri-r. One may observe that points with relatively small

experimental error are incorporated within the peaked

Gaussian form, while very uncertain points are “smeared-out”

over many neighbors.

Results

Randomized Data Binning

To verify the above-presented method of randomized (Monte

Carlo) data binning, this approach was applied to the

32 case-control and 2 ecological studies presented and

re-analyzed in the paper by Dobrzyński et al.17 In this case, a

linear fit with a fixed Y axis intersection, i.e. the function

RR ¼ 1 þ a�D, was used, and every slope parameter (a value)

obtained was plotted in the form of a histogram. This histogram

(Figure 6) demonstrates that in practice only negative trends

(a < 0) are possible, displaying a maximum at about�0.00037.

This is yet another demonstration of the need for caution when

selecting data bins, as the choice of binning may bear upon the

final conclusion of such an analysis. Note that the

above-described method not only shows which value (here,

of the slope parameter) appears most frequently, but also what

is its most likely distribution.

Following a similar analysis of the case presented in

Figure 3A, the resulting distribution of slope parameters is

represented by the histogram in Figure 7. In this case, however,

3 possible general trends occur, all with negative slope values.

Figure 6. Histogram of slope values of linear fits (RR ¼ 1 þ a�D) to
data of the 34-study meta-analysis by Dobrzyński et al.17 100,000
Monte Carlo iterations of randomly selected binning (cf. Figure 5)
were performed.

Pylak et al 7



Maximum Entropy Method

In our last paper (Reszczyńska et al)22 the isocontours of lung

cancer morbidity in the plane altitude-radon concentration, cal-

culated for all UVB regions, were displayed for low, medium

and heavy smoking prevalence. In Figure 8 we show similar

isocontours (maps) in the plane UVB level—radon concentra-

tion, calculated for all altitudes and all inhabitants. In all these

cases, the accuracy of “experimental” points was not taken into

account. Maps for low smoking prevalence are not shown

because too few data points were available to carry out a

reasonable 3-dimensional analysis.

It was shown (Reszczyńska et al)22 that at any altitude at

which people live, one observes a decrease of lung cancer

morbidity with increasing radon concentration. This is defi-

nitely a new and important piece of information, contradicting

the conclusion of Simeonov and Himmelstein.27 The apparent

maximum of morbidity at UVB levels of about 1000-1100

kJ/m3 is puzzling. This effect was neither shown nor discussed

by Simeonov and Himmelstein.27

In what follows, we show results obtained with the same

algorithm as that used earlier (Reszczyńska et al)22—therefore

called the “Original maxEnt.”

Figure 9 displays maps of the distribution of lung cancers,

versus elevation and radon concentration. Were correlation

between the intensity of UVB and the altitude full, Figures 8

and 9 should bear the same information. However, the datasets

in both cases are slightly different, so presentation of both

figures seems appropriate. In addition, in Figure 9 the location

of “experimental” points is shown. Taking into account their

density distribution, one may appreciate the strength of the

Maximum Entropy Method in the reconstruction of 3D maps.

If uncertainties of the data, Eq. (21), are taken into account,

following the above-presented procedure, one obtains maps

shown in Figure 10.

Clearly, larger differences are seen in maps related to low

smoking prevalence. This is due to the limited number of data

points. Therefore, in what follows, these data are not included.

Nor should one treat data points close to the border lines as

being meaningful.

As mentioned earlier, accounting for data uncertainties is

not trivial. The only solid information available is the relative

number of lung cancers, for which it is possible to calculate

uncertainties in the manner shown earlier (Reszczyńska

et al).22 In fact, such an analysis, using Eq. (8), was carried out

for the following set of (Dx; Dy) (in Bq/m3 and km, respec-

tively): {(2.25; 0.03), (2.25; 0.06), (5.0; 0.03), (5.0; 0.06)}.

Such a multitude of reconstructions allows one to verify the

sensitivity of the major features of the reconstructed maps on

the selected parameters.

In the case of high and medium smoking prevalence, one

may infer from Figures 9 and 10 that incorporation of uncer-

tainties does not substantially distort these maps. In particular,

the maps distinctly show that the number of lung cancers

decreases with elevation, while for any elevation a decrease

of lung cancers with radon concentration is observed. This

conclusion is supported by independent analysis of the data for

men and women, cf. Figure 11.

As seen in Figure 11, in the case of men alone our conclu-

sions are the same as for those where results for men and

women together are displayed. However, the maps for women,

especially living in areas with high prevalence of smoking, are

quite different from those for men: a decrease of lung cancers

with radon concentration is seen, however less evident if alti-

tude is also considered.

On the Distribution of Radon Concentration

In order to proceed further with data analysis, we verified the

distribution of radon concentration at any altitude. One may

expect it to follow a log-normal distribution, due to several

factors affecting radon accumulation inside and outside the

inhabitant’s dwelling. Regional distributions must represent the

sum of a multitude of local distributions, and, according to

the British Health Protection Agency, local distributions should

also be represented by log-normal distributions. Simeonov and

Himmelstein27 have verified that this is indeed the case for

indoor radon concentrations, within the Lawrence Berkeley

National Laboratory High-Radon Project. The distribution they

obtained is presented in Figure 12. It acquires the form of a

Gaussian distribution if plotted versus logarithm of radon

concentration. Thus, one may state that the observed distribu-

tion is close to log-normal. Within the framework of our data

analysis, any deviations from the assumption of a log-normal

distribution of radon concentration are not expected to seri-

ously affect our conclusions.

One should note that relative uncertainty values in the mea-

sured radon concentrations, proportionately larger at lower

radon concentration ranges, may affect the shape of the plotted

distribution.

Figure 7. Histogram of slope values of linear fits (RR ¼ 100% þ a�D)
to data of the ecological Polish study,26 cf. Figure 3A. 2000 Monte
Carlo iterations of randomly selected binning (cf. Figure 5) were
performed.
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There are several reasons for the difficulty in estimating the

uncertainty of radon concentration. From the result given in

Figure 12 in terms of the logarithm of radon concentration,

estimation of any median, with 68% CI (confidence intervals),

will result in a median value ranging between 0.5 to 2.0 times

the original (linear) value. To improve on this rather crude

approach, one could perhaps use the Bayesian approximation,

as described, e.g. by Price et al.30 However, due to the asym-

metrical nature of the resulting linear uncertainties, if linear

regression is carried out without taking these asymmetric

ranges of uncertainties into account, the resulting slope of the

regression-fitted line will not be fitted correctly.

Discussion

Our analysis, which dealt mainly with ecological data on lung

cancer incidence in the US, provided by Simeonov and

Himmelstein,27 has not been principally addressed at precisely

establishing radon-induced risks of lung cancer incidence or

mortality. Rather, our focus was on refining methodological

approaches to extracting as much information as possible from

the available data and to drawing the most likely rational con-

clusions, in view of the presence of confounding factors. The

ecological data set gathered by Simeonov and Himmelstein27 is

the best available and presents the global aspects of lung cancer

over the territory of US, irrespective of individual fates or their

detailed cases. While the uncertainties in the number of lung

cancers may be readily calculated basing on the number of

inhabitants over given regions or areas,22 accounting for the

effect of confounding factors, especially smoking, on the

uncertainty of the final result is much more complex. Simeonov

and Himmelstein27 suggested 3 main factors to be strongly

correlated with lung cancer, namely radon concentration, alti-

tudes where people live, and to a lesser extent, the level of

Figure 8. Maps of lung cancer morbidity versus UVB level (in kJ/m3): (A) radon concentration plane for the whole analyzed population, (B)
medium smoking prevalence, (C) high smoking prevalence. All altitudes have been taken into account. The color bar below every figure shows
the morbidity of lung cancer per 100,000 inhabitants. The Maximum Entropy Method with its Eq. (19) was used.
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UVB. Generally, the dose of ionizing radiation goes up as a

function of elevation as well as UVB. Additionally, in their

data, smoking prevalence has been classified only within 1 of

3 categories: high, medium or low. In our previous study

(Reszczyńska et al),22 we generally followed their classifica-

tions with some slight modification. By applying, presumably

for the first time, the Maximum Entropy Method to the data of

Simeonov and Himmelstein,27 we found a decrease of lung

cancer morbidity with increasing radon concentration at any

altitude of inhabitation. This is definitely a new and important

piece of information which contradicts their conclusions. This

method also yielded an apparent maximum of morbidity at

UVB levels of about 1000-1100 kJ/m3, a puzzling result, nei-

ther shown nor discussed by these authors. It should be noted

that the Maximum Entropy Method treats all parameters as

being independent—no correlation of these parameters is

assumed in the algorithm.

Undoubtedly, interpretation of ecological data is not easy. In

particular, the problem of confounding factors is very difficult

to handle, casting serious concerns as to the reliability of the

resulting dose-effect dependences. A classic example is the fate

of the well-known ecological work of Cohen.12 By examining

the correlation between cancer mortality and radon concentra-

tion within over 1700 counties in US, Cohen demonstrated that

lung cancer mortality clearly decreases with increasing envi-

ronmental radon concentration—a conclusion which dramati-

cally challenged the widely accepted LNT (Linear-No

Threshold) paradigm.12 In response to criticism of his

work,31,32 Cohen submitted an elaborate mathematical analysis

accounting for up to 50 confounding factors and confirming the

Figure 9. Distribution of lung cancers, versus elevation and radon concentration, for men and women taken together. (A) Low smoking
prevalence, (B) medium smoking prevalence, and (C) high smoking prevalence. Dots in these plots represent the positions of points, as given in
the catalog of Simeonov and Himmelstein.27 Elevation is in kilometers. “Original MaxEnt” represents Eq. (19).
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general conclusions of his original paper. On the other hand,

certain inherent limitations of such ecological analyses should

be noted. For example, in the context of Cohen’s analysis,

Puskin32 found negative correlations between radon concentra-

tion and county-level rates for smoking-related cancers other

than radon. Nevertheless, expert bodies, including

UNSCEAR,16 decided to side with Cohen’s critics, in effect

completely ignoring the results of Cohen’s analysis. The case

studies of Thompson et al,11,33 Becker,13,34 Bogen,35,36

Krstić37 or Sanders,38 and the more recent studies of Cuttler39

or of the University of Oslo biophysical group40 have not chan-

ged this situation either, as may be inferred, e.g. from a recent

paper by Malinovsky et al.9 One has to bear in mind that in all

studies discussed so far, the set of confounding factors was

more or less the same. Nilsson and Tong41 extensively discuss

the well-known results of Darby et al3 and of Krewski et al,42

cited by many researchers and also by UNSCEAR,16 to show

that the general acceptance of risk of lung cancer morbidity

increasing with radon concentration even at low doses, may be

flawed, as many confounding factors have so far not been

considered. Among those factors, there is general consensus

that the main cause of lung cancer is smoking. However, espe-

cially in uranium miners subjected to high radon doses,15

strong correlation with radon concentration was observed—

namely, exposure to radon together with cigarette smoking,

significantly increased their cancer rate,. It is intriguing that

inclusion of smoking as a confounding factor did not make

Cohen’s12 conclusions qualitatively different. In turn, Krstić37

in Figure 2 of his paper showed by performing linear regression

of WHO43 and OECD44 data, that for non-smokers, lung

Figure 10. Distribution of lung cancers, versus elevation and radon concentration with uncertainties taken into account and (Dx, Dy) ¼ (5.0,
0.06). The order and description of maps is the same as that in Figure 9. The only difference is in the use of Eq. (21) in the reconstruction.
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cancers decrease with increasing radon concentration. In his

work, Krstić37 also pointed to other relevant confounding fac-

tors, such as proper diet, environmental tobacco smoke, asbes-

tos or arsenic in drinking water.

The correlation we suggest between lung cancers and UVB

intensity should be confronted with data published by Boscoe

and Schymura.45 In their work, values of UVB intensity of

were acquired from aerial (satellite) measurements and fre-

quencies of many different types of cancer were considered,

however lung cancers were not included. Thus, one may concur

with Simeonov and Himmelstein27 that UVB intensity could

appear as a predictor of lung cancer merely due to its correla-

tion with e.g. altitude, thus supporting the conclusion of

Hayes.46 However, what we show here is a more general view,

namely that a negative correlation between lung cancers and

elevation is observed at any UVB level. As shown in Figure 8,

at any given UVB intensity (or height), lung cancer frequency

tends to decrease with increasing radon concentration.

Our application of Bayesian approaches, with respect to

linear regression and to the application of the Bayes factors

of proposed hypotheses, applied to the data of Simeonov and

Himmelstein27 has followed our earlier work and is discussed

in more detail elsewhere.22 Here we can only stress once again

that, due to the large scatter of data points, the uncertainties of

the values of parameters, such as the slopes of the best-fitted

straight lines may be larger than those estimated from pure

statistics. In fact, many slope values of straight lines may be

fitted to such data equally well. Following Bayesian logic, most

likely is the simplest hypothesis—namely that no effect of radon

concentration on cancer occurrence is observed over the radon

concentrations covered by these data. This is generally consis-

tent with our earlier findings17,21 where the Bayesian statistics

Figure 11. Distribution of lung cancers versus elevation and radon concentration for men in regions with medium (A) and high (B) smoking
prevalence. (C) and (D) Show distributions for women, using the same convention as that for men. Elevation is in kilometers.
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approach was used for radon data analysis for the first time. The

trend we actually observed and which also follows from the

present paper, namely a decrease of lung cancer morbidity with

radon concentration, may be confirmed or disproved only if

better methods of handling the present data are elaborated—or

if new surveys, better accounting for the various confounding

factors (especially for smoking patterns) are carried out.

We believe to have convincingly shown the importance of

proper data binning and the evident effect of binning on the

interpretation of the final results. We discussed at length the

possible consequences of binning data, with respect to selection

of intervals of radon concentrations over which the number of

lung cancers is measured and averaged within the chosen bin

interval. Indeed, binning is often justified as being a more

practical aggregation of data points. This is definitely mislead-

ing, since the apparent simplicity of compressing individual

values to frequencies of (coarser) intervals inevitably leads to

loss of information and introduces a definite bias. In fact, such

binning cannot reduce the uncertainty of model selection. It is

intuitively quite clear (and can be strictly proven on theoretical

grounds) that the binned data (and analyses based on such data)

are inferior to those based on original non-aggregated data.

Modern statistical approaches should aim at quantifying such

loss of information and at accounting for such loss within any

data analysis undertaken. This is not merely a theoretical

consideration—information contained within a bin can be

extremely useful in initial model selection (testing of hypoth-

eses) and in assessing whether the model may adequately

represent the data set (lack of acceptable fit may then be

signalled, even if a perfect fit to the binned data points is

achieved). Data point binning and the consequences of their

aggregation are complex issues which involve not only the

introduction of unspecified biases but also introduce more

subtle distributional features, leading to changes in variability

in both directions—potentially leading to either false positive

or false negative results of testing hypotheses. Therefore, we

have proposed a computationally straightforward method

which may potentially demonstrate whether the tested binning

could generate false conclusions. We also pointed to the diffi-

culty of proving that any particular choice of binning intervals

may be optimal, proposing instead either no binning, or, if this

is impractical, randomized bin selection using the Monte Carlo

technique, to indicate the most frequent (or likely) outcome. In

this manner, it is possible to seek the dominating trends in the

slopes of the resulting best-fitted lines (models). In one exam-

ple of our analysis of combined case-control and ecological

data, practically all randomly selected bin configurations

yielded a distinct negative slope value trend, as shown in

Figure 6, lending strong statistical support for such a conclu-

sion. On the other hand, several trends in slope value (local

maxima) may occur as a result of randomized binning, such as

in the case of the Polish ecological study (Figure 7), indicating

no single preference in the random binning process. However,

since all 3 slope value trends in that figure are negative, at least

the negative sign of the slope of the model line is established

well enough. To summarize, stringent analysis of the binning

process and its correct and objective selection appear to be of

crucial importance in objective data analysis. To illustrate this

point, Malinovsky et al,9 having reduced all their data into

4 bins only, calculated their weighted median values of ORs

(Odds ratios), obtaining an OR of 1.35 with impressive cred-

ibility (P < 0.0001) for their highest median radon concentra-

tion of 283 Bq/m3. In our recent paper (Reszczyńska et al)22 we

contested their work and their conclusions. Indeed, as pointed

out by Scott,18,47,48 if one considers the variability of natural

background measurements, an OR value of 1.35 may not be

realistic, which supports our view. Much higher Nor may radon

concentrations of the order of 10 kBq/m3, considered by

Malinovsky et al,9 may be detrimental to human health, but,

as evidenced by the well-being of inhabitants of radon-rich

areas, this is not always the case in areas where radon concen-

trations up to 31 kBq/m3 have been consistently measured.49-51

However, at high radon concentrations (>1000 Bq/m3), practi-

cally all case-control and epidemiological studies support its

detrimental effect to human health.10,16

We have presented in considerable detail the Maximum

Entropy Method as applied to handling confounding factors

in radon data analysis, such as simultaneous analysis of

2 (i.e., lung cancer versus radon concentration and altitude)

or more factors (i.e., additionally, against smoking prevalence).

This method was very likely used for the first time in the

analysis of radon epidemiology data. The Maximum Entropy

Method not only replaces typical multi-parameter analysis

where the effect of confounding factors is described by linear

dependences, but also allows more complex relationships to be

Figure 12. Log-normal distribution of radon concentration at any
altitude.27 The fitted Gaussian shows that the median concentration
of naturally occurring radon is 47.3 Bq/m3 within 68% CI (23.8-93.7
Bq/m3) and 95% CI (12.0-185.9 Bq/m3).
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considered. In fact, our development of this novel approach

was stimulated by the view of Simeonov and Himmelstein27

that the negative correlation between lung cancers and concen-

tration of radon is due to the strong dependence of lung cancers

on the altitude of inhabitants—as based on their linear

multi-parameter analysis. By applying our Maximum Entropy

analysis to their data set, we reconfirmed our earlier statement

that lung cancer morbidity decreases with altitude, and that at

any altitude lung cancer morbidity systematically decreases

with increasing radon concentration. Unfortunately, lack of

sufficient detail on smoking prevalence in the data set of

Simeonov and Himmelstein,27 precluded any more detailed

Maximum Entropy analysis of smoking as a confounding fac-

tor. While grouping of the smoking prevalence in their data

only into 3 (high, medium or low prevalence) categories lim-

ited our analysis, we did not observe any significant difference

between the effects of high or medium smoking habits. We

were also able to show that women are less susceptible to

smoking-related lung cancer than men (Figure 11). It is unfor-

tunate that this data set does not permit a more definitive anal-

ysis of the dependence of lung cancer morbidity on smoking—

with or without radon—to be performed. In summary, we con-

test the opinion of Simeonov and Himmelstein27 that any

decrease of lung cancer occurrence with increasing radon con-

centration is merely due to the correlation between all 3 con-

founding parameters considered. In fact, it is known that the

level of radon concentration increases with increasing alti-

tude.52 Thus, radon concentration is the leading factor in the

analysis of lung cancer morbidity. Our results demonstrate that

the Maximum Entropy Method, as applied to the available

epidemiology data, rationally weighs over the scattered data

and provides us with results more meaningful than those deliv-

ered by the classical least-squares method, or even by both

Bayesian approaches.

Our interest in studying the risk of cancer at residential

radon concentrations below about 200 Bq/m3, corresponding

to annual effective doses of some 5 mSv or less, or due to

radon-induced doses received by radon spa visitors (presum-

ably for curative purposes53), inevitably leads us to the issue of

linear extrapolation from higher radon concentrations, i.e. to

the Linear-no Threshold (LNT) hypothesis, versus other mod-

els (threshold or hormesis). Our consistently observed decrease

of lung cancer morbidity with increasing radon concentration,

albeit not statistically significant, supports the findings of

Cohen12 and concurs with the recent work of Pennington and

Siegel54 who support the threshold model against the scientifi-

cally unfounded LNT. In their 2015 paper, Cuttler and San-

ders55 postulate that the threshold for radon-induced lung

cancer may be as high as 2100 Bq/m3—an order of magnitude

higher than the 200 Bq/m3 range considered here. The thresh-

old model in the more general case of radiation-induced cancer

is also strongly supported by Pennington and Siegel.54 More-

over, the Schneeberg study by Martin,56 also discussed by

Henriksen40 concerns radon concentrations as high as

1000 Bq/m3 and indicates no adverse effects, which would lend

support to the threshold model.

Conclusions

Residential radon data from US registries27 were analyzed

using various methods with particular emphasis on the Maxi-

mum Entropy Method, applied in this work for the first time. In

summary, we arrive at the following conclusions:

1. Binning of original data should be carefully thought

through, as it may significantly affect the final conclu-

sions of the analysis. Randomized binning using Monte

Carlo techniques may indicate the most likely trends in

reaching such conclusions. An example of the possible

outcomes of such data binning were presented for the

Polish radon ecological study.26

2. The immanent scatter of residential radon data requires

that more advanced statistical tools be applied, such as

the robust Bayesian regression method with model

selection, or the Maximum Entropy Method. Our

3-parameter analysis by the Maximum Entropy Meth-

ods shows that an increased concentration of radon (at

least up to about 200 Bq/m3) does result in lowering

lung cancer risk irrespectively of altitude (up to 3000 m

above sea level) and of UVB intensity. This qualita-

tively supports the results of Cohen.12

3. The highest incidence of lung cancers is found over

areas at which the UVB level is close to 1000 kJ/m3,

and the level of radon concentration is relatively low.

4. On application of more advanced statistical tools in the

analysis of radon data, the widely postulated and legally

enforced linear no-threshold (LNT) increase of lung

cancer risk with radon concentrations up to several hun-

dred Bq/m3, is not supported by the presented analysis

of officially approved and distributed data.
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25. Fornalski KW, Dobrzyński L. The robust Bayesian approach to

the model selection algorithm. JSMS. 2015;1(1):8-12.

26. Szołucha MM, Fornalski KW. The cancer mortality and incident

studies due to the natural background radiation in Poland. Int

J Low Radiat. 2018;11(1):1-22.

27. Simeonov KP, Himmelstein DS. Lung cancer incidence decreases

with elevation: evidence for oxygen as an inhaled carcinogen.

Peer J. 2015;3:e705. doi:10.7717/peerj.705

28. Arroyo M, Ortiz M. Local maximum-entropy approximation

schemes: a seamless bridge between finite elements and meshfree

methods. Int J Numer Meth Eng. 2006;(65):2167-2202.

29. Kumar S, Danas K, Kochamnn DM. Enhanced local maximum-

entropy. Com Meth Appl Mech Engng. 2019;344:858-888.

30. Price PN, Nero AV, Gelman A. Bayesian Prediction of Mean

Indoor Radon Concentrations for Minnesota Counties. University

of California; LBL-35818 UC-402. Published 2005. https://escho

larship.org/uc/item/41m4089f

31. Heath CW Jr, Bond PD, Hoel DG, Meinhold CB. Residential

radon exposure and lung cancer risk: commentary on Cohen’s

county based study. Health Phys. 2004;87(6):647-655.

32. Puskin JS. Smoking as a confounder in ecologic correlations of

cancer mortality rates with average county radon levels. Health

Phys. 2003;84(4):526-532.

33. Thompson RE. Epidemiological evidence for possible radiation

hormesis from radon exposure: a case-control study conducted in

Worcester, MA. Dose Response. 2011;9(1):59-75.

34. Becker K. One century of radon therapy. Int J Low Radiat. 2004;

1(3):333-357.

35. Bogen KT. A Cytodynamic Two-Stage Model That Predicts

Radon Hormesis (Decreased, then Increased Lung-Cancer Risk

vs. Exposure). Lawrence Livermore National Laboratory; 1996.

Preprint UCRL-JC-123219.

36. Bogen KT. Mechanistic model predicts a U-shaped relation of radon

exposure to lung cancer risk reflected in combined occupational and

U.S. residential data. Hum Exp Toxicol. 1998;17(12):691-696.
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