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ABSTRACT: Staphylococcus aureus is one of the most dangerous nosocomial pathogens which cause a wide variety of hospital-
acquired infectious diseases. S. aureus is considered as a superbug due to the development of multidrug resistance to all current
therapeutic regimens. Therefore, the discovery of antibiotics with novel mechanisms of action to combat staphylococcal infections is
of high priority for modern medicinal chemistry. Nowadays, aminoacyl-tRNA synthetases are considered as promising molecular
targets for antibiotic development. In the present study, we used for the first time S. aureus threonyl-tRNA synthetase (ThrRS) as a
molecular target. Recombinant S. aureus ThrRS was obtained in the soluble form in a sufficient amount for inhibitor screening assay.
Using the molecular docking approach, we selected 180 compounds for investigation of inhibitory activity toward ThrRS. Among the
tested compounds, we identified five inhibitors from different chemical classes decreasing the activity of ThrRS by more than 70% at
a concentration of 100 μM. The most active compound 2,4-dibromo-6-{[4-(4-nitro-phenyl)-thiazol-2-yl]-hydrazonomethyl}-phenol
has an IC50 value of 56.5 ± 3.5 μM. These compounds are not cytotoxic toward eukaryotic cells HEK293 (EC50 > 100 μM) and can
be useful for further optimization and biological research.

■ INTRODUCTION

Staphylococcus aureus is an opportunistic Gram-positive
pathogen that causes a wide range of hospital-acquired
human diseases ranging from skin infections and abscesses to
much more severe endocarditis, osteomyelitis, pneumonia,
meningitis, sepsis, and so forth.1−8 The major problem of
staphylococcal infection treatment is the multidrug resistance
to all antibiotics currently used in clinic, including methicillin,
vancomycin, daptomycin, and linezolid.9−15 Therefore, the
development of antistaphylococcal agents with novel mecha-
nisms of action is of urgent need.
Nowadays, aminoacyl-tRNA synthetases are recognized as

promising molecular targets for antibiotic development.16−18

Aminoacyl-tRNA synthetases are key enzymes in protein
synthesis which ligate amino acids to cognate transfer RNAs
being involved in the early stages of translation of the genetic
code. Most living cells possess 20 aminoacyl-tRNA synthetases
for each of the standard amino acids. These enzymes are
divided into two classes, class I and class II, which have
different folds of catalytic domain and different preferences for
the hydroxyl group of the tRNA.19,20 Aminoacyl-tRNA

synthetases possess some structural divergence in prokaryotic
and eukaryotic organisms which increases the possibility for
development of selective inhibitors toward enzymes from
pathogenic microorganisms in comparison with human
homologues. Aminoacyl-tRNA synthetases are conservative
among bacteria, suggesting that compounds targeting these
enzymes may demonstrate a wide range of antibacterial
activity. A number of available crystal structures of amino-
acyl-tRNA synthetases provide a basis for receptor-based drug
design and virtual screening. Aminoacyl-tRNA synthetases are
well expressed in the soluble form and can be used for high-
throughput screening. Threonyl-tRNA synthetase (ThrRS) is a
promising molecular target for malaria treatment.21,22 For
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example, borrelidin, polyketide macrolide, isolated from
Streptomyces species, is a potent inhibitor of ThrRS from
Plasmodium falciparum.23,24 Due to high toxicity of this
compound, a series of borrelidin derivatives with lower toxicity
has been synthesized.22,25,26 The inhibitors of ThrRS from
Haemophilus influenza, Escherichia coli, and Burkholderia
thailandensis possessing antibacterial activity have been
reported among sulfonamide derivatives.27 Recently, the
inhibitors of Salmonella enterica ThrRS among quinazolinone
derivatives have been identified using fragment-based target
hopping assay by Guo et al.28 The most active compound
demonstrates an IC50 value of 1.4 μM toward Salmonella
enterica ThrRS. It should be noted that this compound
revealed antibacterial activity toward Escherichia coli
ATCC25922 and S. enterica with an MIC value of 16 μg/mL
and toward S. aureus ATCC29213, S. aureus R3708, and
Enterococcus faecalis ATCC29212 with an MIC value of 32 μg/
mL.28 Furthermore, these authors performed structure-based
optimization of quinazolinone-threonine hybrids and discov-
ered the inhibitor of S. enterica ThrRS with an IC50 value of 0.5
μM and MIC values of 16−32 μg/mL toward the tested
bacterial strains.29

For the best of our knowledge, none of the small-molecular
inhibitors of ThrRS from S. aureus have been reported in
scientific literature so far. Therefore, the aim of this study is to
obtain recombinant S. aureus ThrRS and identify inhibitors of

this enzyme with molecular docking into the available crystal
structure of ThrRS.30

■ RESULTS AND DISCUSSION

Cloning and Purification of S. aureus Threonyl-tRNA
Synthetase. The gene encoding S. aureus ThrRS (1938 bp)
with restriction sites for NcoI and HindIII was synthesized by
ATG/biosynthetics GmbH (Merzhausen, Germany). To
obtain the required amount of the S. aureus ThrRS gene for
ligation, we performed preparative restriction of 5 μg of
plasmid DNA pGE-ThrRS(NcoI-HindIII) from the clones of
E. coli Top10 cells with NcoI and HindIII. The linear DNA
fragment was purified from gel using the NucleoSpin gel
extraction kit (Macherey-Nagel) protocol.
The ThrRS gene fragment was ligated with a dephosphory-

lated vector pET28b linearized with NcoI and HindIII. E. coli
cells TOP10 were electroporated with the plasmid pET28b-
ThrRS. Plasmid DNA of clones with the correct fragments was
prepared with a GeneJET Plasmid Miniprep Kit (Thermo
Scientific). Transformation efficiency was analyzed with NcoI
and HindIII. All tested plasmids contained a fragment of the
expected size.
The most optimal conditions for expression of recombinant

S. aureus ThrRS in the soluble fraction are the following: E. coli
BL21(DE3)pLysS cells in LB medium, with induction by 0.25
mM isopropyl β-D-1-thiogalactopyranoside (IPTG) for 3 h at

Figure 1. Chemical structure of 1-(4-methoxy-phenyl)-2-(6-nitro-benzothiazol-2-ylsulfanyl)-ethanone (compound 1) (a). The complex of
compound 1 with amino acid residues in the active site of S. aureus ThrRS. The hydrogen bonds are shown by green dashed lines with the distances
indicated in Å, the hydrophobic interactions are presented by magenta dashed lines, π-sulfur interactions are shown by yellow dashed lines, and π-
cation interactions are indicated with orange dashed lines (b).
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37 °C or E. coli Lemo21(DE3) cells in 2YT medium
supplemented with 250 μM L-rhamnose at 30 °C during
16−18 h. The procedure for selection of optimal expression
conditions for S. aureus ThrRS is available in Supporting
Information (Figures S1−S10).
The protein was purified by DEAE Sepharose anion

chromatography using a salt gradient from 25 to 500 mM
NaCl (Figures S11, S12). The resulting eluate was
concentrated and loaded onto a pre-equilibrated Heparin
Sepharose 6 Fast Flow column and then eluted using the KCl
gradient (from 0 to 300 mM) (Figure S13). The protein was
concentrated to 3.5 mg/mL and stored with 50% glycerol at
−80 °C. The total yield of purified ThrRS (>95% purity) is 10
mg from 1 L starting bacterial culture. This protocol of
purification was used for obtaining the required amount of
recombinant S. aureus ThrRS for compound screening.
Rational Design of S. aureus ThrRS Inhibitors. In order

to identify small-molecular inhibitors of S. aureus ThrRS, we
have performed molecular docking of OTAVA compound
library containing 124,831 compounds.31 According to
molecular docking results, we have selected 180 compounds
for investigation of their inhibitory activity toward S. aureus
ThrRS in an aminoacylation assay. The inhibitory activity for
all tested compounds (%) (measured at least in duplicates) is
available in Supporting Information (Table S1). Among the
tested compounds, we identified active compounds belonging
to five chemical classesthe derivatives of 2-(benzothiazol-2-
ylsulfanyl)-1-phenyl-ethanone, 2-phenoxy-N-phenyl-acetamide,
4-phenyl-2-propionylamino-thiophene-3-carboxylic acid ethyl
ester, 1-phenyl-pyrrolidine-2,5-dione, and N-benzylidene-N′-
(4-phenyl-thiazol-2-yl)-hydrazine.
The compound 1-(4-methoxy-phenyl)-2-(6-nitro-benzothia-

zol-2-ylsulfanyl)-ethanone (compound 1) inhibits S. aureus
ThrRS by 88.47% at a concentration of 100 μM. The IC50
value for this compound is 158 ± 72 μM (measured in
duplicates). According to molecular docking results, this
compound interacts simultaneously with adenine-binding and
amino acid-binding regions of ThrRS (Figure 1). The
superposition of compound 1 and the threonyl adenylate
analogue, extracted from the crystal structure of ThrRS (PDB
ID: 1NYQ), in the active site is presented in Figure 2. As it can

be seen in Figure 1, 4-methoxy-phenyl interacts with amino
acid residues in the adenine-binding site and forms a hydrogen
bond with Arg377, the benzothiazol ring interacts with the
amino acid residues in the threonyl-binding region, and the
nitro group at the C6 position of this heterocycle builds
hydrogen bonds with Cys336 and Tyr468.
In the present study, we tested six derivatives of 2-phenoxy-

N-phenyl-acetamide for inhibitory activity toward S. aureus
ThrRS. As it can be noticed from Table 1, the most active
compound 2-(2-tert-butyl-phenoxy)-N-(2-methyl-5-nitro-phe-
nyl)-acetamide (compound 2) inhibits S. aureus ThrRS by
85.59% at a concentration of 100 μM. According to molecular
docking results, tert-butyl of this compound interacts with the
amino acid residues in the adenine-binding region of ThrRS,
the nitro-phenyl ring interacts with the amino acid residues in
the threonyl-binding region, and the nitro group forms the
metal-acceptor bond with Zn (Figure 3).
We have made superposition of the most active compounds

1 and 2 in the aminoacyl-adenylate binding site of ThrRS
(Figure S14). It was found that these ligands have a similar
binding mode. Both compounds 1 and 2 interact simulta-
neously with adenine- and threonyl-binding regions and form
π-cation interactions with the same residues Arg365 and
Arg526. Possibly, the formation of hydrogen bonds of the nitro
group in compound 1 is more profitable for inhibitory activity
than the formation of the metal-acceptor bond of the nitro
group in compound 2 with Zn.
In this research, three derivatives of 4-phenyl-2-propionyla-

mino-thiophene-3-carboxylic acid ethyl ester were tested for
inhibitory activity toward S. aureus ThrRS. As it can be seen
from Table 2, the most active compound4-(4-chloro-
phenyl)-2-[2-(2,6-dimethyl-morpholin-4-yl)-acetylamino]-thi-
ophene-3-carboxylic acid ethyl ester (compound 8), inhibits S.
aureus ThrRS by 78.33%. According to molecular docking
results, 2,6-dimethyl-morpholine heterocycle of this compound
interacts with the amino acid residues in the adenine-binding
region of ThrRS and forms a hydrogen bond with Arg377 and
4-chloro-phenyl interacts with the threonyl-binding region
(Figure 4).
Among the investigated compounds, we have found two

inhibitors of S. aureus ThrRS belonging to 1-phenyl-

Figure 2. Superposition of the threonyl adenylate analogue, extracted from the crystal structure with the PDB accession code: 1NYQ (carbon
atoms are labeled with magenta color) and compound 1 (carbon atoms are labeled with blue color) in the active site of S. aureus threonyltRNA
synthetase.
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pyrrolidine-2,5-dione derivatives (Table 3). The compound 2-
[1-(4-iodo-2-methyl-phenyl)-2,5-dioxo-pyrrolidin-3-ylsulfan-
yl]-nicotinic acid (compound 11) inhibits ThrRS by 78.62% at
a concentration of 100 μM. According to molecular docking
results, the nicotinic acid moiety of this compound interacts
with the adenine-binding region of ThrRS and forms a

hydrogen bond with Arg377 and 1-iodo-3-methyl-phenyl is
located in the threonyl-binding region (Figure 5).
According to biochemical testing, N-benzylidene-N′-(4-

phenyl-thiazol-2-yl)-hydrazine derivatives possess inhibitory
activity toward S. aureus ThrRS. It should be noted that earlier,
the compounds from this chemical class were reported by us as
the inhibitors of M. tuberculosis leucyl-tRNA synthetase and
methionyl-tRNA synthetase.32,33 Therefore, the derivatives of
N-benzylidene-N′-(4-phenyl-thiazol-2-yl)-hydrazine inhibit
both classes of aminoacyl-tRNA synthetases.
As it can be seen from Table 4, among the 13 tested N-

benzylidene-N′-(4-phenyl-thiazol-2-yl)-hydrazine derivatives,
the most active compound −2,4-dibromo-6-{[4-(4-nitro-
phenyl)-thiazol-2-yl]-hydrazonomethyl}-phenol (compound
13) inhibits ThrRS by 72.65%. The IC50 value for this

Table 1. Structures and In Vitro Inhibitory Activity of 2-
Phenoxy-N-phenyl-acetamide Derivatives toward S. aureus
ThrRS

Figure 3. Complex of 2-(2-tert-butyl-phenoxy)-N-(2-methyl-5-nitro-phenyl)-acetamide (compound 2) with amino acid residues in the active site of
S. aureus ThrRS. The hydrophobic interactions are indicated with magenta dashed lines, π-cation interactions are shown by orange dashed lines,
and the metal-acceptor bond is presented by the gray dashed line.

Table 2. Structures and In Vitro Inhibitory Activity of 4-
Phenyl-2-propionylamino-thiophene-3-carboxylic Acid
Ethyl Ester Derivatives toward S. aureus ThrRS
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compound is 56.5 ± 3.5 μM (measured in duplicates).
Molecular docking results demonstrate that nitro-phenyl
interacts with the amino acid residues in the threonyl-binding
region of ThrRS and 2,4-dibromophenyl is located in the
adenine-binding region of S. aureus ThrRS (Figure 6).
We have tested five hit compounds for cytotoxicity toward

the human cell line HEK293 using standard MTT assay.34 It
was found that compounds 1, 2, 8, and 13 are not cytotoxic at
a concentration of 100 μM and only compound 11 reveals
slight toxicity, decreasing the growth of HEK293 cells by 30%
at a concentration of 100 μM (EC50 > 100 μM).

■ CONCLUSIONS
Using the rational design approach, we identified five hit
compounds from different chemical classes, inhibiting S. aureus
threonyl-tRNA synthetase (ThrRS) by more than 70% at a
concentration of 100 μM. The most active compound 2,4-
dibromo-6-{[4-(4-nitro-phenyl)-thiazol-2-yl]-hydrazonometh-
yl}-phenol has an IC50 value of 56.5 ± 3.5 μM. According to
the results of molecular docking, the inhibitors interact

simultaneously with adenine- and threonyl-binding regions of
S. aureus ThrRS. These compounds are not cytotoxic toward
the human cell line HEK293 and can be used for further
chemical optimization and biological research. It should be
noted that the derivatives of N-benzylidene-N′-(4-phenyl-
thiazol-2-yl)-hydrazine inhibit both classes of aminoacyl-tRNA
synthetases from different microorganisms and can be
considered for the development of broad spectrum antibiotics.

■ METHODS

Molecular Docking. Semiflexible molecular docking of the
small-molecular compounds into the active site of the S. aureus
ThrRS crystal structure (PDB ID: 1NYQ) was performed with
the program DOCK 4.0.35−38 The molecules of 5′-O-(N-(L-
threonyl)-sulfamoyl)adenosine and water were removed from
the crystal structure, but the Zn ion was kept in the active site.
The ligand geometry was calculated using the YFF force

field.39 The partial atomic charges for the ligands were assigned
with the Kirchhoff method.40 The partial atomic charges for
the receptor were set with the Amber force field. The spheres
of the active site were predicted using sphgen software from
the DOCK package. The spheres which were outside of the
aminoacyl-adenylate binding site of ThrRS were deleted
manually. The energy grids of the receptor were generated
using the grid program from the DOCK package.
The docking of the compound library into the aminoacyl-

adenylate binding site of ThrRS was performed using the
parameters described earlier.32

After the docking procedure, we have performed complex
analysis to select compounds for in vitro screening. At first,
compounds were ranged based on score values (less than −40
kcal/mol). Then, the compounds were evaluated for the ability
to form hydrogen bonds with amino acid residues in the
aminoacyl adenylate binding site of S. aureus ThrRS, such as
Tyr468, Met334, Gln490, Asp385, Arg365, Ser522, Thr523,
and Val378 using our in-house program y_hbonds, which is
based on the analysis of distances and angles between the
respective donor and acceptor atoms. Considering these
criteria, we have chosen about 12,000 compounds for further
visual inspection of receptor−ligand complexes. During visual

Figure 4. Complex of 4-(4-chloro-phenyl)-2-[2-(2,6-dimethyl-morpholin-4-yl)-acetylamino]-thiophene-3-carboxylic acid ethyl ester (compound 8)
with amino acid residues in the active site of S. aureus ThrRS. The hydrogen bonds are shown by green dashed lines with the distances indicated in
Å, the hydrophobic interactions are indicated with magenta dashed lines, π-sulfur interaction is presented by yellow dashed lines, and the halogen
bond is shown by blue dashed lines.

Table 3. Structures and In Vitro Inhibitory Activity of 1-
Phenyl-pyrrolidine-2,5-dione Derivatives toward S. aureus
ThrRS
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analysis, we evaluated correctness of torsion angles, stacking
interactions, complementarity of ligand and receptor surfaces,
and so forth. Taking into account all these parameters, we have
selected 180 compounds for investigation of their inhibitory
activity toward recombinant S. aureus ThrRS.
Visual analysis of the receptor−ligand complexes was

performed using Discovery Studio Visualizer 4.0.41

Cloning of ThrRS. The gene encoding ThrRS with
restriction sites for NcoI and HindIII was synthesized by
ATG/biosynthetics GmbH (Merzhausen, Germany) based on
sequence information of the S. aureus ThrRS gene (GenBank
ID: ABD30857.1). The linearized DNA fragment pGE(NcoI-
HindIII)-ThrRS-S was ligated to the plasmid vector pET28b
(Novagen) which was previously dephosphorylated with
phosphatase in 1× reaction buffer (Roche). Ligation was
performed with T4 DNA ligase in 1× ligase buffer (Promega)
for 2 h at 23 °C. E. coli TOP10 cells (Invitrogen) were
transformed by electroporation using a Bio-Rad Gene Pulsar.

The screening of positive clones was performed using the
GeneJET Plasmid Miniprep Kit (Thermo Scientific). Positive
clones were identified using restrictases NcoI and HindIII
FastDigest (Thermo Scientific).

ThrRS Expression. The plasmid pET28b-ThrRS was
transformed into E. coli BL21(DE3)pLysS and Lemo21(DE3)
competent cells. The level of expression was analyzed in LB
(Lauria-Broth), TB (Terrific-Broth), phosphate, and 2×YT
media with 50 μg/mL kanamycin. The bacterial growth was
continued until the OD600 reached around 0.6. The protein
synthesis was induced by IPTG in the range of concentration
from 0.025 mM to 1 mM at 18, 25, and 37 °C.
Aliquots after 3−4 h and overnight induction were analyzed

for solubility according to the protocol of Zerbs et al.42

For ThrRS expression, a modified43 autoinduction proto-
col44 was also used. E. coli BL21(DE3)pLysS and Lemo21-
(DE3) cells harboring the plasmid pET28b-ThrRS were
incubated at 37 °C overnight in 2 mL of 2×YT medium

Figure 5. Complex of 2-[1-(4-iodo-2-methyl-phenyl)-2,5-dioxo-pyrrolidin-3-ylsulfanyl]-nicotinic acid (compound 11) with amino acid residues in
the active site of S. aureus ThrRS. The hydrogen bonds are shown by green dashed lines with the distances indicated in Å, the hydrophobic
interactions are presented by magenta dashed lines, π-cation interactions are indicated with orange dashed lines, and the metal-acceptor bond is
shown by gray dashed lines.

Figure 6. Complex of 2,4-dibromo-6-{[4-(4-nitro-phenyl)-thiazol-2-yl]-hydrazonomethyl}-phenol (compound 13) with amino acid residues in the
active site of S. aureus ThrRS. The hydrogen bonds are shown by green dashed lines with the distances indicated in Å, the hydrophobic interactions
are presented by magenta dashed lines, π-cation interaction is indicated with orange dashed lines, π-sulfur interaction is presented by yellow dashed
lines, and the metal-acceptor bond is shown by gray dashed lines.
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containing 50 μg/mL kanamycin and 1% glucose. 1:1000
dilutions of the overnight culture were taken for inoculation of
2×YT medium supplemented with 40 μg/mL kanamycin, 25
mM (NH4)2SO4, 50 mM KH2PO4, 50 mM Na2HPO4, 1 mM

MgSO4, 0.05% glucose, 0.2% α-lactose, and 0.5% glycerol. The
cultures were incubated at 18/30/37 °C for 16−18 h under
conditions of intensive aeration.

Purification of S. aureus ThrRS. E. coli cells BL21(DE3)-
pLysS were grown in the medium LB until the OD600 reached
0.6, and the expression of ThrRS was induced by 0.25 mM
IPTG for 3 h at 37 °C. The cells were pelleted by
centrifugation (15 min at 6000 g at 4 °C), and the pellets
were stored at −80 °C. The bacterial pellet was dissolved in
buffer A containing 100 mM Tris-HCl (pH 8.0), 300 mM
NaCl, 10 mM DTT, 5 mM PMSF, 4% glycerol, 1 mM MgCl2,
0.01 mg/mL lysozyme, and protease inhibitor cocktail tablet,
EDTA-free. The cells were incubated on ice for 30 min and
sonicated for 5 min with four sonicated bursts of 25 s followed
by interval of 60 s for cooling. The cell pellet was precipitated
by centrifugation at 20000g for 25 min at 4 °C. The
supernatant was dialyzed in buffer B containing 20 mM Tris-
HCl (pH 8.0), 2 mM DTT, 0.1 mM PMSF, and 5 mM MgCl2
for 3 h at 4 °C. Then, the buffer was changed and dialyzed
overnight. After dialysis, the lysate was loaded onto a DEAE
Sepharose column (Amersham Biosciences) (V = 6.5 mL),
washed at a flow rate of 1 mL/min, and eluted with a gradient
of NaCl from 25 to 500 mM (2 × 50 mL). Fractions were
analyzed by the Bradford method45 and SDS-PAGE. Fractions
containing ThrRS were joined and concentrated on an Amicon
Ultra-4 at 10 K MWCO spin column (Millipore, Billerica, MA)
at 4 °C to remove salt impurities and loaded onto the Heparin
Sepharose 6 Fast Flow column (GE Healthcare) (0.5 × 10
cm), washed with buffer B and eluted with a gradient of KCl
from 0 to 300 mM (2 × 25 mL). The peak fractions,
containing ThrRS, were joined and concentrated on Amicon
Ultra-4 (7000 g, 4 °C).
Protein concentrations were determined by the Bradford

method.45 The absorption coefficient at λ = 280 nm (ε280 =
73355 M−1 cm−1) and the absorption of 0.1% solution (A280 (1
mg/mL) = 0.985 mg−1 mL) were calculated from the S. aureus
ThrRS amino acid sequence using the ExPASy ProtParam
tool46 and taken for determination of enzyme concentration.

In Vitro Aminoacylation Assay. The standard amino-
acylation assay was performed in the reaction mixture (20 μM)
containing 50 mM HEPES-NaOH (pH 7.5), 20 mM MgCl2, 5
mM β-mercaptoethanol, 30 mM KCl, 100 μg/mL BSA, 4 mg/
mL of the total E. coli MRE600 tRNA, 27 μM [14C]-L-Thr,
and 500 nM recombinant S. aureus ThrRS with appropriate
concentrations of the compound (dissolved in DMSO). The
reactions were initiated by the addition of 10 mM ATP and
incubated for 10 min at 37 °C. The reaction was stopped by
the addition of 10% trichloroacetic acid and was loaded on the
GF/C filter, washed with 5% trichloroacetic acid, dried, and
counted using a scintillation counter. Aliquots were quenched
with 10% trichloracetic acid, and the level of tRNA
aminoacylation was measured using a scintillation counter
[Hidex 600 SL liquid scintillation analyzer (Finland)].

MTT Assay. The toxicity of compounds toward the
HEK293 cell was examined using a standard MTT assay.35

The cells were cultivated in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum, 100 mg/
mL streptomycin, and 100 mg/mL penicillin in humidified air
with 5% CO2 at 37 °C. The cells were seeded into 96-well
plates at a concentration of 2 × 105 cells/mL and grown for 24
h. Then, the cells were supplemented with compounds in
DMSO solution (final DMSO concentration was less than
0.5%) at different concentrations. After 72 h of incubation, the

Table 4. Structures and In Vitro Inhibitory Activity of N-
Benzylidene-N′-(4-phenyl-thiazol-2-yl)-hydrazine
Derivatives toward S. aureus ThrRS
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cells were treated with 15 μL of MTT solution (5 mg/mL) for
4 h at 37 °C, 5% CO2. The formazan precipitates were
dissolved in 200 μL of DMSO, and the absorbance at λ = 540
nm was measured with spectrofluorometer MR 700
(Dynatech). The cell viability was calculated as a percentage
relative to intact control cells.
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