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Abstract

Spinal muscular atrophy (SMA) is caused by deficiency of the ubiquitously expressed survival motoneuron (SMN) protein.
SMN is crucial component of a complex for the assembly of spliceosomal small nuclear ribonucleoprotein (snRNP) particles.
Other cellular functions of SMN are less characterized so far. SMA predominantly affects lower motoneurons, but the cellular
basis for this relative specificity is still unknown. In contrast to nonneuronal cells where the protein is mainly localized in
perinuclear regions and the nucleus, Smn is also present in dendrites, axons and axonal growth cones of isolated
motoneurons in vitro. However, this distribution has not been shown in vivo and it is not clear whether Smn and hnRNP R
are also present in presynaptic axon terminals of motoneurons in postnatal mice. Smn also associates with components not
included in the classical SMN complex like RNA-binding proteins FUS, TDP43, HuD and hnRNP R which are involved in RNA
processing, subcellular localization and translation. We show here that Smn and hnRNP R are present in presynaptic
compartments at neuromuscular endplates of embryonic and postnatal mice. Smn and hnRNP R are localized in close
proximity to each other in axons and axon terminals both in vitro and in vivo. We also provide new evidence for a direct
interaction of Smn and hnRNP R in vitro and in vivo, particularly in the cytosol of motoneurons. These data point to
functions of SMN beyond snRNP assembly which could be crucial for recruitment and transport of RNA particles into axons
and axon terminals, a mechanism which may contribute to SMA pathogenesis.

Citation: Dombert B, Sivadasan R, Simon CM, Jablonka S, Sendtner M (2014) Presynaptic Localization of Smn and hnRNP R in Axon Terminals of Embryonic and
Postnatal Mouse Motoneurons. PLoS ONE 9(10): e110846. doi:10.1371/journal.pone.0110846

Editor: Michael A. Fox, Virginia Tech Carilion Research Institute, United States of America

Received July 11, 2014; Accepted September 23, 2014; Published October 22, 2014

Copyright: � 2014 Dombert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: This work was supported by the ‘Hermann und Lilly Schilling Stiftung im Stifterverband der Deutschen Wissenschaft’, the German Research Foundation
(DFG) through the research training group 1048 ‘organogenesis,’ and the Graduate School of Life Sciences of the University of Wuerzburg. This publication was
funded by the DFG and the University of Wuerzburg in the funding programme ‘Open Access Publishing.’ The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: Sendtner_M@ukw.de

¤ Current address: Motor Neuron Center, Columbia University, P & S Building, New York, New York, United States of America

. These authors contributed equally to this work.

Introduction

Proximal spinal muscular atrophy (SMA), the most common

form of motoneuron disease in children and young adult, is caused

by deficiency or loss of function of SMN [1]. The SMN protein is

widely expressed and plays a central role in the formation of

spliceosomal uridine-rich small nuclear ribonucleoprotein (U

snRNP) complexes [2]. Recent studies with fly models have

provided evidence that defects of pre-RNA splicing in sensory

neurons contribute to the pathogenesis of SMA [3]. In SMA

patients, motoneurons are primarily affected. Other organs and

even most other types of neurons in the central and peripheral

nervous system are spared or much less affected, thus raising the

question about the molecular mechanisms underlying the high

vulnerability of motoneurons. Degeneration and dysfunction of

axon terminals at neuromuscular endplates is a prominent

hallmark in SMA [4–8]. Weakness of the proximal musculature

is an early feature in SMA patients and this correlates with defects

in neurotransmission at neuromuscular junctions (NMJ) [9,10].

Similar observations have been made in mouse models of SMA

[11–14] and in isolated SMA type I motoneurons, which

developed defects in presynaptic differentiation and axonal

excitability [15].

In most cell types, the SMN protein is found both in the

perinuclear cytoplasm, where spliceosomal snRNP complexes are

assembled, and in specific structures within the nucleus called

Gemini of coiled bodies (Gems) [16], where such RNP particles

are regenerated and processed [17]. In cultured motoneurons Smn

is also found in cytoplasmic granules within neuronal processes

and in axon terminals [18–20]. For its function in the assembly of

spliceosomal U snRNP particles Smn associates with Gemin 1 to 7

and Unrip [21–23]. This complex assembles Sm core proteins and

small nuclear RNAs into snRNPs [24,25]. SnRNP particles are

then transported back into the nucleus [26]. This function of Smn

appears crucial for all cell types. Full knockout of the murine Smn
gene results in early lethality [27], which is compatible with

disruption of such an essential cellular function of Smn. The
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presence of a second SMN gene (SMN2) in humans gives rise to

low amounts of functional SMN protein. This specific condition

appears responsible for the observation that most organs are

unaffected, whereas motoneurons become dysfunctional and

degenerate [28]. Recent in vitro studies have detected Smn in

association with components of the classical SMN complex, such

as Gemin 2 and 3, in axons of cultured motoneurons and other

types of neurons [15,20]. However, Smn also associates with

several other proteins which are not part of the SMN complex like

HuD or hnRNP R [18,19,25,29], the fragile X mental retardation

protein (FMRP) [30], the ALS-related proteins FUS and TDP43

[31–34], and several other members of the heterogeneous nuclear

ribonucleoprotein family [35]. These complexes bind mature

mRNA species in motoneurons [20,36], including ß-actin mRNA

[19]. The interaction of Smn and hnRNP R appears particularly

interesting since knockdown of hnRNP R in zebra fish or in

isolated motoneurons [29] causes similar defects in motor axon

growth as the depletion of Smn [37], indicating that the

interaction of these two proteins is relevant in the context of

axonal defects and dysfunction of axon terminals in SMA.

However, these studies did not provide an answer on whether

Smn is also present in axons and axon terminals of developing and

postnatal motoneurons in vivo, and whether the association with

hnRNP R is direct and developmentally regulated. In order to

address these questions, we studied the subcellular distribution and

interaction of Smn and hnRNP R in motoneurons both in vitro
and in vivo. We show here that Smn and hnRNP R interact

directly with each other in the cytosol of motoneurons. Further-

more, we provide evidence that both proteins are present in axons

and axon terminals of mouse motoneurons in vitro and in vivo,
supporting the hypothesis that SMN is involved in the axonal

translocation of hnRNP R and hnRNP R-bound protein/RNA

particles, both during embryonic development and after birth.

Results

Localization of Smn and hnRNP R in isolated embryonic
mouse motoneurons in vitro
The assembly of spliceosomal U snRNPs (reviewed in [24,38])

takes place in the cytoplasm surrounding the nucleus. This is the

site where Smn normally is localized (reviewed in [39]) both in

neuronal and nonneuronal cells. Smn is also found in nuclear

structures called Gemini of coiled bodies (Gems) where spliceo-

somal U snRNPs are regenerated [17]. Furthermore, Smn is

located in axons and axon terminals of isolated motoneurons

[15,20]. To confirm this subcellular distribution and to validate

the antibodies used for Smn detection in this study, Smn

immunoreactivity was investigated in primary motoneurons with

and without lentiviral sh-mediated Smn knockdown. Western Blot

analysis verified the specificity of the applied Smn antibodies

showing a robust Smn depletion after shRNA-mediated knock-

down (Fig. 1A). HnRNP R protein levels were not altered when

Smn was deficient (Fig. 1A). Using the same antibody for

immunofluorescent labeling of these motoneurons, Smn was

found in nuclear Gem-like structures and in the cytosol (Fig. 1B).

Motoneurons treated with sh-Smn revealed a significant reduction

of mean Smn signal intensity of 66% (P,0.001, n= 4, N=74) in

the cytosol. Furthermore, the number of Smn-positive Gems per

motoneuron cell body was reduced by 92% (0.0860.02, n= 4,

N= 74, P,0.01) in comparison to uninfected motoneurons

(1.0360.18, n= 4, N= 51). We did not detect any differences

between uninfected and GFP-infected control cells (n = 4, N= 60)

with respect to cytosolic Smn immunoreactivity (1.0260.04) and

number of Gems (0.9760.15).

We then studied the localization of hnRNP R in isolated

embryonic motoneurons. HnRNP R has multiple functions in

transcription regulation and RNA processing (reviewed in

[40,41]). It interacts with Smn and shows high homology with

hnRNP Q [18,19,42,43]. HnRNP R depletion results in defective

axon extension in primary mouse motoneurons and zebra fish [29]

in a similar manner as Smn depletion [37], indicating that

endogenous hnRNP Q cannot compensate for this function. Only

the N-terminus of hnRNP R is distinct from hnRNP Q, and

antibodies against this domain were used to distinguish both

proteins [18] (Supplementary information, Fig. S1A). HnRNP R

contains three consensus RNA-binding domains (RRM1-3) and an

RGG-rich domain, which is typical for many proteins involved in

RNA processing and transport (Fig. S1A). The antiserum directed

against amino acid 1-18 of hnRNP R and termed herein ICN 1-18

(Fig. S1A) stained hnRNP R both in the nucleus and cytosol of

these motoneurons (Fig. 1C). Relatively high levels of the protein

were present in the nucleus when compared with Smn (Fig. 1B,

C). Confocal microscopy of axons and growth cones revealed spot-

like hnRNP R-immunoreactive structures (Fig. 1C). Antibodies

against neurofilament light chain (NF-L) and synaptophysin

(SynPhys) were used to visualize soma, axons and axon terminals,

respectively. Western Blot analysis with the ICN 1-18 antiserum

confirmed the lentiviral shRNA-mediated depletion of hnRNP R

in a dose-dependent manner (Fig. 1D, S1B).

Immunofluorescence analysis after hnRNP R knockdown

revealed also a significant decrease of hnRNP R signal in

motoneuron cell bodies of 52% (P,0.0001, n= 6, N=63)

(Fig. 1E). To further characterize and verify the observed hnRNP

R immunofluorescence we tested an additional antibody against

the N-terminus of hnRNP R. This antibody revealed similar

results with respect to distribution, localization and knockdown

susceptibility (Fig. S1C). Western Blot analysis showed no

significant reduction of Smn expression after hnRNP R depletion

(Fig. 1D). The number of nuclear Smn-positive Gems and levels of

cytosolic Smn immunoreactivity were also comparable between

GFP-infected control and sh-hnRNP R-treated cells (Fig. S1C), as

revealed by immunocytochemical analysis.

Previous studies reported that Smn and hnRNP R can be

coprecipitated from neuronal extracts [18,19,29]. To further

corroborate and characterize this interaction we investigated

potential colocalization and correlation of Smn and hnRNP R in

cell body, axon and axonal growth cone of isolated embryonic

mouse motoneurons by determining both the Pearson’s correlation

coefficient (PCC) and the Manders Overlap Coefficient (MOC)

(reviewed in [44]) (Fig. 2). In order to test whether signals for

maturation of presynaptic terminals influence distribution and

interaction of Smn and hnRNP R motoneurons were cultured

either on laminin-111 (Fig. 2A) or synapse-specific laminin-221/

211 (Fig. 2B) for 5DIV. Highest degrees of Smn/hnRNP R

codistribution were found in the cell body, particularly in the

perinuclear region, on laminin-111 (PCC 0.5960.02; MOC

0.7060.02; n = 6, N= 54) (Fig. 2A, C). In axons (PCC

0.4260.03; MOC 0.5360.03; n= 6, N= 59) and growth cones

(PCC 0.3960.05; MOC 0.5360.04; n= 6, N= 49) a partial

overlap was observed (Fig. 2A, C). When motoneurons were

cultured on laminin-221/211, a condition which leads to

maturation of presynaptic terminals [15,45,46], neither the

subcellular distribution of hnRNP R nor the degree of codistribu-

tion and correlation of Smn and hnRNP R changed significantly

in motoneuron cell bodies (PCC 0.5360.02, P= 0.0582; MOC

0.6760.02, P= 0.0814; n= 6, N= 51), axons (PCC 0.3560.05,

P= 0.1172; MOC 0.5060.03, P= 0.0617; n = 6, N=50) or axonal

growth cones (PCC 0.3160.05, P= 0.1004; MOC 0.4860.02,
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Figure 1. Subcellular distribution of Smn and hnRNP R in isolated embryonic motoneurons. (A) Motoneurons showed reduced Smn
protein levels upon lentiviral knockdown of Smn. Uninfected or GFP-infected mouse embryonic motoneurons were used as controls. Levels of
calnexin and hnRNP R were not affected. For this experiment a C-terminal antibody directed against hnRNP R was used as reported recently [29]. This
antibody recognizes distinct hnRNP R isoforms. (B) Representative images of motoneurons cultured for 7DIV and labeled against Smn (scale bar:

Localization of Smn and hnRNP R in Motor Axon Terminals
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P=0.1060; n= 6, N= 43) (Fig. 2B, C). Similar results were

obtained with an independent N-terminal hnRNP R antibody

with respect to codistribution of Smn and hnRNP R in these

isolated motoneurons (Fig. S1D). To further characterize the

colocalization of Smn and hnRNP R immunofluorescence we used

ImageJ for a colocalization test calculating random PCC values

which reflect a computational non-related random overlap of two

signals. Each colocalization analysis of hnRNP R and Smn

produced a PCC value which was significantly higher than the

corresponding randomized value. Thus, a non-random codistribu-

tion of hnRNP R and Smn can be assumed (for more details see

material and methods).

We then examined whether the subcellular location of hnRNP

R and the colocalization and correlation of Smn and hnRNP R

are regulated over time when motoneurons grow and differentiate

in vitro. We cultured motoneurons on laminin-111 and deter-

mined the localization of hnRNP R and the degree of overlap with

Smn from day 1 to day 7. Previous analyses have demonstrated

that axon elongation in isolated motoneurons from E13.5 mouse

embryos is highest around 4DIV, corresponding to day 18 of

embryonic development [15]. Therefore, we chose 3DIV (Fig. 2D)

and 7DIV (Fig. 2E) as time points for quantitative analysis.

Surprisingly, the subcellular distribution of hnRNP R changed

between 3DIV and 7DIV in motoneuron cell bodies. In

comparison to 3DIV (n= 5, N=37) the relative ratio of cytosolic

versus nuclear hnRNP R immunoreactivity was significantly

increased by 63% (P= 0.0173, n = 5, N=46) at 7DIV (Fig. 2D,

E). This relatively higher number of hnRNP R-positive granules in

the cytoplasm was accompanied by enhanced codistribution and

correlation of hnRNP R and Smn, as detected by colocalization

analysis in motoneuron cell bodies at 7DIV versus 3DIV (PCC

15%, P= 0.0112; MOC 10%, P= 0.0086). Similar alterations

were also observed in axonal growth cones (PCC 18%, P=0.0467;

MOC 8%, P= 0.1565), but not in axons (PCC 7%, P=0.1504;

MOC 5%, P= 0.1449) (Fig. 2D–F). This shift in location and

colocalization coincides with rapid axon extension starting at

4DIV. Interestingly, defects in axon elongation in Smn- [15] or

hnRNP R- [29] deficient motoneurons cultured under similar

conditions are most profound between 4DIV and 7DIV indicating

an important contribution of Smn to the subcellular distribution of

hnRNP R and by this way possibly to axonal outgrowth.

The interaction of Smn and hnRNP R varies between
different cellular compartments
In a further step we investigated whether the interaction

between Smn and hnRNP R is direct (Fig. 3) by expressing

recombinant hnRNP R and SMN in E. coli purifying both

proteins to homogeneity (Fig. 3A–C). This allowed us to test the

interaction of hnRNP R and SMN in the absence of other

proteins. Both proteins could be coimmunoprecipitated when

equimolar concentrations were analyzed indicating that Smn and

hnRNP R interact directly in the absence of other protein binding

partners or RNA (Fig. 3D). HnRNPs are known to form

homomeric interactions [47]. In order to test whether the

formation of hnRNP R dimers influences binding to Smn we

doubled the amount of recombinant hnRNP R in this assay. When

SMN was now pulled down, less hnRNP R was coimmunopre-

cipitated and vice versa, whereas the efficacy of the immunopre-

cipitation itself was comparable between both experimental

conditions (Fig. 3D). The IgG control was negative thus validating

the specificity of the detected interaction (Fig. 3D).

We proceeded to examine whether the interaction of hnRNP R

and Smn differs between cellular compartments (Fig. 4) using

cytosolic and nuclear fractions from isolated motoneurons

(Fig. 4A), E18 spinal cord (Fig. 4B) and HEK293T cells (Fig. 4C).

Motoneurons were cultured for 7DIV on laminin-111 since the

relative proportion of cytosolic hnRNP R and the degree of

overlap with Smn protein was highest at this time point as

described above. Antibodies against histone H3 were used as

marker for the nuclear fraction, and antibodies against a tubulin

and GAPDH for the cytosolic fraction (Fig. 4A–C, right panels).

HnRNP R was found both in the soluble nuclear and in the

cytosolic fraction. Intriguingly, interaction of Smn and hnRNP R

was predominantly detected in cytosolic compartments of cultured

motoneurons (Fig. 4A) and spinal cord extracts (Fig. 4B). Pull-

down of hnRNP R coprecipitated Smn and vice versa.
Smn was not detected in the soluble nuclear fraction (Fig. 4A,

B, input lane), but in the corresponding insoluble nuclear fraction

(Fig. 4B, right panel, lower blot), showing two bands, which may

reflect phosphorylation. Interestingly, the phosphorylation state of

Smn has been described to determine its nuclear localization to

Gems and Cajal bodies [48–52]. In contrast, hnRNP R levels in

this insoluble nuclear fraction are below detection limit indicating

that hnRNP R and Smn are present in distinct compartments

within the nucleus, which argues against a nuclear interaction.

HEK293T cells differed from isolated motoneurons and spinal

cord extracts by showing detectable nuclear Smn levels in soluble

fractions together with hnRNP R (Fig. 4C). In these cells, no

interaction of Smn and hnRNP R was found by coimmunpreci-

pitation, neither in the cytosolic nor in the soluble nuclear fraction

indicating that the interaction of Smn and hnRNP R differs

between neuronal and nonneuronal cells (Fig. 4C).

Localization of Smn and hnRNP R in spinal motoneurons
and neuromuscular endplates
Based on these results we studied distribution and colocalization

of Smn and hnRNP R in spinal cord cross sections from E18

mouse embryos (Fig. 5A) which correlates with the developmental

stage of primary motoneurons isolated at E13.5 and cultured for

5DIV. Motoneurons were identified by choline acetyltransferase

(ChAT) staining. Again, Smn immunoreactivity was mostly found

in the cytosol and in proximal axonal processes, whereas nuclei

appeared relatively spared revealing only distinct Gem-like

immunoreactive structures. In contrast, hnRNP R was detected

both in the nucleus and in the cytosol. In particular, perinuclear

cytoplasm and proximal axons showed an overlap of hnRNP R

and Smn signals (PCC 0.2760.03; MOC 0.8160.01; N= 8)

(Fig. 5A) which is similar to the data obtained by immunofluores-

10 mm). GFP-transfected controls revealed immunoreactive signals for Smn in the cytosol, in neuronal processes and in Gem-like nuclear structures.
Upon lentiviral Smn knockdown both cytosolic Smn immunoreactivity (Uninfected set as ‘1’, n = 4, N= 51; GFP 1.0260.04, n = 4, N= 60; sh-Smn
0.3460.02, n = 4, N = 74; P,0.001, t = 19.19) and number of Gems per nucleus (Uninfected 1.0360.18, n = 4, N = 51; GFP 0.9760.15, n = 4, N= 60; sh-
Smn 0.0860.02, n = 4, N = 74; P,0.01, t = 4.929) were significantly reduced in comparison to uninfected cells. (C) Subcellular distribution of hnRNP R
in soma, axon and growth cone of primary motoneurons cultured for 5DIV and costained against synaptophysin (SynPhys) and neurofilament (NF-L)
(scale bar: 10 mm (upper row), 5 mm). (D) Lentiviral knockdown of hnRNP R led to a dose-dependent reduction of hnRNP R levels. Calnexin and Smn
protein were not altered significantly. (E) HnRNP R knockdown was also detected by immunofluorescence validating the used antiserum peptide ICN
1-18 (GFP 1.0060.04, n = 8, N= 100; sh-hnRNP R 0.4860.04, n = 6, N= 63; P,0.0001, t = 8.719, DF = 12) (scale bar: 10 mm).
doi:10.1371/journal.pone.0110846.g001
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cence in isolated embryonic motoneurons (see Fig. 2) and Western

blot analyses of coimmunoprecipitation from cytosolic fractions

(see Fig. 3).

In order to address whether Smn and hnRNP R are also present

in axon terminals in vivo we examined neuromuscular endplates

in the Diaphragm from 18-day old mouse embryos (Fig. 5B).

Motor endplates in whole mount preparations of the Diaphragm
were identified by v-bungarotoxin (BTX) staining of postsynaptic

acetylcholine receptors. At this site, Smn- and hnRNP R-positive

signals were detected with partially colocalizing points (PCC

0.2460.04; MOC 0.5460.02; N= 6).

To characterize the localization of Smn and hnRNP R at

neuromuscular junctions in more detail, confocal microscopy at

different developmental stages was performed with synaptophysin

(SynPhys) as a marker for presynaptic terminals (Fig. 6). Postsyn-

aptic nuclei were visualized by DAPI staining. At E18, Smn was

strongly enriched in presynaptic compartments (Fig. 6A, left

panel). Smn-positive signals were also detected in presynaptic

terminals at postnatal day 4 (Fig. 6A, middle panel, 6B, Fig. S2A)

and in the adult (Fig. 6A, right panel). However, levels of Smn

immunoreactivity were lower at the latter stage, which corre-

sponds to decreased Smn expression in spinal cord of adult mice

[53]. At these analyzed neuromuscular junctions postsynaptic

nuclei and the postsynaptic space labeled by BTX contained few

Smn-positive signals at any developmental stage which confirms

muscular expression and localization [54–58]. We also performed

cryostat sections of ventral roots of the gastrocnemic muscle of

adult mice and observed both Smn- and hnRNP R-positive signals

in motor axons of sciatic nerves at this stage in vivo (Fig. S2C).

HnRNP R protein was mainly colocalized with synaptophysin

in presynaptic terminals in the Diaphragm at E18 (Fig. 6C, left

panel). In addition, hnRNP R was detected in postsynaptic

structures. Similar findings were obtained at P4 (Fig. 6C, middle

panel, 6D, Fig. S2B) and in the adult (Fig. 6C, right panel). In the

adult, hnRNP R immunoreactivity appeared reduced in presyn-

aptic terminals reflecting decreased hnRNP R expression in

motoneurons during postnatal development [18]. As a control,

preabsorption with recombinant hnRNP R highly depleted

Figure 2. Colocalization of Smn and hnRNP R proteins in embryonic motoneurons. Representative images of cell bodies, axons and
growth cones of primary embryonic motoneurons cultured on laminin-111 (A) and laminin-221/211 (B) for 5DIV and stained against Smn and hnRNP
R (scale bar: 5 mm). Superimposed colocalizing points are highlighted in white. (C) No differences were observed with respect to colocalization and
subcellular distribution of hnRNP R between these two investigated laminin isoforms. Representative images of cell bodies, axons and growth cones
of motoneurons cultured on laminin-111 for either 3DIV (D) or 7DIV (E) and labeled against Smn and hnRNP R (scale bar: 5 mm). Both the degree of
overlap between Smn and hnRNP R and the subcellular distribution of hnRNP R were regulated over time. The relative ratio of cytosolic versus
nuclear hnRNP R immunoreactivity was significantly enhanced by 63% (P= 0.0173, t = 3.914, DF= 4) in motoneuron cell bodies cultured for 7DIV
(1.6360.16, n = 5, N= 46) in comparison to 3DIV (set as ‘1’; n = 5, N= 37). (F) After 7DIV (PCC 0.6560.02, MOC 0.7560.01, n = 5, N= 45) colocalization of
Smn and hnRNP R in motoneuron cell bodies was higher (PCC P=0.0112, t = 4.453, DF = 4; MOC P= 0.0086, t = 4.807, DF= 4) than after 3DIV (PCC
0.5660.03, MOC 0.6860.02, n = 5, N = 36). In axons the degree of overlap and correlation did not change (PCC P=0.1504, t = 1.776, DF= 4; MOC
P= 0.1449, t = 1.808, DF= 4) over time (3DIV PCC 0.4360.04, MOC 0.5560.03, n = 5, N= 36; 7DIV PCC 0.4660.04, MOC 0.5860.03, n = 5, N= 46),
whereas in axonal growth cones a significant modification of the correlation (PCC P= 0.0467, t = 2.844, DF= 4; MOC P= 0.1565, t = 1.742, DF= 4) of
both proteins was detected (3DIV PCC 0.3860.03, MOC 0.5260.02, n = 5, N= 37; 7DIV PCC 0.4560.02, MOC 0.5660.02, n = 5, N= 34).
doi:10.1371/journal.pone.0110846.g002
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Figure 3. Direct interaction of hnRNP R and SMN. (A) Purification scheme of recombinant hnRNP R and SMN expressed as His-tagged proteins
in E. coli strain BL21. (B) Affinity purification profile on a fast protein liquid chromatography (FPLC) of hnRNP R and SDS-PAGE of recombinant hnRNP
R purification steps visualized by silver staining. (C) Affinity purification profile on a FPLC of SMN and SDS-PAGE of recombinant SMN purification
steps visualized by colloidal staining. (D) Coimmunoprecipitation of recombinant SMN and hnRNP R.
doi:10.1371/journal.pone.0110846.g003
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Figure 4. Coimmunoprecipitation of Smn and hnRNP R in primary motoneurons and native spinal cord. (A) 1 000 000 primary
motoneurons were cultured for 7DIV on laminin-111. Cytosolic and soluble nuclear fractions were subjected to a pull-down with either Smn or hnRNP
R antibodies, respectively. Coprecipitation of hnRNP R or Smn, respectively, was determined revealing an interaction of Smn and hnRNP R, particularly
in the cytosolic fraction of embryonic mouse motoneurons (eluate lane). Smn was not detectable in the soluble nuclear fraction of motoneurons.

Localization of Smn and hnRNP R in Motor Axon Terminals
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hnRNP R immunoreactivity implying that the signals detected by

ICN 1-18 were also specific in vivo (Fig. S3).

Reduced Smn immunoreactivity at neuromuscular
junctions of a SMA type I mouse model
To validate the specificity of the observed presynaptic Smn

staining in vivo, whole mount preparations from three E18 Smn2/

2; SMN2tg mouse Diaphragms were analyzed and compared

with controls (Fig. 7), revealing a significant reduction of the mean

Smn signal intensity of 57% in SMA type I NMJs (0.4360.09,

P = 0.0220, n = 3, N= 32) in comparison to control samples (n = 3,

N= 43), whereas neither the size of the presynaptic compartment

nor SynPhys signal intensities were significantly altered at this

developmental stage (Fig. 7A, B). We also investigated cytosolic

Smn immunoreactivity in the corresponding E18 Smn2/2;
SMN2tg (n = 6, N= 85) motoneuron cell bodies in spinal cord

cross sections, detecting a significant decrease of 54% (0.4660.05,

P,0.0001) in comparison to Smn+/+; SMN2tg cells (n = 6,

N= 107) (Fig. 7C). These two results were at variance with

previous studies reporting profound loss of Smn protein in the

range of 80% in brain extracts from these mice [59]. Therefore,

we analyzed cytosolic and nuclear fractions from four E18 SMA

type I spinal cords and corresponding control tissue in order to

obtain more robust biochemical data and to validate the

aforementioned immunohistochemical quantitative analysis

(Fig. 7D). Smn protein levels were significantly reduced by 86%

(0.1460.03, n = 10, P,0.0001) in nuclear and by 64%

(0.3660.08, n= 10, P,0.0001) in cytosolic fractions of Smn2/2;
SMN2tg spinal cord, respectively. With respect to the underlying

biological variances derived from independent embryos and litters

in vivo we concluded from these data that the differences

determined by immunohistochemistry were in line with the

reduction of cytosolic Smn protein quantified by biochemical

HnRNP R was found both in nuclear and cytosolic extracts. For immunoprecipitation experiments a C-terminal antibody directed against hnRNP R
(Abcam) was used [29]. Supernatants still contained some Smn or hnRNP R protein, respectively, suggesting that the interaction appears not to be
exclusive as demonstrated by immunofluorescence colocalization analysis. No signal was obtained in the washing solution. Successful fractionation
was controlled by a tubulin (cytosol) and histone H3 (nucleus) (right panel). (B) Fractionation of spinal cord tissue from E18 mouse embryos revealed
a similar result as shown in (A). In the cytosolic fraction hnRNP R IP pulled-down Smn protein and vice versa. Nuclear Smn was not detected in the
soluble, but in the corresponding insoluble nuclear fraction (right panel, lower blot). In contrast, nuclear hnRNP R was not found in the insoluble
nuclear fraction. Cytosolic and nuclear extracts were validated by a tubulin and histone H3. (C) HEK293T cells were cultured and cytosolic and soluble
nuclear fractions were prepared. Smn and hnRNP R were detected in cytosolic extracts as well as in soluble nuclear fractions. The pull down of Smn
and hnRNP R, respectively, was successful (eluate lane, IP), but hnRNP R or Smn, respectively, could not be coprecipitated, neither from cytosolic nor
from nuclear extracts. Successful fractionation was verified by GAPDH (cytosolic) and histone H3 (nucleus) (right panel).
doi:10.1371/journal.pone.0110846.g004

Figure 5. Colocalization of Smn and hnRNP R in vivo in E18 motoneurons and axon terminals. (A) Representative cross section from E18
spinal cord stained against Smn, hnRNP R and ChAT (scale bar: 10 mm). Superimposed colocalizing points are highlighted in white. Smn signals were
mainly found in the cytosol, with very few positive spots in the nuclei. HnRNP R immunoreactivity was observed in the nucleus and in the cytosol.
Colocalization of Smn and hnRNP R was detected in the cytosol, especially in axonal initiation segments (PCC 0.2760.03, MOC 0.8160.01, N= 8). (B)
Whole mount preparations from Diaphragmmuscles from E18 mouse embryos stained against Smn, hnRNP R, v-BTX and DAPI (scale bar: 2 mm). Both
Smn and hnRNP R immunoreactivity were detected at these defined sites showing partial overlap (PCC 0.2460.04, MOC 0.5460.02, N = 6).
doi:10.1371/journal.pone.0110846.g005
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analysis, thus confirming the specificity of the applied Smn

antibody also in vivo.

Discussion

Since the discovery of SMN mutations as cause of SMA

multiple efforts have been made in elucidating the role of the

corresponding protein particularly in motoneuron development

and maintenance. Whilst SMN has a central cellular role in the

assembly of spliceosomal snRNPs (reviewed in [38]) it is now

becoming increasingly clear that SMN also interacts with a

number of RNA-binding proteins such as FMRP [30], KSRP

[60], hnRNP R and Q [18,19], TDP-43 [61], FUS [31], IMP1

[62] and HuD [36,63,64]. In this study we provide evidence that

Smn colocalizes and interacts with hnRNP R in distinct

subcellular compartments of motoneurons. Beside the already

known location in nucleus and cytosol both proteins are present in

axon terminals in vivo at embryonic and postnatal stages

providing additional weight to the hypothesis that Smn, together

with hnRNP R and possibly also other mRNA-binding proteins,

contributes significantly to maturation and function of neuromus-

cular synapses by direct local action in the presynaptic compart-

ment [4,8,12–14].

HnRNP R has been identified as an interaction partner of Smn

[18]. Furthermore, hnRNP R binds to U-rich sequences within the

39UTR of b-actin mRNA [19,29] and participates in the

translocation of this mRNA into axons and axon terminals [19].

Accordingly, loss of either Smn or hnRNP R reduces axon growth

of isolated mouse motoneurons [19,29]. Smn-deficient motoneu-

rons exhibit defects in the actin cytoskeleton in axonal growth

cones resulting in impaired maturation and differentiation of these

specialized structures to presynaptic terminals at neuromuscular

endplates [15,19,65]. This correlates with defective translocation

of Cav2.2 calcium channels and eventually other transmembrane

proteins to the surface, preventing calcium influx and the

recognition of essential differentiation signals provided by direct

interaction of Cav a subunits and b2 laminin chains [15,46,66]. In

line with these observations, depletion of Smn or hnRNP R in

zebra fish leads to comparable phenotypes with respect to

truncated motor axons and aberrant branching in peripheral

regions pointing to a common functional pathway also in vivo
[29,37].

Figure 6. Localization of Smn and hnRNP R at neuromuscular junctions from E18, P4 and adult Diaphragm. Whole mount preparations
from Diaphragm muscles from developmental (E18) (A, C, left panels), postnatal (P4) (A, C, middle panels) and adult (3 months) (A, C, right panels)
stages were performed (scale bar: 2 mm (C, left panel), 5 mm). (A) Muscles were stained against v-BTX, SynPhys, DAPI and Smn protein. (A, left panel)
At E18 Smn was highly enriched in presynaptic structures identified by SynPhys immunoreactivity. Few spots appeared in postsynaptic nuclei. (A,
middle panel) Smn-positive signals were also detected in P4 motor endplates coresiding with SynPhys staining. Postsynaptic nuclei showed faint Smn
immunoreactivity. (A, right panel) In 3 month old mice (adult stage) less Smn-positive signals were noticed as described before [53,56]. The few
immunoreactive particles were predominantly located in presynaptic structures visualized by SynPhys staining. (B) Single optical slices of the P4
neuromuscular synapse highlighted the co-occurring SynPhys and Smn signals (scale bar: 5 mm). (C) Muscles were stained against v-BTX, SynPhys,
DAPI and hnRNP R. HnRNP R was codistributed with SynPhys in presynaptic compartments at E18 (left panel), P4 (middle panel) and adult stage (right
panel). HnRNP R was also detected in postsynaptic structures revealing stronger immunoreactivity at these sites in comparison to Smn. (D) Single
optical slices of the P4 motor endplate emphasized the presynaptic localization of hnRNP R (scale bar: 5 mm).
doi:10.1371/journal.pone.0110846.g006

Localization of Smn and hnRNP R in Motor Axon Terminals

PLOS ONE | www.plosone.org 9 October 2014 | Volume 9 | Issue 10 | e110846



Figure 7. Smn deficiency in SMA type I axon terminals in vivo. (A, B) Representative motor endplates from E18 Smn+/+; SMN2tg and Smn2/2;
SMN2tg Diaphragm stained against Smn and SynPhys. Acetylcholine receptors (AChR) and postsynaptic nuclei were visualized by v-BTX and DAPI,
respectively (scale bar: 5 mm). In (A) Smn deficiency is visible by highly reduced immunoreactive signals, as highlighted in the white box, whereas in
(B) the number of Smn particles per NMJ is decreased in SMA type I motor endplates, as indicated by white arrowheads. (A, B) In SMA type I axon
terminals (n = 3, N = 32) mean Smn signal intensity was significantly reduced (0.4360.09, P = 0.0220, t = 6.629, DF= 2) in comparison to control motor
endplates (set as ‘1’, n = 3, N= 43), whereas SynPhys signals (Smn2/2; SMN2tg 1.1560.19, P = 0.5221, t = 0.7694, DF= 2) and the size of the presynaptic
compartment (Control 49.48613.94 mm2; Smn2/2; SMN2tg 36.5667.464; P = 0.4596, t = 0.8174, DF= 4) were comparable. (C) Representative images
from E18 Smn+/+; SMN2tg and Smn2/2; SMN2tg spinal cord cross sections immunolabeled with Smn and ChAT. Quantitative analysis revealed a
significant decrease in cytosolic Smn immunoreactivity in SMA type I motoneurons in comparison to Smn+/+; SMN2tg cells (Smn+/+; SMN2tg set as ‘1’,
n = 6, N= 107; Smn2/2; SMN2tg 0.4660.05, n = 6, N= 85; P,0.0001, t = 11.23, DF= 5). ChAT signal intensity was not statistically affected (Smn2/2;
SMN2tg 0.8360.21; P = 0.4638, t = 0.7928, DF= 5). (D) Representative Western Blot with cytosolic and nuclear fractions from E18 control and Smn2/2;
SMN2tg spinal cord extracts. Histone H3 and a tubulin were used as markers for nuclear and cytosolic fractions, respectively, and as standardization
proteins for quantitative analysis. In SMA type I spinal cord extracts cytosolic and nuclear Smn were significantly reduced by 64% (0.3660.08, N = 10,
P,0.0001, t = 8.480, DF= 9) and 86% (0.1460.03, N = 10, P,0.0001, t = 26.39, DF= 9), respectively, in comparison to Smn+/+; SMN2tg extracts (set as ‘1’,
N = 10).
doi:10.1371/journal.pone.0110846.g007
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Recently, Smn has been visualized in spinal motoneuron cell

bodies in vivo [8,32,67,68], whereas its presence in the presyn-

aptic compartment of neuromuscular junctions, particularly of

postnatal mice, at least to our knowledge, has not been reported

yet. Previous attempts to detect SMN in these structures have

rather revealed a codistribution with postsynaptic marker BTX

than with presynaptic markers SynPhys or neurofilament (NF) [7].

Notably, Smn immunoreactivity has also been detected in skeletal

muscle [56,57], which complicates reliable visualization of

presynaptic Smn. In this study we chose the Diaphragm to

perform immunohistochemistry at neuromuscular synapses to

ensure controlled orientation due to the defined anatomy of the

Diaphragm. Furthermore, we applied IgG1 mouse antibodies for

immunodetection reducing the probability of false-positive signals

derived from unspecific binding of the applied mouse monoclonal

SMN antibody to endogenous mouse IgG antibodies and

homologous adhesion molecules. Smn expression is known to

decrease in motoneurons at later postnatal stages, which makes it

difficult to detect Smn protein in sections of spinal cord, motor

nerves and at neuromuscular endplates [53]. Nevertheless, we

were able to visualize Smn in presynaptic motor nerve terminals

particularly of E18 and P4 neuromuscular junctions in addition to

the already reported postsynaptic intramuscular localization

[7,56,57].

Smn and hnRNP R are partially colocalizing in axons and axon

terminals and also in the perinuclear region within the soma of

motoneurons. Since both hnRNP R and Smn have numerous

interaction partners with various functions, this spatial distribution

and correlation is not surprising and indicates that dynamic

interactions of Smn, hnRNP R and other RNA binding proteins

could take place in axons and axonal compartments which need to

be investigated in more detail. This hypothesis is supported by the

observation that the axonal and presynaptic colocalization of

hnRNP R with Smn changes over time. The highest degree of

overlap is observed when axon elongation and presynaptic

differentiation occur [15]. This dynamic change in codistribution

and the relatively high levels of these proteins in cytosolic

structures during this period could correspond to the in vitro
deficits in axon growth observed in Smn- [15,19] and hnRNP R-

deficient [29] motoneurons. In order to corroborate this result,

coimmunoprecipitation experiments were performed with recom-

binant and purified Smn and hnRNP R, and also with isolated

motoneurons, spinal cord extracts and non-neuronal cells. These

experiments revealed a direct interaction of hnRNP R and Smn

predominantly in the cytosol of motoneurons. In HEK293T cells,

Smn and hnRNP R could not be coimmunoprecipiated, neither

from nuclear nor from cytosolic extracts thus pointing to

differences between neuronal and other cell populations.

Recently, it has been demonstrated that mutant FUS sequesters

axonal Smn [69], disturbs snRNP localization [70], reduces the

number of Gems [71] and develops synaptic defects at neuromus-

cular junctions [72,73], thus establishing a potential correlation

between ALS and SMA [74]. Similar results were reported for

TDP-43 [33]. Mutant TDP-43 reveals impaired transport of

cytoplasmic mRNP granules [75]. Notably, axonal transport

deficits have also been identified in SMND7 mice [76]. In our

study, shRNA-mediated hnRNP R depletion did not interfere with

Smn expression or the number of Gems per nucleus. Equally, Smn

depletion did not alter hnRNP R protein levels in motoneurons,

indicating that these two proteins are not major regulators of each

other at the levels of transcription and early pre-mRNA

processing. This appears different with other members of the

hnRNP family that control Smn levels at the pre-mRNA

processing stage [77–83]. Thus, cytosolic hnRNP R that is bound

to Smn could exert unique functions in comparison to nuclear

hnRNP R and other members of the hnRNP family.

Nuclear and perinuclear Smn could also affect the assembly and

axonal transport of protein/RNA-containing particles, and this

process could potentially contribute to SMA pathology. Recent

data have shown that Smn mediates the axonal localization of

IMP-1 [62] and the trafficking of cpg15 mRNA via binding to

HuD [64], additionally regulating local translation [63,84]. In line

with these findings are reports stating that mutant hnRNP A2B1

and A1 are incorporated into stress granules resulting in aberrant

cytoplasmic inclusions, which possibly impairs their axonal

function [85]. Furthermore, more than 200 mRNAs associated

with SMN have been identified in differentiated NSC-34 cells with

30% revealing an SMN-dependent axonal localization [86]. Using

RNA-seq techniques, cell-specific mRNA transcriptome changes

have been described that affect NMJ formation and maintenance

[87] and it appears logical that these alterations can be assigned to

axonal and/or somatodendritic compartments. Taken together, a

similar functional relationship of Smn and hnRNP R, i.e. a Smn-

dependent axonal translocation of hnRNP R and hnRNP R-

bound mRNAs, may therefore be a legitimate assumption.

Conclusion

Biochemical and immunohistochemical analyses performed in

this study provide evidence of a direct interaction of Smn and

hnRNP R in spinal motoneurons in vitro and in vivo, predom-

inantly in the cytosolic compartment. Both proteins are present in

axons and axon terminals of motoneurons in vitro and in vivo.
We hypothesize that axonal and presynaptic Smn and hnRNP R

proteins are not involved in U snRNP assembly, but exert a non-

canonical function which contributes to differentiation and

maintenance of neuromuscular endplates.

Materials and Methods

Animals and ethics statement
C57Bl/6, CD-1 and SMA type I transgenic mice [59] were kept

at the animal facilities of the Institute for Clinical Neurobiology at

the University hospital of Wuerzburg providing controlled

conditions such as food and water in abundant supply, 20–22uC,
a 12 hours light/dark cycle, and 55–65% humidity, respectively.

Each experiment was performed strictly following the regulations

on animal protection of the German federal law, the Association

for Assessment and Accreditation of Laboratory Animal Care and

of the University of Wuerzburg, in agreement with and under

control of the local veterinary authority and Committee on the

Ethics of Animal Experiments, i.e. Regierung von Unterfranken,

Wuerzburg (License numbers 566/200-244/13 and 55.2-2531.01-

08/14).

This study was approved by the local veterinary authority

(Veterinaeramt der Stadt Wuerzburg) and Committee on the

Ethics of Animal Experiments, i.e. Regierung von Unterfranken,

Wuerzburg (License numbers 566/200-244/13 and 55.2-2531.01-

08/14).

Isolation and culture of primary embryonic mouse
motoneurons
Spinal cord tissue from E13.5 mouse embryos was isolated and

motoneurons were enriched via p75-panning as described

previously [88]. In brief, lumbar spinal cord was dissected and

processed thoroughly by removing dorsal root ganglia (DRGs) and

meninges. After digestion with 0.1% trypsin (Worthington)

motoneurons were enriched by incubation with anti-p75 anti-
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body-coated (MLR2, Abcam) cell culture dishes. Cells were

counted and plated on cell culture dishes or glass cover slips which

had been coated with laminin-111 or laminin-221/211, respec-

tively. Motoneurons were cultured in the presence of 10 ng/ml

BDNF and CNTF for 5DIV or 7DIV, respectively, at 37uC in a

5% CO2 atmosphere. Motoneuron medium, comprising Neuro-

basal Medium (Gibco), 2% horse serum, 500 mM GlutaMAX-I

(Gibco) and B27 (1:50, Gibco), was changed at 1DIV and then

every second day.

Lentiviral knockdown experiments were performed by incuba-

tion of motoneuron directly before plating with either control or

knockdown viruses, respectively, for 8 min at RT. Infected cells

were identified by GFP reporter expression from lentiviral

constructs.

Immunocytochemical analysis of embryonic mouse
motoneurons
Cells were washed with warm PBS (PAA Laboratories, pH 7.4)

to remove serum and debris, and fixed with 4% paraformaldehyde

(PFA) for 15 min at RT. Treatment with 0.3% TritonX for

20 min at RT ensured decent antibody penetration of the nuclei.

Unspecific binding of antibodies was reduced to a minimum by

blocking with either 10% BSA or serum of the species of the

secondary antibody, i.e. goat or donkey serum, respectively.

Primary antibodies were applied overnight at 4uC. Cells were

washed thoroughly and incubated with appropriate fluorescent

secondary antibodies. Nuclei were counterstained with DAPI.

Coverslips were embedded with Mowiol (Sigma-Aldrich, 10852)

and imaged subsequently.

The following primary and secondary antibodies were used in

this study: monoclonal mouse anti-SMN (1:250, BD Biosciences,

610646), polyclonal rabbit anti-hnRNP R (1:250, Sigma

HPA026092; 1:2000, polypeptide antiserum aa1-18, ICN, Wuerz-

burg), polyclonal guinea pig anti-Synaptophysin (1:600, Synaptic

Systems), polyclonal chicken anti-Neurofilament (heavy chain)

(1:5000, Millipore AB5539), goat anti-mouse (H+L) IgG1 (Cy5,

1:500, Abcam ab136127), donkey anti-rabbit (H+L) IgG (Cy3,

1:700, Jackson Immunoresearch 711-165-152), donkey anti-guinea

pig (H+L) IgG (Cy2, 1:400; Dianova 706-225-148) and donkey

anti-chicken (H+L) IgG (DyLight 649, 1:500, Jackson Immunor-

esearch 703-495-155).

Knockdown of Smn and hnRNP R via lentiviral shRNA in
embryonic motoneurons
Viruses were produced according to the manufacturer’s

instructions expressing either shRNA against Smn or hnRNP R,

respectively, or a GFP-reporter gene as internal control. The

knockdown vector for hnRNP R and Smn was generated by

cloning hnRNP R (59-GATGCTCTCAGGGAGTTTAAT-39)

and Smn (59-GAAGAATGCCACAACTCCC-39) shRNA se-

quence into the pSIH-H1 shRNA vector (System Bioscience).

HEK293T cells were used to generate viruses as described

previously [89,90].

Data analyses and statistics
At least three independent experiments were performed for

statistical analysis. Data are expressed as mean6 standard error of

the mean (SEM). ‘N’ indicates the total number of analyzed

specimens, e.g. NMJs, axons, growth cones or motoneuron cell

bodies, and ‘n’ the number of individual specimens, e.g. different

embryos from different litters, different wells from independent

cultures or different object slides and technical Western Blot

replicates from different embryos, which were statistically scored.

For comparison of two groups unpaired (Fig. 1E, Fig. 7A, B) or

paired (Fig. 2, Fig. S1C) student’s t-test, or one sample t-test

(Fig. 2C, D, Fig. 7A–D, Fig. S1C) was used, respectively. For

comparison of three groups (Fig. 1B) ‘Repeated Measures

ANOVA’ with post-hoc Bonferroni multiple comparison was

applied.

For statistical analyses the GraphPad Prism 4.02 software

(SanDiego, CA) was used. Fluorescence intensities were measured

as mean gray values per stained area and displayed as arbitrary

units, based on quantum levels (QL) per pixel, using the Leica LAS

AF LITE Software. Signal intensities were determined from raw

images for each optical slice by subtracting background intensities

from the measured immunoreactive signals. To determine the

relative Smn fluorescence intensity of motor endplates, average

intensity stacks were created from confocal data sets, and the mean

signal intensity of all Smn particles of one analyzed neuromuscular

junction was scored. For calculating the ratio between cytosolic

and nuclear compartments the sizes of the determined regions of

interests were taken into account. Values of consistent control

groups and relative values of control groups were standardized to

‘1’ and data from different experiments were combined when

control values were comparable to each other.

Image acquisition and processing
For image acquisition the Leica TCS SP2 and SP5 confocal

systems were used, as well as the Olympus Fluo ViewTM FV1000

microscope. For intensity measurement identical settings were

applied, i.e. objective, magnification, laser intensity and photo-

multiplier. Final processing of all images was performed with

Image-J (MacBiophotonics), Photoshop 7.0 (Adobe) and Illustrator

CS5 (Adobe). The average intensity stack function was used in

figure 1B, E, and S1C, and the maximum intensity stack function

in figure 1C (upper panel, i.e. cell body), 5B, 6A, C (middle and

right panel), 7A, B, S2A–C and S3A, B. In figure 6 and figure

S2A, B postsynaptic motor endplate staining by BTX was

smoothened for better visualization.

Brightness and contrast were enhanced in the following images

for better visualization:

Figure 6A (8bit) (left panel): BTX (MIN20), DAPI (MIN10),

SynPhys (MIN20), Smn (MIN10)

Figure 6A (8bit) (middle panel): BTX (MIN30), DAPI

(MIN20), SynPhys (MIN20), Smn (MIN20)

Figure 6A (8bit) (right panel): BTX (MIN20, MAX175),

DAPI (MIN20), SynPhys (MIN10 MAX150), Smn (MIN10)

Figure 6C (8bit) (left panel): BTX (MIN20), SynPhys

(MIN20), hnRNP R (MIN20)

Figure 6C (12bit) (middle panel): BTX (MIN200

MAX2500), DAPI (MIN200), SynPhys (MIN400), hnRNP R

(MIN350)

Figure 6C (8bit) (right panel): BTX (MIN20), DAPI

(MIN20), SynPhys (MIN20), hnRNP R (MIN25)

Figure 7A, B (8bit): BTX (MIN20), DAPI (MIN10), SynPhys

(MIN5), Smn (MIN20)

Figure 7C (12bit): ChAT (MIN200 MAX 3500), Smn (MIN200

MAX 2000)

Figure S3A, B (8bit): BTX (MIN10), DAPI (MIN10), SynPhys

(MIN10), hnRNP R (MIN20)

Colocalization analysis
Colocalization was analyzed using the Pearson’s correlation

coefficient (PCC) and the Manders Overlap Coefficient (MOC)
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plugin of ImageJ. MOC measures the percentage of overlap of two

signals computationally standardizing size and intensity and

excluding ‘zero’ pixels. Thus, co-occurrence of individual fluor-

ophores is determined. Perfectly colocalizing points within the

spatial resolution of the used objective, magnification and

microscope are rated ‘1’. In contrast, PCC is applied to quantify

the correlation between individual fluorophores taking their

intensities into consideration. To exclude a ‘random colocaliza-

tion’ of Smn and hnRNP R we used ImageJ for a colocalization

test with Fay randomization which compares and validates the

PCC of the ‘real’ image against 25 ‘randomly created’ images

generated by repeatedly shifting pixels of one of the color

channels:

Figure 2A, C (5DIV, Laminin): Cell body (PCCreal = 0.59,

PCCrandom = 0.55), axon (PCCreal = 0.42, PCCrandom = 0.22),

growth cone (PCCreal = 0.39, PCCrandom= 0.25)

Figure 2B, C (5DIV, Laminin-221/211): Cell body

(PCCreal = 0.53, PCCrandom= 0.50), axon (PCCreal = 0.35, PCCran-

dom= 0.20), growth cone (PCCreal = 0.31, PCCrandom= 0.20)

Figure S1D (N-terminal hnRNP R antibody from Sigma):
Cel l body (PCCrea l = 0.66, PCCrandom = 0.56) , axon

(PCCreal = 0.26, PCCrandom= 0.19), growth cone (PCCreal = 0.26,

PCCrandom= 0.19)

For better visualization the ‘Colocalization Finder’ plugin of

ImageJ was applied highlighting artificially superimposed coloca-

lizing points calculated computationally.

Immunohistochemial analysis of motor endplates
The Diaphragm muscle was dissected from E18, P4 or adult

mice by carefully cutting alongside the ribs and thoroughly

removing attached liver and lung tissue. The tissue was washed in

PBS-T (0.1% Tween-20) for 20 min at RT. Blood clots and fasciae

were carefully purged off the muscle tissue prior to fixation with

4% PFA at RT for 12 min (E18), 15 min (P4) or 20 min (adult

stage), respectively. After incubation with v-Bungarotoxin (Invi-

trogen, conjugated with Alexa488 or Alexa647, respectively) for

25 min at RT, the Diaphragm was incubated overnight at 4uC
with a blocking solution comprising 2% BSA, 0.1% Tween-20 and

10% donkey serum or 15% goat serum, respectively. The tissue

was then incubated with primary antibodies for three days at 4uC.
After washing with PBS (pH 7.4, PAA Laboratories) thrice for

15 min each appropriate secondary antibodies were applied for

1 h at RT. Again, the tissue was washed three times with PBS for

each 15 min, counterstained with DAPI and embedded in Aqua

Polymount (Polysciences). For immunohistochemical analysis the

following primary and secondary antibodies were used: monoclo-

nal mouse anti-SMN (1:250, BD Biosciences, 610646), polyclonal

rabbit anti-hnRNP R (1:2000, polypeptide antiserum aa1-18,

ICN, Wuerzburg), polyclonal guinea pig anti-synaptophysin

(1:600, Synaptic Systems), goat anti-mouse (H+L) IgG1 (Cy5,

1:500, Abcam ab136127), donkey anti-rabbit (H+L) IgG (Cy3,

1:700, Jackson Immunoresearch 711-165-152), donkey anti-guinea

pig (H+L) IgG (Cy2, 1:400; Dianova 706-225-148 or Cy3, 1:500;

Dianova 706-166-148). Notably, a mouse monoclonal IgG1

antibody was used for immunodetection of Smn reducing

unspecific signals derived from endogenous mouse antibodies

and adhesion molecules which share great homology with

immunoglobulins. For visualization of presynaptic hnRNP R or

Smn, respectively, ‘planar’ endplates with prominent SynPhys

staining and nuclei barely touching the BTX- and SynPhys-

positive area were preferably imaged. For P4 and adult tissue the

Diaphragm muscle was teased directly after fixation to improve

antibody penetration.

Immunohistochemical analysis of cross sections from
native embryonic spinal cords
Spinal cords were isolated without vertebrae from E18 mouse

embryos. Tissues were washed with PBS for 20 min at RT prior to

fixation with 4% PFA for at least 2 h at RT. Spinal cords were

kept in 30% sucrose solution overnight at 4uC. Spinal cords were
embedded in Tissue Tek (O.C.T. Mount Medium, Sakura) and

10 mm thick cross cryosections were produced. Cross sections were

washed with PBS and blocked with 10% donkey serum, 2% BSA

and 0.3% TritonX for 1 h at RT. Then, primary antibodies

against ChAT (anti-ChAT, 1:100, Millipore, AB144P), Smn (anti-

SMN, 1:250, BD Biosciences, 610646) and hnRNP R (anti-

hnRNP R polypeptide antiserum aa1-18, 1:2000, ICN, Wuerz-

burg) were added overnight at 4uC. Cross sections were washed

with PBS thrice and secondary antibodies (donkey anti-rabbit (H+
L) IgG conjugated with Cy3, 1:700, Jackson Immunoresearch

711-165-152; donkey anti-mouse (H+L) IgG conjugated with

Alexa488, 1:400, Invitrogen A-21202); donkey anti-goat (H+
L) IgG conjugated with Cy5, 1:300, Jackson Immunoresearch

705-175-003) were applied for 1 h at RT. After washing with PBS

for three times cross sections were embedded in Aqua Polymount

(Polysciences).

Preparation and staining of cryostat sections of ventral
roots and sciatic nerves
The Gastrocnemius was prepared as described previously [91].

Briefly, adult mice were perfused with 4% PFA and ventral roots

were isolated, postfixed in 4% PFA overnight and transferred into

buffer with increasing sucrose content, i.e. 10 to 30%. Afterwards,

the tissue was embedded in Tissue Tek (O.C.T. Mount Medium,

Sakura) and frozen within 2-methylbutane cooled by liquid N2.

The ventral roots were cut in 10 mm thick cross cryosections. The

sections were then stained as described above. The following

primary and secondary antibodies were used: Smn (anti-SMN,

1:250, BD Biosciences, 610646), hnRNP R (anti-hnRNP R

polypeptide antiserum aa1-18, 1:2000, ICN, Wuerzburg) and

neurofilament (anti-neurofilament, 1:500, AB5539, Millipore),

goat anti-mouse (H+L) IgG conjugated with Cy3 (1:200, Jackson

Immunoresearch 115-165-003), swine anti-rabbit (H+L) IgG

conjugated with FITC (1:40, Dako, F0205) and goat anti-chicken

(H+L) IgG conjugated with Cy5 (1:400, ab6569, Abcam).

Purification of murine recombinant hnRNP R and SMN
protein
His-tagged hnRNP R and SMN full length proteins were

expressed in E. coli after cloning the corresponding cDNA

constructs into the pET-28a and pET-32a vector system

(Novagen, Madison, WI), respectively. The expected molecular

size of the His-Tag from this vector corresponds to 15 kDa. In line

with this notion, the molecular sizes of the tagged proteins are

89.1 kDa for recombinant hnRNP R and 49.8 kDa for recombi-

nant SMN. Both proteins were purified using 1 ml His-Trap HP

and Superdex 10/300 gel filtration columns (GE Healthcare). The

recombinant proteins were produced in the E. coli strain BL21

grown in MagicMedium (Invitrogen) for 6 hours at 30uC and for

18 hours at 18uC without further induction. Bacterial pellets were

sonicated for 1–2 min in 50 mM sodium phosphate (pH 8.0),

500 mM NaCl, 20 mM imidazole, 5% (v/v) glycerol, 1 mM

TCEP and protease inhibitor (Roche), and spinned for 30 min at

30 000 g. The clarified supernatants were loaded onto a 1 ml His-
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Trap HP column at 0.5 ml/min flow rate. The columns were

washed for several hours with 50 mM sodium phosphate buffer

(pH 8.0), 500 mM NaCl, 30 mM imidazole, 5% (v/v) glycerol and

0.5 mM TCEP at a flow rate of 1.0 ml/min. Bound proteins were

eluted with 50 mM sodium phosphate buffer (pH 8.0), 500 mM

NaCl, 250 mM imidazole, 5% (v/v) glycerol and 0.5 mM TCEP

at a flow rate of 1.0 ml/min. In a final step eluted proteins were

subjected to a size exclusion column using a Superdex 10/300

column that was run with 50 mM sodium phosphate buffer

(pH 8.0), 50 mM NaCl and 5% (v/v) glycerol at a flow rate of

0.5 ml/min. Fractions and purified proteins were separated on 8%

PAA gels and colloidial or silver stained. Whole purification was

conducted on an Äckta FPLC system (GE Healthcare). To

determine protein concentration spectrophotometric measure-

ments were carried out with a Nanodrop (ND-1000, PeqLab).

Image processing of colloidial stainings was carried out with

Photoshop 7.0 (Adobe).

Subcellular fractionation of mouse motoneurons
At least 100 000 primary motoneurons were plated on a 12-well

cell culture dish and cultured for 7DIV in the presence of 10 ng/

ml BDNF and CNTF. Buffers for fractionation were prepared

freshly and filtered with a 0.45 mm filter. Cells were washed three

times with ice-cold PBS. Motoneurons were lysed with the

cytoplasmic fractionation buffer containing 50 mM Tris

(pH 7.4), 150 mM NaCl, 0.1% NP-40, 1 mM MgCl2 and 1x

Complete Protease inhibitor (Roche) for 10 min on ice. Cells were

scrapped off thoroughly and centrifuged at 500 g for 10 min at

4uC. The supernatant, i.e. the cytoplasmic fraction, was collected.

The pellet was washed three times with 25 ml cytoplasmic buffer to

remove the remaining cytoplasmic fraction. Supernatants were

collected and added to the existing cytoplasmic fraction.

The pellet was lysed with nuclear fractionation buffer compris-

ing 20 mM HEPES (pH 7.4), 400 mM NaCl, 1 mM EDTA,

0.5 mM NaF, 0.5 mM DTT, 2.5% Glycerol, 0.6% CHAPS, 2 U/

100 ml Benzonase and 1x Complete Protease Inhibitor (Roche) for

3 min on ice. The fraction was homogenized, incubated for

10 min on ice and centrifuged at 5000 g for 10 min at 4uC. The
supernatant, i.e. the soluble nuclear fraction, was collected. Total

protein concentration of nuclear and cytosolic fractions was

assessed using the Pierce BCA Protein Assay Kit. Equal amounts

of proteins were loaded for Western Blot analyses. Cytoplasmic

and nuclear fractions were controlled using antibodies against

GAPDH, a tubulin and histone H3 (for more information see the

chapter Western blotting).

Subcellular fractionation of E18 native spinal cord
Spinal cords without vertebrae from E18 mouse embryos were

dissected and washed with PBS three times. Tissues were lysed

with 200 ml cytoplasmic fractionation buffer (see above) for 5 min

on ice. Spinal cords were homogenized and incubated for 5 min

on ice prior to centrifugation at 500 g for 10 min at 4uC.
Supernatants, i.e. cytoplasmic fraction, were collected. In turn, the

pellets were lysed with 100 ml nuclear fractionation buffer (see

above) for 3 min on ice. Again, the pellets were homogenized and

incubated for 10 min on ice. The lysed fractions were centrifuged

at 10 000 g for 10 min at 4uC. The supernatants were collected

serving as soluble nuclear fractions. The insoluble nuclear fraction

was redissolved with RIPA Buffer and further analyzed. Total

protein concentration of nuclear and cytosolic fractions was

assessed using the Pierce BCA Protein Assay Kit. For Western Blot

analyses equal amounts of protein were loaded onto the gel. The

purity of the obtained fractions was controlled by GADPH, a

tubulin and histone H3 (for more information see the chapter

Western blotting).

Coimmunoprecipitation of recombinant proteins
The association between recombinant hnRNP R and SMN was

analyzed by coimmunoprecipitation using GammaBind Plus

Sepharose beads (GE Healthcare). 250 or 500 ng of rhnRNP R

and 250 ng of rSMN were incubated in binding buffer, comprising

50 mM sodium phosphate (pH 8.0), 5% (v/v) glycerol, 50 mM

NaCl and 0.1% Tween, with 20 ml Sepharose beads and 1 mg
antibodies against hnRNP R (ab30930, Abcam), SMN (610647,

BD Bioscience) or non-specific IgG control (anti-GFP, sc-8334,

Santa Cruz) for 1 h at RT. The resin was washed 5 times with

binding buffer to remove unbound proteins. For elution beads

were boiled in 2xLaemmli buffer at 95uC for 5 min. The eluted

proteins were then analyzed by Western blotting (for more

information see the chapter Western blotting). Notably, Light

chain-specific secondary antibodies (Jackson Immunoresearch)

were used for detection since the 55 kDa heavy chain from the

immunoprecipitation would mask the SMN signal.

Immunoprecipitation
Spinal cord without vertebra isolated from E18 mouse embryo

or approximately 500 000 primary motoneurons cultured for

7DIV were used for coimmunoprecipitation experiments. Nuclear

and cytoplasmic proteins were extracted (see above). Fractions

were pre-cleaned with protein G beads (for rabbit IgG antibody)

and protein A beads (for mouse IgG antibody) for 1 h. Afterwards,

the pre-cleaned lysate was incubated with 5 ml rabbit anti-hnRNP

R (abcam, ab30930), 4 ml anti-Smn (BD Biosciences, 610646) and

consistent rabbit and mouse FLAG antibodies, respectively as

negative control for 6 h under rotary agitation at 4uC. Protein G-

agarose beads (Roche) for rabbit antibody and protein A-agarose

beads (Roche) for mouse were washed with PBS and equilibrated

with lysis buffer. The protein and antibody lysate were added to

the respective equilibrated beads and incubated for 1 h under

rotary agitation at 4uC. Subsequently, samples were centrifuged at

500 g for 5 min and the supernatant was removed. Then, beads

were washed thrice with the appropriate lyses buffer and finally

with PBS. The proteins were eluted by boiling the beads with 2x

Laemmli buffer at 90uC for 10 min. Immunoblotting was

performed for hnRNP R and Smn to confirm coimmunoprecipi-

tation.

Western blotting
Primary motoneurons or E18 spinal cord tissue, respectively,

were lysed with cytosolic and nuclear fractionation buffer,

solubilized in Laemmli buffer (125 mM Tris, pH 6.8, 4% SDS,

10% b-mercaptoethanol, 20% glycerol, and 0.004% bromophenol

blue) and boiled for 10 min at 99uC. Proteins were then subjected

to SDS-PAGE, blotted onto PVDF membrane, incubated with the

corresponding antibodies, and developed with either ECL or ECL

Advance Systems (GE Healthcare) on X-ray film (Fuji super RX).

Western blots were scanned and quantified by densitometry

analysis with ImageJ (National Institutes of Health). For Western

Blot analysis the following primary and secondary antibodies were

used: anti-SMN (BD Biosciences, 610646, 1:3000), anti-hnRNP R

(Abcam, ab30930, 1:3000 or polypeptide antiserum aa1-18, ICN,

Wuerzburg, 1:3000), anti-GFP (Santa Cruz, sc-8334, 1:4000),

anti-GAPDH (Millipore, 6C5, 1:4000), anti-a tubulin (T5168,

Sigma, 1:4000), anti-histone H3 (Abcam, ab8580, 1:20 000), anti-

calnexin (Abcam, ab22595, 1:5000), anti-GFP (Santa Cruz, sc-

8334, 1:4000), anti-mouse IgG (Jackson Immunoresearch, 115-

035-003, 1:10000), anti-rabbit IgG (Jackson Immunoresearch,
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111-035-003, 1:10000), anti-mouse light chain-specific (Jackson

Immunoresearch, 111-035-174, 1:10000) and anti-rabbit light

chain-specific (Jackson Immunoresearch, 211-032-171, 1:10000).

Supplementary Material
Supplementary Material is available online at the PLOS ONE

homepage ‘www.plosone.org’.

Supporting Information

Figure S1 Structure of hnRNP R protein and validation
of N-terminal hnRNP R antibody. (A) HnRNP R contains

three RNA-recognition motifs (RRM) and an arginine- and

glycine-rich domain. ICN 1-18 binds to the very N-terminal

region of hnRNP R in contrast to other antibodies which bind to

the C-terminus. (B) Two shRNA binding sites were designed to

deplete hnRNP R protein. Thereby, the one near the 39UTR was

used in this study since it affects all predicted hnRNP R isoforms

identified by database research [92]. The other lentiviral construct

was applied and verified as previously reported [29]. (C)

Representative images of GFP- and sh-hnRNP R-infected

motoneurons cultured for 7DIV on laminin-111 and stained

against hnRNP R, Smn and DAPI (scale bar: 10 mm). Using an

independent N-terminal hnRNP R antibody a significant

reduction (P= 0.0272, t = 5.941, DF=2) of hnRNP R immuno-

reactivity of 52% was detected in sh-hnRNP R-infected moto-

neuron cell bodies (0.4860.09, n= 3, N= 40) in comparison to

GFP-infected control cells (set as ‘1’, n = 3, N= 57). Notably, loss

of hnRNP R did not significantly alter cytosolic Smn signal

intensity (sh-hnRNP R 0.8260.08, P= 0.1426, t = 2.356, DF= 2)

and the number of Smn-positive Gems (GFP 0.8660.24; sh-

hnRNP R 1.0360.24; P= 0.1182, t = 2.645, DF= 2). (D) Pattern

and subcellular distribution of hnRNP R in cell bodies, axons and

axonal growth cones, using the independent N-terminal hnRNP R

antibody, were similar to the results obtained with the ICN 1-18

with a relatively stronger staining in the nucleus. Motoneurons

were cultured for 5DIV on laminin-111. Colocalization analysis of

Smn and hnRNP R revealed also comparable results in soma

(PCC 0.6660.02, MOC 0.7060.01, N=6), axon (PCC

0.2660.02, MOC 0.4860.01, N=7) and axonal growth cone

(PCC 0.2660.05, MOC 0.4760.03, N= 7), as highlighted in

white (right panel) (scale bar: soma, 10 mm; axon and growth cone,

5 mm).

(TIF)

Figure S2 Localization of Smn and hnRNP R in axon
terminals and motor axons in vivo. (A, B) Single optical

slices with 1 mm step size and the corresponding maximum

projections from P4 Diaphragm whole mount preparations stained

against v-BTX, DAPI and (A) Smn or (B) hnRNP R, respectively

(scale bar: 5 mm). Both (A) Smn and (B) hnRNP R immunore-

activity coresided and co-occurred with presynaptic marker

SynPhys. (C) Cross sections from adult sciatic nerve immuno-

stained against hnRNP R, Smn and neurofilament (NF) (scale bar:

5 mm). Superimposed colocalizing points are highlighted in white.

(TIF)

Figure S3 Loss of hnRNP R immunoreactivity after
preabsorption with recombinant protein. (A) hnRNP R

signal was highly reduced after preabsorption of ICN 1-18 with

recombinant hnRNP R protein (B), whereas pre- and postsynaptic

structures were visible, as indicated by synaptophysin and BTX

staining, respectively. DAPI staining showed synaptic nuclei or

nuclei from non-neuronal cells, respectively (scale bar: 5 mm).

(TIF)
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