
A novel defined
cuproptosis-related gene
signature for predicting the
prognosis of lung
adenocarcinoma

Huizhe Zhang1†, Yanchen Shi2†, Qing Yi2, Cong Wang3,
Qingqing Xia3, Yufeng Zhang3*, Weilong Jiang3* and Jia Qi4*
1Department of Respiratory Medicine, Yancheng Hospital of Traditional Chinese Medicine, Yancheng
Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China, 2Department of
Pulmonary and Critical Care Medicine, Traditional Chinese and Western Medicine Clinical College of
Nanjing University of Chinese Medicine, Nanjing, China, 3Department of Pulmonary and Critical Care
Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing
University of Chinese Medicine, Jiangyin, China, 4Department of Pharmacy, Xin Hua Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, Shanghai, China

Lung adenocarcinoma (LUAD) has become themost prevalent histologic subset

of primary lung cancer, and effective innovative prognostic models are needed

to enhance the feasibility of targeted therapies for the disease. Programmed cell

death (PCD) performs an integral function in the origin and treatment of cancer.

Some PCD-related effective signatures for predicting prognosis in LUAD

patients could provide potential therapeutic options in LUAD. A copper-

dependent cell death referred to as cuproptosis is distinct from known PCD.

However, whether cuproptosis is associatedwith LUAD patients’ prognoses and

the potential roles of cuproptosis-related genes involved is still unknown. For

the prediction of LUAD prognosis, we developed a unique cuproptosis-

associated gene signature. In The Cancer Genome Atlas (TCGA) cohort, the

score derived from the risk signature on the basis of six cuproptosis-related

genes was found to independently serve as a risk factor for anticipating lung

cancer-related death. The differentially expressed genes between the high- and

low-risk groups were linked to the cilium-related function. LUAD patients’

prognoses may now be predicted by a unique gene signature identified in

this work. This discovery also provides a substantial foundation for future

research into the links between cuproptosis-associated genes and cilium-

related function in LUAD patients.
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Introduction

Lung adenocarcinoma (LUAD) is currently the most

prevalent histologic subset of primary lung cancer,

contributing to over 40% of all cases, and its relative

prevalence is growing (Barta et al., 2019). The absence of

adequate screening strategies and the challenges of performing

an early diagnosis have resulted in significantly high recurrence

and death rates for LUAD, with an overall five-year survival

probability of lower than 15% owing to local and distant

metastases (Ali et al., 2013). Despite great efforts having been

made to explore the therapeutic effect of LUAD, the clinical

outcomes of LUAD remain poor in patients (Zhang et al., 2015).

Because of the limits of current LUAD therapies, novel treatment

targets are required in order to improve the clinical result of

LUAD. As a result, robust innovative prognostic models are

needed in order to enhance the feasibility of targeted therapy

for LUAD.

Programmed cell death (PCD) is critical for the appropriate

development and maintenance of tissue homeostasis, as well as

for the removal of damaged, diseased, or defunct cells in

multicellular organisms. In the pathophysiology of different

illnesses, aberrations in PCD signaling cascades, including

ferroptosis, apoptosis, pyroptosis, necroptosis, and cell death

linked to autophagy, may be detected (Galluzzi et al., 2018;

Moujalled et al., 2021). Nowadays, several studies have

established tumor prognostic models associated with PCD

(Cai et al., 2021; Fu et al., 2021; Shao et al., 2021; Zhao et al.,

2021). PCD performs an integral function in the origin and

treatment of cancer (Shao et al., 2019; Strasser and Vaux, 2020).

A few studies revealed crosstalk between distinct PCD

mechanisms and antitumor immunity (Tang et al., 2020).

Immunogenic cell death is a kind of tumor cell death that

may be induced by some chemotherapy medicines, oncolytic

viruses, physicochemical treatments, and radiotherapy (Ahmed

and Tait, 2020). The ability of cancer cells to undergo death when

subjected to anti-cancer therapy is mediated by modulated cell

death systems, which could either suppress or enhance the

immunogenic capacity of cancer cells (Garg and Agostinis, 2017).

The latest research shows that copper mediates cell death by

targeting lipoylated tricarboxylic acid (TCA) cycle proteins, and

because of this, lipoylated proteins aggregate, and corresponding

iron-sulfur cluster proteins are lost, resulting in proteotoxic stress

and eventually cell death. The authors demonstrate that copper-

dependent modulated cell death in human cells is different from

recognized cell death processes and is reliant on mitochondrial

respiration (Tsvetkov et al., 2022). Therefore, this copper-

dependent cell death was referred to as cuproptosis. There are

very few in-depth studies on cuproptosis. There is a strong

correlation between the abundance of ferredoxin 1 (FDX1)

and the level of lipoylated proteins in a variety of human

tumor cells, and cell lines with significant levels of lipoylated

proteins are susceptible to cuproptosis, suggesting that copper

ionophore intervention ought to be targeted towardmalignancies

with this metabolic landscape. Consequently, subsequent clinical

studies of copper ionophores ought to be conducted utilizing a

biomarker-driven strategy (Tsvetkov et al., 2022). According to

the above studies on cuproptosis, we obtained cuproptosis-

related genes including FDX1, dihydrolipoamide

dehydrogenase (DLD), lipoic acid synthetase (LIAS),

lipoyltransferase 1 (LIPT1), ATPase copper transporting beta

(ATP7B), glycine cleavage system protein H (GCSH), ATPase

copper transporting alpha (ATP7A), dihydrolipoamide

S-acetyltransferase (DLAT), pyruvate dehydrogenase

E1 subunit beta (PDHB), pyruvate dehydrogenase E1 subunit

alpha 1 (PDHA1), dihydrolipoamide S-succinyltransferase

(DLST), solute carrier family 31 members 1 (SLC31A1), and

dihydrolipoamide branched chain transacylase E2 (DBT), which

provide the preliminary basis for our next exploration and

research.

Recently, a number of studies have established ferroptosis-,

pyroptosis-, necroptosis- and autophagy-related effective

signatures for predicting prognosis in LUAD patients, which

could provide potential therapeutic options in LUAD (Chen

et al., 2020; Lin et al., 2021; Yao et al., 2021; Lu et al., 2022).

Given these existing findings, we hypothesized that cuproptosis is

linked to LUAD patients’ prognoses and that cuproptosis-

associated genes may be involved in the disease process. As a

consequence, we conducted a comprehensive investigation to

determine the expression patterns of cuproptosis-associated

genes in normal lung and LUAD samples, ascertain the

prognostic significance of these genes, and conducted the

Gene Ontology (GO) and immune infiltration enrichment

analyses.

Materials and methods

Datasets

We acquired the RNA sequencing (RNA-seq) data combined

with the corresponding clinical features (phenotype and survival

data) from the Genomic Data Commons (GDC) The Cancer

Genome Atlas (TCGA) LUAD cohort, all of which were retrieved

from the University of California, Santa Cruz (UCSC) Xena

(http://xena.ucsc.edu)(Goldman et al., 2020). UCSC Xena is an

analysis and visualization platform with excellent performance

for both large public databases including TCGA (Chin et al.,

2011) and the GDC (Grossman et al., 2016), and private datasets.

The RNA-seq data normalized to fragment per kilobase

million (FPKM) values include the gene expression data of

59 normal and 526 tumor tissues samples (https://gdc-hub.s3.

us-east-1.amazonaws.com/download/TCGA-LUAD.htseq_

fpkm.tsv.gz; version 07-20-2019), the phenotype data include

clinicopathologic features of 877 LUAD patients (https://gdc-

hub.s3.us-east-1.amazonaws.com/download/TCGA-LUAD.
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GDC_phenotype.tsv.gz; version 08-07-2019) and survival data

include survival time information of 738 LUAD patients (https://

gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-LUAD.

survival.tsv; version 07-20-2019) (Supplementary File S1).

Identification of the cuproptosis-related
gene expression levels and interactions

We extracted the 13 cuproptosis-related genes from the

recent article (Tsvetkov et al., 2022). The downloaded

expression data in the TCGA dataset were presented as

FPKM values. The “limma” package (Ritchie et al., 2015)

was used to identify differentially expressed genes (DEGs)

related to cuproptosis between 59 normal and 526 tumor

tissues, and a p-value < 0.05 was defined statistically

significant difference. The “pheatmap” package was used to

present the RNA levels of these 13 cuproptosis-associated

genes. The following are the criteria for the genes linked to

cuproptosis with differential expression: *p < 0.05, **p < 0.01,

and ***p < 0.001. We employed these genes to create a protein-

protein interaction (PPI) network with the Search Tool for the

Retrieval of Interacting Genes/Proteins (STRING), version

11.5 (https://string-db.org/), which is a repository of PPIs

that have been identified and anticipated. There are indirect

(functional) and direct (physical) linkages resulting from

computerized prediction, information transmission between

organisms, and interplay obtained from other repositories

(Szklarczyk et al., 2021). The minimum required

interaction value for the PPI analysis was established at 0.

15 (the lowest confidence level) due to the limited number of

genes, which allowed for more interactions to be discovered.

Visualization of the correlation network of these genes was

accomplished utilizing the “igraph” package, which is a set of

network analysis tools that have a focus on portability,

efficiency, and simplicity of use.

Tumor classification premised on the
cuproptosis-related genes clusters

With the help of the R package “ConsensusClusterPlus”

(Wilkerson and Hayes, 2010), a consensus clustering analysis

of all 526 LUAD tumor tissues in the TCGA dataset was

performed to examine the links between the expression of the

13 cuproptosis-related gene and LUAD subtypes. Once the

clustering variable (k) was increased from 2 to 10, a suitable

value of k could be found and the 526 LUAD tumor tissues

were classified into suitable clusters on basis of the 13 genes,

with the highest intragroup correlations and the low

intergroup correlations. After collating the phenotype data

and survival data and removing the missing values, the data on

clustered gene expression and the clinical parameters

encompassing the tumor, node, and metastasis (TNM)

classification, age, gender, and survival status of 486 LUAD

patients were presented via the “pheatmap” package, which

allowed for visualization of the differences between the

clinical parameters and the classified clusters. A

comparison was made for the overall survival (OS) time

among the divided clusters via the Kaplan–Meier (KM)

survival analysis using the “survival” package.

Development of a cuproptosis-associated
gene prognostic model

In total, 526 LUAD specimens were paired with the

500 matching patients whose survival data was complete. To

examine the predictive significance of the cuproptosis-

associated genes, we conducted a Cox regression analysis on

the data from the TCGA cohort to determine the relationships

between each gene and survival status. We established p <
0.3 as the cut-off value to avoid missing important genes and

identified genes associated with survival for subsequent

evaluation. The least absolute shrinkage and selection

operator (LASSO) Cox regression model was then employed

to filter out the potential genes and to create the prognostic

model, which was done with the help of the R package “glmnet”

(Tibshirani, 1997; Engebretsen and Bohlin, 2019). The final

decision was made to keep the genes along with their

coefficients being retained, and the penalty parameter (λ)
was chosen based on the bare minimum requirements.

Using a linear combination for each prognostic survival-

associated gene’s standardized expression level and its

associated multivariate Cox regression coefficient (β), the

risk score in the derivation, as well as the validation sets,

were determined. The following was the equation for

calculating the risk score: Risk Score = ∑(βi × genei EXP)

(EXP: normalized expression value). After classifying patients

into low- and high-risk subgroups premised on their median

risk scores, the OS duration was evaluated between the two

subgroups utilizing the KM survival analysis method. Using the

gene signature as a starting point, principal component

analysis (PCA) was done with the help of the function

“prcomp” in the R package “stats”. The R packages

“survival” and “timeROC” were employed to execute

analyses of patients’ distribution premised on the risk score,

each patient’s survival status, KM survival curves, and receiver

operating characteristic (ROC) curves.

Assessment of the risk score’s
independent prognosis

Patients with LUAD in the TCGA cohort were categorized

into two subgroups premised on their median risk scores. The
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clinical features including TNM classification, age, gender, and

survival status of LUAD patients in high- and low-risk subgroups

were analyzed in conjunction with the risk score derived from

our regression model. Univariate and multivariate Cox

regression models were utilized in the investigation. After

collating the phenotype data and survival data and removing

the missing values, the survival-related gene expression data and

the clinical parameters encompassing TNM classification, age,

gender, and survival status of LUAD patients in low- and high-

risk groupings were presented via the “pheatmap” package and

the differences in the clinical parameters across the two groups

were evaluated.

Functional enrichment and immune
infiltration analyses of the differentially
expressed genes between the low- and
high-risk subgroups

Patients with LUAD in the TCGA dataset were categorized

into two subgroups premised on their median risk scores.

Determining the DEGs that distinguished the patients at low

and high risk was done using the criteria of |log2FoldChange

(FC) | > 0.5 and adjusted p < 0.05. The “org.Hs.eg.db” program

was utilized to obtain the entrezIDs of DEGs. By incorporating

the “clusterProfiler” and the “GOplot” packages, we were able

to conduct analyses of GO functional enrichment on the basis

of these DEGs and entrezIDs (Yu et al., 2012; Walter et al.,

2015; Wu et al., 2021). GO functional analysis comprises three

classifications: biological process (BP), cellular component

(CC) and molecular function (MF). Single-sample gene set

enrichment analysis (ssGSEA) was performed with the help of

the “GSVA” and “GSEABase” packages, which were employed

to compute the infiltration scores of immune cells and to

assess the functioning of immune-associated pathways

(Hanzelmann et al., 2013).

Statistical analysis

The gene expression patterns in the normal lung and

LUAD samples were compared utilizing a single-factor

analysis of variance, whereas the categorical data were

evaluated utilizing the Pearson chi-square test. We used the

KM survival analysis approach in conjunction with a two-

sided log-rank test to assess the OS of patients across different

subgroups. We employed univariate and multivariate Cox

regression models to examine the risk model’s independent

prognostic significance. Through the use of Mann–Whitney

test, we evaluated the infiltrating levels of immune cells and

the activation of the immune pathway between the two

subgroups. RGUI 4.0.3 was employed to execute all

analyses of statistical data.

Results

The cuproptosis-related gene expression
levels and interactions

The 13 cuproptosis-related gene expression levels were

determined after comparing 59 normal and 526 tumor

tissues in GDC TCGA LUAD cohort retrieved from UCSC

Xena. Among them, 7 genes (DLAT, DLD, GCSH, LIAS,

LIPT1, PDHA1, and PDHB) were upmodulated, whereas

3 genes (ATP7B, FDX1, and SLC31A1) were

downmodulated in the tumor group in contrast with the

normal group (p < 0.05). The levels of RNA for these

13 cuproptosis-related genes are displayed as a heatmap,

where green and red denote low and high expression levels,

respectively (Figure 1A). We undertook a PPI study on these

cuproptosis-associated genes in order to learn more about

their interactions with one another. Once the minimum

required interaction score of the PPI analysis was adjusted

to 0.15, the top five interaction proteins/genes were DLD,

GCSH, DLAT, PDHA1, and LIAS, which could be considered

as hub genes. Figure 1B illustrates the findings of PPI

analysis. Figure 1C depicts the correlation network

encompassing all genes associated with cuproptosis, where

red and blue denote positive and negative correlations,

correspondingly.

Characterization of tumors depending on
the genes involved in cuproptosis

The expression of the 13 cuproptosis-associated genes was

compared to the expression of LUAD subtypes utilizing a

consensus clustering analysis of all 526 LUAD tumor

specimens from the TCGA cohort in order to investigate the

relationship between the two. After adjusting the clustering

value (k) from 2 to 10, we discovered that at k = 3, the

intragroup relationships were the strongest, illustrating that

the 526 LUAD tumor tissues may be efficiently classified into

three clusters on the basis of the 13 genes (Figure 2A). The

526 LUAD tumor tissues were corresponding to 486 LUAD

patients with complete clinical features including TNM

classification (stage N: N0, N1, N2, N3 or NX; stage M: M0,

M1, or MX; stage T: T1, T2, T3, T4 or TX), age

(≤60 or >60 years), gender (male or female) and survival

status (dead or alive). An interactive heatmap is used to

display the gene expression patterns and clinical parameters

of 486 LUAD patients. The heatmap reveals that there are only

minor differences in clinical parameters across the three

clusters (Figure 2B). The KM survival analysis was utilized

to measure the OS duration of the 500 relevant patients who

had full survival time information among the three clusters, but

differences were not obvious (p = 0.3091) (Figure 2C).
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Development of a prognostic gene model
in the TCGA dataset

In total, 526 LUAD specimens were paired with the

500 matching patients whose information on survival time

was complete. The univariate Cox regression analysis was

utilized for the initial filtering of the genes associated with

survival. Subsequent investigations were conducted on the

6 genes (DBT, DLAT, DLD, DLST, LIPT1, and PDHA1) that

satisfied the criterion of p < 0.3. Out of these 6 genes, 2 genes

(DBT and LIPT1) were shown to have a protective function

with hazard ratios (HRs) < 1, whereas the remaining 4 genes

(DLAT, DLD, DLST, and PDHA1) were linked to a greater

risk as demonstrated by HRs > 1. LIPT1 independently served

as an influencing factor (p < 0.05) (Figure 3A). The Cox

regression analysis conducted using the LASSO method was

utilized to build a 6-gene signature that corresponded to the

optimal λ value (Figure 3B). In the next step, we undertook a

multivariate Cox regression analysis of the six genes

(Figure 3C). The following is the equation for computing

the risk score: risk score = (−0.2733 × DBT EXP) + (0.1636 ×

DLAT EXP) + (0.1974 × DLD EXP) + (0.1606 × DLST EXP) +

(−0.4600 × LIPT1 EXP) + (0.1336 × PDHA1 EXP). Five

hundred patients were separated into two groups

depending on the median score generated by the risk score

equation: low- and high-risk subgroups (Figure 3D). When

the PCA was performed, it was determined that patients with

different risks could be effectively categorized into two

clusters (Figure 3E). A higher number of fatalities and a

considerably shorter survival duration were observed among

FIGURE 1
The expression and interactions of 13 cuproptosis-related genes. (A) The expression of cuproptosis-related genes in normal and tumor samples
is shown in a heatmap (with green and red signifying low and high expression levels, respectively). Comparison between the tumor samples and the
normal samples *p < 0.05; **p < 0.01; ***p < 0.001. (B) PPI network illustrating the connections of genes involved in cuproptosis (interaction score =
0.15). (C) The network of genes associated with cuproptosis (red and blue lines depict positive and negative correlations, respectively). The
strength of relevance is reflected in the intensity of the colors.
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patients within the high-risk subgroup (displayed on the right-

hand side of the dashed line) relative to those at low risk

(Figure 3F). A notable difference (p = 0.0031) in OS duration

was discovered between the high- and low-risk groups via KM

survival analysis (Figure 3G). The prognostic model’s specificity

and sensitivity were assessed utilizing time-dependent ROC

curves. The findings indicated that the area under the ROC

curve (AUC) for OS was 0.639, 0.605, and 0.576 for 1-, 2-, and

3-year periods, respectively (Figure 3H).

The risk model’s independent prognostic
significance

In the TCGA cohort, LUAD patients were classified into two

subgroups based on their median risk score. The

482 corresponding patients had complete clinical features

including survival status, TNM classification, age, and gender

of LUAD patients in low- and high-risk subgroups were

examined in combination with the risk score in the regression

model. We utilized univariate and multivariate Cox regression

analyses to ascertain the possibility of the risk score produced

from the gene signature model independently serving as a

prognostic factor. The analytical findings from the univariate

Cox regression model illustrated that the risk score (HR = 1.5483,

95% CI: 1.973–5.467) independently functions as a predictive

factor for unfavorable survival in the TCGA cohort (Figure 4A).

Furthermore, after adjusting for possible confounders in the

multivariate analysis, the risk score (HR = 1.5014, 95% CI:

1.1042−2.0414), stage T (HR = 1.3345, 95% CI:

1.1170−1.5943) and stage N (HR = 1.3046, 95% CI:

1.1283−1.5086) were found to be prognostic indicators for

LUAD patients in TCGA cohort (Figure 4B). As an additional

output of our analysis, we established a heatmap of clinical

parameters for the TCGA dataset (Figure 4C), and the

findings illustrated that the survival duration, stage T, and

stage N were diversely distributed between the low- and high-

risk subgroups.

FIGURE 2
Tumor classification premised on the cuproptosis-associated genes. (A) Five hundred and twenty-six LUAD tumor samples were classified into
three clusters utilizing the consensus clustering matrix (k = 3). (B) The heatmap depicting the clinical and pathological parameters of the three
cuproptosis-related gene clusters. (C) Comparing OS time via KM survival analysis for the three clusters.
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Gene ontology functional analysis
premised on the risk model

To additionally examine the difference in the functions of

genes between the groups classified by the risk model, we

employed the R function “limma” to obtain the DEGs

premised on the cutoff values of adjusted p < 0.05 and |

log2FC| > 0.5. Then, 1292 DEGs were detected between high-

and low-risk subgroups in the TCGA dataset. 233 of them were

upmodulated in the high-risk group, whereas the remaining

1,059 were downmodulated (Supplementary Table S1).

Following that, a GO functional enrichment analysis was

carried out using these DEGs. The function enrichment

analysis of the GO BP illustrated a considerable enrichment of

DEGs in cilium movement, cilium or flagellum-dependent cell

motility, cilium-dependent cell motility, microtubule-based

movement, cilium movement involved in cell motility and

other processes. Analysis of the GO CC illustrated a

FIGURE 3
The establishment of a risk signature for the TCGA dataset. (A) OS analysis utilizing univariate Cox regression for each of the 6 cuproptosis-
associated genes with p < 0.3. (B) LASSO regression analysis of the six genes associated with OS. (C) Analysis of OS utilizing multivariate Cox
regression for the six genes associated with OS. (D) Patients are classified according to their risk scores. (E) PCA plot for patients with LUAD
depending on their risk scores. (F) Each patient’s survival probability (low- and high-risk groups are displayed on the left and right sides of the
dotted line, respectively). (G) KM survival study of patients classified as having high or low risks. (H) ROC curves proved the risk score’s predictive
effectiveness. AUC, area under the ROC curve.
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FIGURE 4
Analyses of the risk score utilizing univariate and multivariate Cox regression. (A) The TCGA dataset was subjected to a univariate analysis. (B)
The TCGA cohort was subjected to amultivariate analysis. (C)Heatmap depicting the associations between clinical and pathological parameters and
risk groups.

FIGURE 5
GO functional enrichments. (A) The top 10GO functional enrichments included BP, CC, andMF. The smaller the adjusted p, themore significant
the enrichment. (B)GOBP chord plot. GO terms represent the top 10GOBP functional enrichments, and gene nameswith the connection represent
their enriched genes. BP, biological process; CC, cellular component; MF, molecular function.
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substantial enrichment of DEGs in the motile cilium, axoneme,

ciliary plasm, 9 + 2 motile cilium, sperm flagellum, and other

components. The analysis of GO MF demonstrated a

considerable enrichment of DEGs in metal ion

transmembrane transporter activity, cation channel activity,

channel activity, passive transmembrane transporter activity,

ion channel activity, and other functions (Supplementary

Table S2). The topmost 10 GO functional enrichments

ordered by adjusted p are depicted in Figure 5A. The top

10 GO BP functional enrichments with their enriched genes

are shown as GO chord plots (Figure 5B).

Assessment of the immune activity across
the groups

With the help of the ssGSEA, we were able to additionally

evaluate the enrichment scores for 16 distinct kinds of immune

cells and the functioning of 13 immune-associated pathways

between the high- and low-risk subgroups in the TCGA dataset.

In the TCGA cohort, we ascertained that the high-risk subgroup

exhibited reduced infiltrating levels of immune cells including T

helper cells, immature dendritic cells (iDCs), mast cells, activated

dendritic cells (aDCs), and tumor-infiltrating lymphocytes

(TILs) in contrast with the low-risk subgroup (Figure 6A).

Within the TCGA cohort, three immunological pathways were

shown to be less active in the high-risk subgroup as opposed to

the low-risk subgroup, including the human leukocyte antigen

(HLA), type I interferon (IFN) response, and type II IFN

response (Figure 6B).

Discussion

In this work, we initially evaluated the mRNA levels of

13 presently recognized cuproptosis-associated genes in LUAD

and normal specimens and discovered a differential expression

among several of them. There were interactions and correlations

among these genes. Nonetheless, the three clusters generated

from the consensus clustering assessment premised on the

cuproptosis-related genes, on the other hand, did not exhibit

any evident significant differences in clinical parameters or OS

time. We conducted univariate and LASSO Cox regression

analyses on these cuproptosis-associated genes in order to test

their prognostic significance further. We then created a 6-gene

risk signature using the results of this investigation. After that, a

risk score was established, and the patients were categorized into

two subgroups: low-risk and high-risk subgroups. Cox regression

FIGURE 6
ssGSEA score comparison for immune cells and immune pathways. (A) Comparison of the enrichment values of 16 different kinds of immune
cells in the TCGA dataset between patients at high (red box) and low risks (green box). (B) Patients in the high-risk (red box) and low-risk (blue box)
groups in the TCGA cohort were compared on the basis of the enrichment values of 13 distinct immune-associated pathways. iDCs, immature
dendritic cells; aDCs, activated dendritic cells; TIL, tumor-infiltrating lymphocyte; DCs, dendritic cells; IFN, interferon; NK cells, natural killer
cells; MHC, major histocompatibility complex; Th1 cells, type 1 T helper cells; Tfh, T follicular helper cell; Th2 cells, type 2 T helper cells; APC, antigen
processing cell; Treg, regulatory T cell; HLA, human leukocyte antigen; CCR, cytokine-cytokine receptor; pDCs, plasmacytoid dendritic cells; ns, not
significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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analyses, both univariate and multivariate, were employed to

establish if the risk score resulting from the gene signature model

independently served as a prognostic indicator. In accordance

with the functional analyses, the DEGs that distinguished the

low-risk patients from the high-risk ones were linked to cilium-

related function. The infiltration of immune cells and the

activation of signaling pathways in the low- and high-risk

subgroups were also examined. We discovered reduced

infiltrating levels of immune cells in the high-risk subgroup,

including aDCs, iDCs, T helper cells, mast cells, and TILs, as

opposed to the low-risk subgroup. HLA, type I IFN response and

type II IFN response showed lower activity in the high-risk in

contrast with the low-risk subgroup.

In recent years, PCD was identified as having a dual role in

the genesis of tumors and therapeutic processes. As a result of the

abundant supply of inflammatory mediators generated by PCD,

normal cells are activated, ultimately resulting in their transition

into cancer cells. The enhancement of tumor cell PCD, on the

other hand, may provide a novel treatment target (Lu et al., 2017;

Karki and Kanneganti, 2019; Xia et al., 2019; Al et al., 2021; Koren

and Fuchs, 2021). Cell death performs an instrumental function

in the origin and treatment of cancer, while several studies have

established tumor prognostic models associated with cell death

(Cai et al., 2021; Fu et al., 2021; Shao et al., 2021; Zhao et al.,

2021).

Cuproptosis, copper-dependent cell death presented by a

recent article, as a novel form of PCD (Tsvetkov et al., 2022).

Copper is a double-edged sword as it is required as an enzyme

cofactor, but it may also be poisonous at even modest

intracellular levels, leading to cell death (Ge et al., 2022). As a

consequence of cuproptosis, which targets lipoylated TCA cycle

proteins, lipoylated protein aggregation and consequent iron-

sulfur cluster protein depletion occurs, resulting in proteotoxic

stress and eventually inducing the death of cells. These new

results may also invigorate studies exploring the use of copper to

treat cancer (Kahlson and Dixon, 2022; Tsvetkov et al., 2022). At

present, the relevant mechanism research of cuproptosis and

tumors should be further deepened. Nonetheless, it may be

necessary to first investigate how cuproptosis-associated genes

interact with one another and if they are linked to the survival

time of patients with LUAD.

Our research established a signature consisting of six

cuproptosis-related genes (DBT, DLAT, DLD, DLST, LIPT1,

and PDHA1) and discovered that it might anticipate OS

among LUAD patients using this signature. Mutation of

zebrafish DBT could result in motor dysfunction (Friedrich

et al., 2012). DLAT is related to liver cancer metabolism and

autophagy with chemotherapeutic resistance (Huang et al.,

2019). In patients with head and neck cancer, DLD has been

shown to modulate cystine deprivation-mediated ferroptosis

(Shin et al., 2020). DLD inhibition could have resulted in

lower levels of TCA cycle downstream metabolites, and

downmodulation of DLD promoted autophagy in melanoma

cells, as well as inhibiting tumor growth and proliferation in vivo

(Yumnam et al., 2021). The metabolic heterogeneity in TCA

cycle utilization amongst triple-negative breast cancer patients is

dictated by DLST reliance (Shen et al., 2021). Germline DLST

variants promote epigenetic modifications in

pheochromocytoma-paraganglioma (Buffet et al., 2021).

LIPT1 plays an important role in metabolic regulation (Stowe

et al., 2018; Ni et al., 2019). PDHA1 gene deletion in prostate

cancer cells causes metabolic remodeling, with the cells becoming

more glutamine-reliant (Li et al., 2016). When PDHA1 is

downmodulated in breast cancer, the oncoprotein hepatitis B

X-interacting protein may help to drive glucose metabolic

remodeling (Liu et al., 2015). These genes have some

association with the origin and treatment of cancer. However,

these genes in the prognostic model, that are cuproptosis

promoters or executors should be further studied. Although

not all of these promoters and executors were linked to an

improved prognosis among patients with LUAD in our

analysis, none was linked to a dismal prognosis. It is yet

uncertain how these genes interact with one another during

cuproptosis, and additional research is warranted.

Cuproptosis has not been thoroughly investigated up to today.

A variety of PCD strategies might coexist and interface with one

another as tumors grow and progress (Fritsch et al., 2019). For

instance, among the 6 cuproptosis-related genes, DLAT is

associated with autophagy (Xu et al., 2020); DLD is also known

as key regulator ferroptosis (Lu et al., 2017; Park et al., 2018);

PDHA1 is closely related to apoptosis (Kwak et al., 2020; Jin et al.,

2021). It has been shown that the PCD-related gene correlated with

the prognosis of tumor patients, whose mechanism is related to

immune cell infiltration (Hong et al., 2021; Ye et al., 2021). Thus,

cuproptosis-related genes are certainly associated with other PCD,

with the possibility that some genes are involved in multiple ways

of PCD. Furthermore, it is possible that low levels of antitumor

immunity are responsible for the unfavorable survival results in

high-risk patients. They may have an intact cell plasmamembrane

with no release of contents, which would induce indirect

inflammatory reactions, or they could have the opposite

properties (Galluzzi et al., 2018; Khan et al., 2021). So, we also

performed the immune infiltration enrichment analyses. We

found that the infiltration levels of aDCs, iDCs, mast cells, T

helper cells and TILs, type I IFN, and type II IFN responses showed

lower activity in the high-risk group as opposed to the low-risk

group, indicating that the high-risk patients may experience

immune system dysfunction. However, no differences were

identified between the levels of other main anti-tumor

infiltrating immune cells between the two groups. Unlike other

PCD, immune infiltration might perform a smaller function in

cuproptosis-related genes correlated with the prognosis of LUAD

patients, and other deep mechanisms may be involved.

We assessed the DEGs between distinct risk groups and

discovered that the DEGs were predominantly implicated in

cilium related function, such as movement based on
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microtubules, cilium movement, flagellum or cilium-dependent

cell motility, cell motility that is mediated by the cilium, cell

motility mediated by cilium movement, motile cilium, 9 +

2 motile cilium, and so on. Outside the cell surface, the main

cilium is an antenna-like structure that extends beyond the cell

membrane. Cilium performs a crucial function in the modulation

of cell-signaling transduction, which has an impact on the

capacity of cells to proliferate, differentiate, and migrate.

Ciliary impairments result in ciliopathies, and ciliary

dysregulation performs a critical function in the genesis and

progression of cancer. Some cancer cells may undergo growth

suppression by restoring the cilia (Wang et al., 2021). Oncogenic

signaling pathways, as well as certain specific anticancer

treatments, may either stimulate or suppress ciliation.

Interactions between the genomic profiles of tumor cells,

medication therapy, and ciliary signaling in the tumor

microenvironment are expected to have an impact on tumor

progression and responsiveness to treatment (Liu et al., 2018).

Ciliary disintegration abnormalities are generally linked to the

genesis of tumors. The identification of modulators of ciliary

disassembly and mitosis is critical in the search for targeted

therapies for cancers that are related to these modulators

(Doornbos and Roepman, 2021). Ciliogenesis and Hedgehog

signaling are suppressed downstream of KRAS all through

acinar-ductal metaplasia in mice, which might be employed as a

method to limit the progression of early lesions and, therefore, the

advancement to pancreatic ductal adenocarcinoma (Bangs et al.,

2020). At present, there are still few studies on cilium and tumors,

and cilium has the potential to participate in the development of

tumors together with cuproptosis, thus affecting the prognosis. The

specific mechanisms deserve further investigation.

Cuproptosis is a topic that has received little recent attention,

particularly in terms of its mechanisms in LUAD. Our research

developed a gene signature associated with cuproptosis. Using

these cuproptosis-related genes, we were able to conduct a

preliminary analysis of their predictive significance and

establish a theoretical foundation for further investigation. We

established p < 0.3 as the cut-off value to avoid missing important

genes and identified 6 genes associated with survival for

subsequent evaluation. Therefore, further accurate verification

and large sample size verification should be studied in the future.

The absence of data, however, prevented us from concluding if

these genes also perform similar roles in various cuproptosis

pathways in LUAD, and this is an issue that warrants additional

investigation.

Conclusion

In summary, our research indicated that cuproptosis is

strongly linked to LUAD since the expression levels of most

cuproptosis-associated genes differed between normal and

LUAD specimens. Furthermore, the score derived from our

risk signature, which was on the basis of six cuproptosis-

associated genes, was shown to independently serve as a risk

indicated for anticipating LUAD outcomes in the TCGA cohort.

The DEGs that distinguished the low-risk patients from the high-

risk ones were linked to the cilium. LUAD patients’ prognoses

may now be predicted using a unique gene signature identified in

this work. This discovery also offers a substantial foundation for

future research into the links between cuproptosis-associated

genes and cilium in LUAD patients.
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