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Abstract: To assess the prospects for using intense femtosecond laser radiation in biomedicine, it is
necessary to understand the mechanisms of its action on biological macromolecules, especially on the
informational macromolecule—DNA. The aim of this work was to study the immunocytochemical
localization of DNA repair protein foci (XRCC1 and γH2AX) induced by tightly focused femtosecond
laser radiation in human cancer A549 cells. The results showed that no XRCC1 or γH2AX foci
tracks were observed 30 min after cell irradiation with femtosecond pulses of 1011 W·cm−2 peak
power density. An increase in the pulse power density to 2 × 1011 W·cm−2 led to the formation
of linear tracks consisting both of XRCC1 and γH2AX protein foci localized in the places where
the laser beam passed through the cell nuclei. A further increase in the pulse power density to
4 × 1011 W·cm−2 led to the appearance of nuclei with total immunocytochemical staining for XRCC1
and γH2AX on the path of the laser beam. Thus, femtosecond laser radiation can be considered as a
tool for local ionization of biological material, and this ionization will lead to similar effects obtained
using ionizing radiation.

Keywords: femtosecond laser radiation; DNA double-strand breaks; XRCC1; γH2AX; human
cells; A549

1. Introduction

Femtosecond laser radiation in the near infrared range (800–1100 nm) is widely used
in biological research, including as an ultra-precise scalpel for nanosurgical treatment [1,2].
The physicochemical basis of this application is based on the principles of nonlinear
absorption of laser pulses with a high peak power and the subsequent formation of low-
density plasma in the absorption region of a femtosecond laser pulse [3]. Exposure of
biological material to this plasma can lead to the desired radiobiological effects. Using the
principles of nonlinear absorption of laser radiation, it becomes possible to concentrate the
effect of laser radiation on cells lying at a macroscopic distance from the surface.

To assess the prospects for using femtosecond laser radiation in biomedicine, it is
necessary to understand the mechanisms of its action on biological macromolecules, espe-
cially on the informational macromolecule—DNA. Of particular interest is the formation
of crucial DNA damage-double-strand breaks (DSBs). DSB repair occurs slowly and often
(up to 80%) incorrectly, with frequent formation of various genetic disorders, while the
impossibility of DSBs repair leads to cell death [4–6]. One of the most sensitive and infor-
mative methods for studying the formation and repair of DSBs is the immunocytochemical
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analysis of microdynamic structures consisting of hundreds, even thousands, of copies
of proteins involved or associated with DNA repair processes (protein repair foci). The
most commonly used DSB repair marker is phosphorylated core histone H2AX (γH2AX)
foci. Phosphorylation of H2AX is carried out by phosphatidylinositol-3-kinases ATM, ATR,
and DNA-PKcs in response to DSB formation [7,8]. DSBs can be formed both directly and
during the formation of two or more single-strand breaks (SSBs) when the phosphate back-
bones of the two complementary DNA strands are broken simultaneously via free-radical
attacks [9]. Therefore, in order to understand the nature of DSBs generated by femtosecond
laser radiation, it is extremely important to investigate oxidative DNA damage like SSBs.
One of the major coordinating proteins for the repair of such DNA damage by excision
repair mechanisms is X-ray repair cross-complementing protein 1 (XRCC1) [10].

The aim of this work was to study the immunocytochemical localization of XRCC1
and γH2AX foci induced by femtosecond laser radiation in human cancer A549 cells
(lung adenocarcinoma).

The common peak femtosecond laser intensities in surgical treatment are in the range
of 1 to 50 × 1012 W·cm−2 (with pulse duration of 100–300 fs, N.A. of the objective 0.7–1.4,
and repetition rate 1–80 MHz or 1 kHz) [3,11,12]. In the present study we used intensities
below this common region and even more, below the threshold of vapor-gas bubble
formation in the cell cytoplasm (6 × 1011 W·cm−2, which was determined in our previous
work [13]. An example of developing a near-infrared region femtosecond laser system
for DNA damage induction and repair studies has been already reported [14,15]. In the
present study we concentrate on several main points: firstly, to reveal the dependence of
the DNA damage effects on the femtosecond pulse peak intensity (in the region below
commonly used in femtosecond laser surgical treatments), and secondly, to investigate
XRCC1 and γH2AX foci colocalization after exposure to different pulse energies.

2. Results

To irradiate the samples, we used trains of femtosecond pulses with a carrier wave-
length of 794 nm; energies of 0.5, 1, and 2 nJ; a duration of 100 fs; and a repetition rate of
80 MHz. The diameter of the laser beam waist was 2.5 µm, and the power density for the
selected pulse energies was 1, 2, and 4 × 1011 W·cm−2, respectively.

The results of immunocytochemical analysis of the XRCC1 and γH2AX foci showed
that no linear foci tracks for either protein were observed 30 min after irradiation of cells
with femtosecond pulses with an energy of 0.5 nJ. An increase in the pulse energy to 1.0 nJ
led to the formation of linear tracks consisting of XRCC1 and γH2AX protein foci localized
in the places where the laser beam passes through the cell nuclei (Figure 1).

Visually, the tracks were very similar to the tracks formed after the irradiation of
cells with ionizing radiation with a high linear energy transfer. It can be assumed that
femtosecond laser radiation can be used to simulate the processes of DNA damage by
high-LET ionizing radiation in living cells. The colocalization of XRCC1 and γH2AX foci
tracks indicates that femtosecond laser radiation induced simultaneously different types of
DNA damage involving different repair pathways. A further increase in the pulse energy to
2.0 nJ led to the appearance of nuclei with total immunocytochemical staining for γH2AX
on the path of the laser beam passage (Figure 1). Such staining of γH2AX nuclei may
indicate the onset of cell death by the apoptosis mechanism [16,17]. However, for a final
conclusion, further studies are needed with more specific markers of apoptosis.



Molecules 2021, 26, 4027 3 of 9
Molecules 2021, 26, x 3 of 10 
 

 

C
on

tr
ol

 

    

0.
5 

nJ
 

    

1.
0 

nJ
 

    

2.
0 

nJ
 

    

St
ai

ni
ng

 c
on

tr
ol

 

    

 DAPI XRCC1 γH2AX Merged 

Figure 1. Microscopy image of immunocytochemically stained cell nuclei 30 min after exposure to femtosecond laser ra-
diation with a pulse energy of 0.5 nJ (power density 1 × 1011 W cm−2), 1.0 nJ (power density 2 × 1011 W cm−2), and 2.0 nJ 
(power density 4 × 1011 W cm−2). Arrows show foci tracks (1.0 nJ) or pan-stained nuclei (2.0 nJ). Staining control cells 
irradiated with a pulse energy of 2.0 nJ and stained with only secondary antibodies. 

3. Discussion 

Figure 1. Microscopy image of immunocytochemically stained cell nuclei 30 min after exposure to femtosecond laser
radiation with a pulse energy of 0.5 nJ (power density 1 × 1011 W·cm−2), 1.0 nJ (power density 2 × 1011 W·cm−2), and
2.0 nJ (power density 4 × 1011 W·cm−2). Arrows show foci tracks (1.0 nJ) or pan-stained nuclei (2.0 nJ). Staining control
cells irradiated with a pulse energy of 2.0 nJ and stained with only secondary antibodies.
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3. Discussion

Using irradiance well below the optical breakdown threshold, it is possible to achieve
highly localized modification of biological material [3]. The mechanisms underlying fem-
tosecond laser nanosurgery of cells and biological tissues could be explained by chemical,
thermal, and thermomechanical effects arising from low-density plasma formation under
femtosecond irradiance [3,18,19]. It has been shown experimentally that the optical break-
down threshold in water is very similar to that in biological media [3,19]. The process
of plasma formation mostly consists of quasi-free electron formation through the inter-
play of photoionization and avalanche ionization [20–24]. Figure 2 demonstrates that the
absorption of several (n) photons can result in multiphoton dissociation (MPD), as well
as multiphoton ionization (MPI). The probability of an MPI or MPD event depends on
the power density of the exciting laser pulse (I). The adiabatic ionization energy of bulk
liquid water is equal to V0 = 10.12 eV [25]. The ratio of the water ionization energy to the
photon energy of the laser radiation k = V0/hν equals 6.3 (λ = 780 nm, hν = 1.6 eV). The
threshold energies required for DNA ionization in aqueous solution lie in the range of 4 to
7 eV, which corresponds to the ratio k = V0/hν = 2.5–4.4 [26]. Keldysh showed that both
multiphoton and tunnelling regimes could be described within the same framework. The
Keldysh parameter γ was suggested to predict whether ionization occurs by MPI (γ >> 1)

or by tunnel ionization via the following equation: γ =
√

V0
I ×1.87×10−19× λ2 , where V0 is

in eV, I is in W/cm2, and λ is in nm. With a pulse energy of 1 nJ, the gamma parameter
is 11.2 for water and the gamma is in the range of 7–9.5 for DNA. When the Keldysh
parameter is larger (smaller) than about 1.5, photoionization is a multiphoton (tunnelling)
process [27,28]. The Keldysh parameter γ >> 1 suggests that MPI dominates the initial
interaction process of the laser pulse with water as well as with DNA. In the multiphoton
ionization regime, the rate is P(I) = σnIn, where σn is the multiphoton absorption coef-
ficient for absorption of n photons with the smallest n satisfying ≥k·hν. A laser pulse
of 100 fs duration and I ~ 1012 W·cm−2 multiphoton ionization produces a substantial
amount of free electrons with only a small collisional avalanche required to achieve critical
density [24,29,30]. Critical density (=1021 cm−3) is not produced.
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Figure 2. The absorption of several (n) photons can result in multiphoton dissociation (MPD), as
well as multiphoton ionization (MPI). (a) MPI ionization, Keldysh parameter γ >> 1; (b) ionization
according to the tunneling mechanism, γ << 1; (c) MPD according to direct dissociation; (d) MDP
according to predissociation.
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Chemical effects arising from MPI or MDP formation could be divided into two
groups: (1) changes in the organic molecules due to reactive oxygen species (ROS) caused
by water molecule modification, and (2) changes in the organic molecules due to resonant
electron-molecule scattering.

The second one is of great importance from the DNA damage point of view. Biomolecule
fragmentation can be initiated by the capture of electrons into an antibonding molecular
orbital [31].

For an AB molecule, this process corresponds to e− + AB→ AB*−, where AB*− has a
repulsive potential along the A-B bound. After a time of 10−15 to 10−11 s, the dissociation
along one or several specific bonds, such as AB*− → A• + B−, could occur (Figure 3).
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The resonant formation of DNA strand breaking induced by low-energy electrons is well
described [32,33]. Accumulative effects of this kind can lead to the dissociation of biological
structures that were exposed to low-density plasma, generated by femtosecond laser pulses.

Nonlinear absorption of laser radiation occurs in a medium during the passage of
a powerful femtosecond laser pulse if its intensity is so high that it deforms the electron
shells of the medium molecules and changes their optical properties [34]. As a result of
such changes, the initially optically transparent medium (in a given wavelength range)
begins to absorb the energy of laser radiation. Thus, by controlling the parameters of the
laser radiation (such as the geometry of the laser beam, the power of the laser pulse, etc.),
it becomes possible to control the area of the greatest effect of the laser radiation. This
controlled absorption of laser energy leads to the formation of free electrons and, as a result,
localized low-density plasma. This type of plasma allows ionization to be obtained in the
region of maximum absorption of laser radiation, while minimizing thermo-mechanical
effects such as shock waves and cavitation.

Therefore, femtosecond laser radiation can be considered as a tool for local ioniza-
tion of biological material, and this ionization will lead to similar effects obtained using
ionizing radiation.

With femtosecond lasers getting more affordable, they become a common instrument
for biomedical research and applications such as multiphoton microscopy, FLIM [35],
nano- and microsurgery [36,37], and so on. For this reason, data on interaction between
femtosecond laser radiation and biomaterial (cells, intracellular structures, tissues) are
of great importance. It has been shown in this work that femtosecond laser pulses with
relatively small peak intensity (below the numbers that are commonly used in biomedical
applications) could act as a highly localized ionizing tool. This effect was employed for
DNA damage and repair study. We suppose that this local ionizing effect should be taken
into consideration when femtosecond laser radiation is used for biomedical applications.

In general, our research showed that femtosecond laser radiation induces complex
DNA damage involving different repair pathways. In our future research, the next per-
spective open issues of femtosecond laser radiation biological action will be solved using
a higher number of cells of various lineages: (1) types and complexity of DNA lesions,
(2) DNA repair efficiency of femtosecond laser-induced DNA damage, (3) death mecha-
nisms of irradiated cells (apoptosis, necrosis, etc.), and (4) possible bystander effects in
non-irradiated cells.
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4. Materials and Methods
4.1. Cell Culture and Culture Conditions

The studies were carried out on a culture of human cancer cell A549 (lung adenocarci-
noma) obtained from ATCC (Manassas, VA, USA). The cells were cultured in DMEM/F12
medium (Thermo Fisher Scientific, Waltham, MA, USA) containing 10% fetal bovine serum
(FBS, Thermo Fisher Scientific, Waltham, MA, USA) and antibiotics (PenStrep, Paneco,
Moscow, Russia) under the standard conditions of a CO2 incubator (37 ◦C, 5% CO2)
with a change of medium once every three days. When 75–80% of the monolayer was
reached, the cell culture was removed from the plastic by enzymatic means. Prior to exper-
iments, cells were passaged into sterile 8-well glass bottom slide vials (SPL Lifesciences,
Gyeonggi-do, Korea).

4.2. Irradiation of Cells

Femtosecond laser pulses (repetition rate 80 MHz, energy up to 20 nJ) were generated
by a tunable titanium-sapphire laser (Mai-Tai, Spectra-Physics, Santa Clara, CA, USA).
The average power in front of the microscope objective did not exceed 400 mW and was
controlled using a polarizer and a half-wave plate. Femtosecond radiation with wavelength
of λ = 780 nm was coupled with an inverted microscope (Olympus IX71) using a mirror
(10B20UF.25, Newport, Irvine, CA, USA) set at an angle of 450, and then focused by a
microscope objective (LUCPlanFLN 60 × 0.70 NA, Olympus, Tokyo, Japan) into the object
plane on the object of study (cells). The laser beam filled the entrance pupil of the objec-
tive completely. The waist diameter of the laser beam was 2·w0 = 1.22·λ/NA ~ 1.36 µm,
Rayleigh parameter (waist length) Z0 = (2·π/λ)·w0

2 ~ 1.65 µm. The duration of femtosec-
ond pulses was measured in the object plane of the microscope using an autocorrelator
(Avesta AA-M). The pulse time duration was 100 fs. A prism compressor was used to com-
pensate for the group velocity dispersion in the optical elements of the setup. A motorized
microscope stage was used to automate the process of laser action on cells. Image fixation
and observation of the affected objects was carried out using a XIMEA xiQ MQ013MG-ON
or XIMEA xiD MD061CU-SY camera mounted on a microscope. The irradiation setup
picture is presented in Figure 4.
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Cells were irradiated through the glass bottom of a slide vial. The bottom thick-
ness was 1 mm. To automate the irradiation process, the motorized stage of the mi-
croscope was programmed to perform the movement pattern shown in Figure 5. The
average speed of movement of the microscope stage was 13.8 µm/s, which corresponds to
5.8 × 106 femtosecond pulses per 1 µm of the sample.
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4.3. Immunocytochemical Analysis of DNA Double-Strand Break Localization

The cells were fixed with paraformaldehyde (4% in phosphate buffered saline, pH 7.4)
for 20 min at room temperature 30 min after irradiation. Then, they were washed out twice
with phosphate buffered saline (pH 7.4). They were permeabilized with 0.3% Triton-X100
in phosphate-buffered saline (pH 7.4) containing 2% bovine serum albumin to block non-
specific binding. The slides were incubated with primary antibodies (mouse monoclonal
anti-XRCC1 antibody (clone 33-2-5, Abcam, Waltham, MA, USA) and rabbit monoclonal
anti-γH2AX antibody (clone EP854(2)Y, Merck-Millipore, Burlington, VT, USA) at a dilu-
tion of 1/200) in phosphate-buffered saline (pH 7.4) containing 1% bovine serum albumin
for 1 h at room temperature. Then the slides were washed out with phosphate-buffered
saline (pH 7.4) and incubated at room temperature for 1 h with secondary goat anti-mouse
and goat anti-rabbit IgG (H+L) antibodies conjugated with Alexa Fluor 488 and Alexa
Fluor 555 fluorochromes (Life Technologies, Carlsbad, SA, USA), accordingly. Both anti-
bodies were diluted 1/800 in phosphate-saline buffer (pH 7.4) containing 1% bovine serum
albumin. DAPI containing ProLong Gold (Life Technologies, Carlsbad, SA, USA) was used
to stain DNA and prevent photobleaching.

Imaging, documenting, and processing the immunocytochemical microimages was
carried out on a Nikon Eclipse Ni-U fluorescent microscope (Nikon, Tokyo, Japan) equipped
with a ProgRes MFcool high-resolution video camera (Jenoptik AG, Jena, Germany)
using UV-2E/C filter sets (340–380 nm excitation and 435–485 nm emission), B-2E/C
(465–495 nm excitation and 515–555 nm emission), and Y-2E/C (540–580 nm excitation and
600–660 nm emission).
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