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e-mail: matthias.stoeck@igb-berlin.de
*These authors contributed equally to this

study.

Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

figshare.c.3986823.

& 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Profound genetic divergence and
asymmetric parental genome
contributions as hallmarks of hybrid
speciation in polyploid toads

Caroline Betto-Colliard1,*, Sylvia Hofmann2, Roberto Sermier1, Nicolas Perrin1

and Matthias Stöck3,*
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The evolutionary causes and consequences of allopolyploidization, an

exceptional pathway to instant hybrid speciation, are poorly investigated in

animals. In particular, when and why hybrid polyploids versus diploids are

produced, and constraints on sources of paternal and maternal ancestors,

remain underexplored. Using the Palearctic green toad radiation (including

bisexually reproducing species of three ploidy levels) as model, we generate

a range-wide multi-locus phylogeny of 15 taxa and present four new insights:

(i) at least five (up to seven) distinct allotriploid and allotetraploid taxa

have evolved in the Pleistocene; (ii) all maternal and paternal ancestors of

hybrid polyploids stem from two deeply diverged nuclear clades (6 Mya,

3.1–9.6 Mya), with distinctly greater divergence than the parental species of

diploid hybrids found at secondary contact zones; (iii) allotriploid taxa possess

two conspecific genomes and a deeply diverged allospecific one, suggesting

that genomic imbalance and divergence are causal for their partly clonal repro-

ductive mode; (iv) maternal versus paternal genome contributions exhibit

asymmetry, with the maternal nuclear (and mitochondrial) genome of poly-

ploids always coming from the same clade, and the paternal genome from

the other. We compare our findings with similar patterns in diploid/polyploid

vertebrates, and suggest deep ancestral divergence as a precondition for

successful allopolyploidization.

1. Introduction
How much hybridization and introgression events contribute to speciation

and genome evolution is developing as an active research topic [1,2]. At least

in plants (e.g. [2–5]), polyploid hybrid speciation appears more common

than homoploid hybrid speciation. This question has been less investigated in ani-

mals, due to both lower incidence of polyploid hybrid speciation and smaller

economic importance (cf. [6,7]). Research efforts in amphibians have mainly

involved cytogenetics (overview: [6,8]). Advanced recent molecular approaches,

allowing dating and genome-wide evidence, have been applied to Pipidae

(e.g. [9–12,13]) and Ambystomatidae [14–17]. Nevertheless, important questions

regarding hybrid speciation remain to be addressed, such as: what circumstances

favour allopolyploid over diploid hybrid formation? And: what specific con-

straints govern allopolyploid formation, in terms of origin and differentiation of

paternal and maternal genomes?

The divergence of parental lineages is expected to affect opportunities for

hybrid speciation and allopolyploid formation [18]. Reproductive isolation

between diploid lineages, and thus introgression, tends to scale with divergence
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[19–22], with complex effects on hybrid meiosis. In particular,

hybridization between genetically similar lineages presents

higher opportunities for multi-valent formation, mis-segre-

gation and chromosome rearrangements during meiosis,

which poses major challenges to early polyploid evolution

[23,24]. By contrast, multi-valent formation is less likely if hybri-

dizing lineages exhibit greater divergence and structural

genome differentiation [23]. Accordingly, several meta-studies

of hybrid plants have suggested that genetic divergence is

greater for parents of polyploids than of homoploids [25] (but

see [26]). Chapman & Burke [25] furthermore hypothesized

that triploids arise from diploid hybrids via meiotic non-

reduction (resulting in diploid gametes), followed by fertiliza-

tion with haploid pollen. Thus, the production of unreduced

gametes, associated with increased divergence time, has been

considered as a mechanism facilitating allopolyploidization [27].

This complex relationship between divergence, meiosis and

ploidy in asexual hybrids (also documented from vertebrates)

has inspired the ‘balance hypothesis’ [28,29], which proposes

that parental genome divergence has to be large enough to

affect meiosis in hybrids (so as to produce enough unreduced

gametes), but not too large to maintain some hybrid viability

or fertility. The ratios of parental genomes may further affect

hybrid meiosis by generating additional difficulties in AAB or

ABB triploids (when compared with AABB allotetraploids),

potentially leading to asexuality [29]. Extrapolating to animals

Chapman & Burke’s [25] suggestion, we therefore predict that

(i) the parental species of polyploid hybrids should exhibit

greater divergence than those involved in the formation of con-

tact zones with variably introgressed diploid hybrids, and (ii)

ameiotic hybrids should result from both profound parental

divergence and unequal parental genome contributions.

In addition, hybrid and allopolyploid formation may be

governed by the direction of hybridization. Reciprocal hybrids

often show asymmetric fitness differences that stem from

dominance effects in Dobzhansky–Muller incompatibilities

[30], originating from sex chromosomal versus autosomal (e.g.

Haldane’s rule [31–33]) or cyto-nuclear interactions. Therefore,

we further hypothesize that the evolution of allopolyploid

lineages may show similar asymmetric interactions.

To test these questions in amphibians, Palearctic green toads

(Bufo viridis subgroup) present a highly suitable system to com-

pare diploid and polyploid hybridization within one radiation.

This group comprises different diploid lineages forming second-

ary contact zones, with levels of introgression that scale with

divergence [22,34]. Furthermore, bisexually reproducing species

of three ploidy levels (2n, 3n and 4n) have been described from

Central Asia [35]. Maternal ancestry has been inferred from

mtDNA sequences plus nuclear microsatellites for two allopoly-

ploids (3n B. baturae, 4n B. pewzowi) [36–38], and mtDNA only

(entirely missing nuDNA evidence) for three other presumably

allopolyploid species (B. oblongus, B. pseudoraddei and B. zug-
mayeri) [39]. Another six Eurasian diploid species have unclear

nuclear relationshipsto the polyploids, which calls for integration

into a comprehensive phylogenetic analysis. Diploid and tetra-

ploid green toads reproduce meiotically ([39] incl. refs.), while

one triploid species (B. baturae) has a partly ameiotic gametogen-

esis [40], possibly also found in two other triploid forms

(systematic details: electronic supplementary material, text S1).

In this paper, we use new multi-locus nuclear sequence

data, supplemented by mitochondrial DNA, to (i) identify allo-

polyploidization events in the Palearctic green toad radiation,

(ii) infer the paternal and maternal ancestries of polyploids,
(iii) compare the genetic divergence of lineages involved in

diploid versus allopolyploid hybrid formation, and (iv) test

for a possible directionality in hybridization events (namely,

asymmetries in the origin and contribution of maternal versus

paternal genomes to allopolyploid formation).
2. Material and methods
(a) Animal sampling and DNA extraction
Our study includes a total of 51 green toads from scientific collec-

tions as specified (figure 1a; electronic supplementary material,

text S2 and table S1) [35,37,39], obtained between 1997 and 2012

from 32 localities across their Palearctic range. This comprises 15

taxa from all currently known major mtDNA clades [37], as well

as three taxonomically unassigned toads, namely two tetraploids

(X1, X2) and one triploid (X4), further abbreviated ‘UIL’ (unidenti-

fied lineage). Samples of B. bufo and B. raddei were used as outgroups.

(b) Amplification and sequencing of nuclear markers
Six nuclear sequence markers (CYP19, DMRT1, SF-1, SPAG6,

SOX3, VLDLR), several of which are involved in vertebrate

sexual development and differentiation, representing different

linkage groups of the anuran genome were developed using ortho-

logues on Xenopus tropicalis scaffolds 1, 3, 6, 8 and 19. Primers for

cross-amplifying markers (electronic supplementary material, Text

S2, and table S2) were designed using a B. viridis transcriptome

(GenBank Biosample SAMN03993917 [41]). Markers were PCR

amplified (electronic supplementary material, texts S1 and S3).

Amplicons were extracted from agarose gels, purified using the

Wizard SV Gel and PCR clean-up system (Promega) and a single

final amplicon pool was obtained for each individual by mixing

equimolar amounts of these products. Each individual pool was

barcoded prior to further pooling of all 48 mixes, which were

NGS-sequenced using the Roche/454 GS-FLX Titanium platform

by LGC Genomics Corporation (UK) with a coverage of greater

than 80� per PCR product. Alleles were then screened and

edited manually to eliminate singletons, and contigs with greater

than 15� coverage considered a true allele; the maximum

number of alleles was inferred according to ploidy (2 in 2n, 3 in

3n, 4 in 4n). To complete the dataset for this radiation with three

initially unconsidered polyploid species, for three samples exclu-

sively (B. zugmayeri (Z1), B. siculus (A9) and B. pseudoraddei
(PS2)), nuclear PCR products were cloned using the TOPO TA

cloning kit (with pCR II-TOPO-vector system; Invitrogen) accord-

ing to the manufacturer’s protocol. To detect heterozygotes, at least

12 clones were Sanger-sequenced in diploids and 24 in triploids,

edited to eliminate singletons, and added to the rest of the dataset.

(c) Sequencing and phylogenetic analyses of mtDNA
The mitochondrial control region (D-loop, approx. 880 bp) was

amplified as described [37,42]. Products were Sanger-sequenced

in both directions and contigs edited in SEQUENCHER v. 4.9. Bayesian

phylogenetic analyses were carried out with MRBAYES v. 3.2.6 [43]

using the best-fit model of sequence evolution (HKYþ G, Bayesian

information crit., BIC) as determined by JMODELTEST v. 2.1.7 [44]

(electronic supplementary material, text S2). Stationarity and con-

vergence of the runs were confirmed using the software TRACER

v. 1.7.2 [45]. The first 25% of each run was discarded as burn-in.

(d) Subgenome inference and phylogenetic analyses
of nuclear markers

Nuclear DNA sequences, in total 2820 bp, were aligned using

CLUSTALW multiple alignment in BIOEDIT [46]. For each marker,

a maximum-likelihood phylogenetic analysis was performed



(a)

(b) (c)

Figure 1. Green toads in geographical and phylogenetic context. (a) Map with sampling localities, approximate range borders and sample abbreviations as used in (b,c)
and electronic supplementary material, table S1. (b,c) Bayesian trees of approximately 856 bp of the mitochondrial D-loop (b) and of approximately 2820 bp of conca-
tenated nuclear DNA (c) as obtained with the program BEAST v. 1.8.3. Subclades shown in red (maternal ancestry) are also referred to as ‘western clade’; subclades shown in
blue ( paternal ancestry) are referred to as ‘eastern clade’. Orange double arrows, in (c) between branches, within the western clade, indicate known natural hybridization
between diploid lineages including the formation of diploid/diploid hybrid zones with introgression [22,34]. Blue arrows at sample A5 point to an incongruent mitochon-
drial versus nuclear phylogenetic position of B. luristanicus. Small numbers at branches show Bayesian posterior support values (greater than 50%); large numbers at nodes
and time scales below trees in (b) and (c) show divergence time estimates (mean values) in millions of years ago (Mya); grey bars in trees indicate 95% confidence intervals
for nodes with sufficient posterior support. An extended version of this figure is provided in the electronic supplementary material, figure S1.
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using PHYML (v. 3.0; [47]). The maternal ancestor of each allopoly-

ploid was assigned according to mtDNA haplotype, from which

the maternal (and by deduction, paternal) subgenomes could be
inferred based on microsatellite allelic range similarity (in part iden-

tical samples as in [36]). To allow proper concatenation of ancestral

nuclear markers, we retained only one consensus sequence from
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heterozygous fragments of diploid individuals, replacing SNPs

with ‘Ns’ (i.e. any base). The same was done in allopolyploids,

from which two consensus sequences were kept, corresponding

to their inferred maternal and paternal subgenomes, respectively.

Finally, all resulting nuclear sequences were concatenated in the

50 –30 direction to obtain a ‘super-alignment’ for phylogenetic

analyses (electronic supplementary material, text S2).
 publishing.org
Proc.R.Soc.B

285:20172667
(e) Molecular dating
Molecular dating for major lineages was performed based on the

concatenated nuclear dataset, and separately for mtDNA, using

the Bayesian relaxed-clock approach as implemented in BEAST

v. 1.8.3 [48]. We determined the most suitable substitution

models per partition (nuDNA), using PARTITIONFINDER v. 1.1.1 [49]

or for the entire mtDNA marker, using jMODELTEST v. 2.1.7 [44];

divergence time analyses were run with substitution models

unlinked between partitions. We included an outgroup for both

nuDNA and mtDNA, and imposed three available age constraints

to the molecular clock (electronic supplementary material, text S2).

We generated a random starting tree and assumed an uncor-

related lognormal relaxed molecular clock and a Yule process as

a model of speciation, as this prior is most appropriate for

species-level divergences [48]. Two independent runs were per-

formed with 200 million generations, sampling 10 000 trees and

with a burn-in set to 25% of the samples. Convergence and

stationary levels were verified with TRACER v. 1.7.2. We annotated

the tree information with TREEANNOTATOR v. 2.3.1 and visualized

it with FIGTREE v. 1.4.2 [48]. All runs were performed on the

CIPRES Science Gateway [50].
3. Results
(a) Phylogenetic analyses of mitochondrial DNA
Bayesian analysis of maternally inherited mitochondrial DNA

resulted in distinct haplotypes and clades that mostly coincide

with the previously distinguished nominal taxa. This analysis

unveiled a very deep divergence between B. surdus and

B. latastii on one side (figure 1b, blue-marked clade, hereafter

‘eastern’; electronic supplementary material, figures S1 and

S2) and the remaining taxa on the other side (red-marked

clade, hereafter ‘western’), with an estimated divergence of

7.7 (4.4–12.7) Mya. Interestingly, several tetraploid (B. pewzowi,
B. oblongus, plus X1 and X2) and one triploid species

(B. zugmayeri) share a Pleistocene (1.65 (0.9–2.5) Mya) mito-

chondrial ancestor with the diploid B. turanensis, while other

triploids (B. baturae, B. pseudoraddei and X4) share a similarly

old Pleistocene (1.65 (0.72–2.76 Mya)) mtDNA-ancestry with

a different diploid species (B. shaartusiensis). We further note

that the diploid B. turanensis does not take a basal position in

its subclade but appears to be derived from the polyploids

(electronic supplementary material, text S4).
(b) Phylogenetic analyses of nuclear DNA
Phylogenies obtained from single genes are shown in electro-

nic supplementary material, figures S3–S8. Allele numbers

(haplotypes) therein varied between 1 and 6. The analyses of

the concatenated sequences (2820 bp) yielded two highly sup-

ported clades (red and blue, figure 1c), which diverged about 6

Mya (95% HDP, 3.1–9.7 Mya). Surprisingly, all inferred

maternal genomes of the polyploid species were assigned

to the ‘western clade’ (red), and all paternal genomes to the

‘eastern clade’ (blue).
The western clade split about 3.29 (1.9–5.5) Mya into two

major subclades. One contains a group comprising the diploid

B. turanensis and the maternal ancestor of the allotetraploids

(B. pewzowi and B. oblongus; plus UIL X1, X2), and is

itself sister to several Eurasian diploid species. The other sub-

clade constitutes a group formed by the Asian diploid

B. shaartusiensis and the maternal ancestor of the Asian triploid

B. baturae (plus UIL X4), itself sister to the maternal ancestor of

the two other triploids (B. zugmayeri, B. pseudoraddei). Many

Eurasian diploid lineages from this western clade are involved

in diploid hybridization across secondary contact zones in

Europe [22,34] (indicated by orange arrows in figure 1c;

electronic supplementary material, figure S1c).

The eastern clade (figure 1c, blue) forms a large polytomy

that split about 3.7 Mya (1.9–6.3), separating a clade of diploid

species (B. surdus, B. luristanicus) from another diploid

(B. latastii), and containing all the paternal subgenomes of allo-

triploid and allotetraploid species. The paternal subgenomes of

the tetraploid B. oblongus are split among several subclades.

The topology and divergence-time estimates for the

nuclear phylogeny largely agree with the mitochondrial

tree, except for the diploid B. luristanicus, which appears as

a weakly supported sister of B. variabilis in the mitochondrial

phylogeny (figure 1b) but as a sister taxon of B. surdus in the

nuclear phylogeny (figure 1c). This suggests a mitochondrial

capture event by the lineage of B. luristanicus, possibly from

the partly sympatric B. variabilis.
4. Discussion
The discovery of polyploid green toads in 1976 [51] was fol-

lowed by initial studies of polyploidy origins using allozymes

[52] and microsatellites [36]. Here, we extend these studies

through the first phylogeny of this complex based on multi-

locus mtDNA and nuclear sequences, providing insights

into the relative ages and contributions of maternal and

paternal ancestors to allopolyploidization.

(a) Allopolyploid origins and genome phylogenies
Our phylogenetic analysis highlighted at least five events

of allopolyploidization that led to the evolution of two

allotetraploids (B. pewzowi, B. oblongus) and three allotriploids

(B. baturae, B. pseudoraddei, B. zugmayeri; figure 1c; electronic

supplementary material, figure S2 (I–V) and text S5). Three

additional allopolyploid forms (UIL X1, X2, X4) were also

identified and characterized (figure 1c; electronic supplemen-

tary material, figure S2 and text S5), possibly corresponding

to yet unrecognized taxa. The number of alleles (haplotypes),

which varied between 1 and 6 in single-gene trees, did not

allow further inferences regarding the number of hybridiz-

ations or routes to polyploidy (electronic supplementary

material, figures S3–S8).

(b) Profoundly diverged lineages form hybrid
polyploids, less diverged lineages form hybrid
zones

Maternal and paternal ancestors of allopolyploid taxa (4n

B. oblongus, 4n B. pewzowi, 3n B. baturae, 3n B. pseudoraddei,
3n B. zugmayeri) in each case belong to the relatively deeply

diverged western and eastern clades (6 Mya, 3.1–9.6 Mya;



rspb.royalsocietypublishing.org
Proc.R.Soc.B

285:20172667

5
figure 1c). Divergence times distinctly exceed the much younger

ones (1.9–2.6 Mya) between diploid lineages that form hybrids

at secondary contacts [22,34]. Thus, despite uncertainties

inherent to the calibration procedure, our phylogenies are con-

sistent with the hypothesis that ancestors of allopolyploids

exhibit greater divergence than lineages that form diploid–

diploid hybrid zones with various degrees of introgression

[22,34]. Our results are in line with those from plants [25] and

other vertebrate allopolyploids in which parental lineages

have been shown to stem from deeply diverged ances-

tral lineages (e.g. Aspidocelis and Darevskia lizards [53–55];

Pelophylax [56–58]; Cobitis [59]; Squalius [60]). This suggests

that allopolyploidization might occasionally overcome the

decrease in hybrid fitness resulting from the accumulation of

incompatibilities with increasing divergence time.

The relative ages of within-clade diversification for maternal

(and mitochondrial) and paternal ancestors of allopolyploids

vary between Lower (1.8 Mya) and Mid-Pleistocene (0.93 Mya;

average of 1.4 Mya; figure 1; electronic supplementary material,

figure S2 and text S5). If diversification dates coincide with poly-

ploidization events, these ages suggest that such events were

triggered by Pleistocene climatic oscillations, as supported by

higher resistance of polyploids to climatic stresses [61]. Ficetola

& Stöck [61] have also shown that allopolyploidization might

be facilitated by occupation of transgressive ecological niches,

unavailable to some of the parental species.

(c) Deeply diverged but unequal genome contributions
in ameiotic forms

Whereas diploids and balanced allotetraploids reproduce by

meiosis [39], ameiotic allotriploids show an unequal genomic

configuration, comprising two conspecific heterozygous gen-

omes (AA0) and a highly diverged clonal allospecific one (B)

(figure 1c). In line with the balance hypothesis, this suggests

that genomic imbalance and divergence are causal for their

reproductive mode [28,29].

(d) Directional asymmetry in parental genome
contributions to allopolyploidization

The five Pleistocene events (electronic supplementary

material, figure S2 (I–V)) that led to allopolyploid species for-

mation, as well as several possibly more recent events that

produced allopolyploid hybrids with unclear taxonomic

status, were all unidirectional in relation to maternal and

paternal ancestors. Two allotetraploids (B. pewzowi, B. oblon-
gus; as well as UIL X1 and X2) share nuclear maternal

ancestors with the same diploid (B. turanensis), whereas the

maternal ancestry of three allotriploids (B. baturae, B. zug-
mayeri, B. pseudoraddei; as well as UIL X4) can be traced to

another diploid (B. shaartusiensis; figure 1c); all of these

belong to the same major western clade. By contrast, the

entire paternal ancestry goes back to one lineage (or several

related and possibly extinct lineages), represented by a

single extant diploid (B. latastii; figure 1c) from the eastern

clade. Moreover, in a diploid–tetraploid contact zone (B. tur-
anensis and B. pewzowi), adult triploid F1-hybrids mostly have

diploid B. turanensis as their close maternal (mtDNA) ances-

tor and tetraploid B. pewzowi as paternal ancestor [35].

These shared patterns of directional asymmetry in hybridiz-

ation point to strong evolutionary constraints during

allopolyploidization in green toads.
Asymmetric contributions of paternal and maternal

parents are known from homoploid hybrid plants (e.g. [62]),

invertebrates (e.g. [63,64]) and vertebrates (e.g. [65,66]),

including interspecies crosses in bufonid toads (e.g. [67,68]).

However, asymmetries have rarely been documented in allo-

polypoid speciation. In plants, allopolyploid origins exhibit

great diversity [69–75] with few examples of asymmetric

ancestry in a whole complex [76]. In vertebrates, asymmetric

genome contributions to allopolyploidization remain underex-

plored. Tetraploids forming the Hyla versicolor complex

originated multiple times from extant diploid H. chrysoscelis
and two apparently extinct lineages [77], but asymmetry has

not been examined. This similarly applies to the Phyllomedusa
burmeisteri complex [78,79]. In clawed frogs, Silurana comprises

the diploid Silurana tropicalis and three derived tetraploid

species; Xenopus includes 20 described species: 11 tetraploids,

7 octoploids and 2 dodecaploids [11,13]. Several ancestral

diploid species (some extinct) are maternal genome donors

for some allopolyploids and paternal donors for others (cf.

[9]), thus contrasting with our results. A few other systems,

however, call for further exploration of possible asymmetries

in genome contributions. In the Pelophylax esculentus complex,

allodiploid (P. esculentus, P. grafi, P. hispanica) and allotriploid

(3n P. esculentus with either two P. lessonae, RLL, or two

P. ridibundus genomes, RRL) gonochoristic hybrids perform

multi-directional genetic interactions (among themselves and

with diploid parental species), blurring potential signatures

of asymmetric genome contributions [56,80]. In the largely

unisexual Ambystoma jeffersonianum/A. laterale complex, all uni-

sexual di- and polyploid hybrids derive their mtDNA from the

diploid A. barbouri, from which all five nuclear unisexual

species diverged 2.4–3.9 Mya [17], suggesting a ‘laterale-like’

asymmetric maternal contribution and various paternal contri-

butions from other bisexual species. Allodiploid, triploid and

tetraploids of the mostly all-female cyprinid Squalius albur-
noides hybrid complex exhibit multiple polyploid origins and

genetic interactions, while mtDNA asymmetrically stems

from the common maternal ancestor (S. pyrenaicus), although

with rare introgression [81,82]. Similarly, in Cobitis loaches,

multiple all-female gynogenetic allodiploid and allopolyploid

hybrid lineages (with few exceptions [83]) share Cobitis elonga-
toides mtDNA, and thus a maternal nuclear ancestor [84] with

Miocene divergence from the paternal ancestors (greater than

7 Mya (3.83–10.28) [59]). Several other gynogenetic and

polyploid teleost complexes (for a review: [85]) are often domi-

nated by a common maternal (mitochondrial and thereby

inferred nuclear) lineage; however, gynogenetic reproduction

and possible stepwise ploidy elevation complicate evaluation

of potential asymmetry. These examples from few allo-

polyploid vertebrate complexes show several similarities to

our findings and suggest that asymmetric ancestry should be

more carefully addressed by future research.

Asymmetric homoploid hybridization has been explained

by imbalanced barriers to gene flow under pre- or post-zygotic

isolation [62,65]. Pre-mating isolation in animals is attributed

to mate choice behaviours, evolved in response to sexual selec-

tion [65]. Asymmetry in post-mating isolation often results

from Dobzhansky–Muller incompatibilities that involve

uniparentally inherited genetic factors, such as sex chromo-

somes, mitochondria, epigenetic programming or maternal

effects (Darwin’s corollary to Haldane’s rule [68,86]). Alleles

involved in hybrid incompatibilities are considered partly

recessive, and those on sex chromosomes are more likely
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expressed in the heterogametic sex [31,86]. However, asym-

metric dominance in allopolyploidization has not been

investigated. As the dominance model of Haldane’s rule

assumes degenerated sex chromosomes, whereas those in

green toads are homomorphic ([39] incl. refs) [87], nuclear–

cytoplasmic incompatibilities may better explain directional

asymmetry under allopolyploidization in this instance.

5. Conclusion
Our data provide four new major insights. First, we document

at least five hybridization events (up to seven; electronic

supplementary material, figure S2 and text S5) that resulted

in the evolution of allopolyploid species. Second, molecular

dating, based on mtDNA and nuDNA, shows that allopoly-

ploid green toads presumably originated in the Pleistocene,

from ancestors that had diverged in the Miocene to Pliocene

period (6 Mya (3.1–9.6 Mya); i.e. much earlier than the parents

of diploid hybrids forming at secondary contacts within the

western clade [22,34]). This supports the hypothesis that allo-

polyploidization is facilitated by greater genomic divergence.

Third, we note that allotriploid ameiotic taxa always possess

two conspecific genomes and a deeply diverged allospecific

clonal one, suggesting that genomic imbalance and divergence

are causal. Fourth, we provide evidence for directional asym-

metry in maternal versus paternal genome contributions,

with the maternal nuclear (and mitochondrial) genome

always coming from one phylogenetic clade, and the paternal

nuclear genome from the other.

This first dated nuclear phylogeny of Palearctic green toads

offers new research avenues. Studies could be undertaken of

sex determination in diploid ancestral versus allopolyploid

derived species (cf. [87]) and whether asymmetry may not
only be reflected in nuclear genome contributions but also in

subgenome evolution after hybridization. This has been

shown for African clawed frogs, Xenopus laevis, ‘with one

chromosome set more often preserving ancestral states while

the other experienced more gene loss, deletion, rearrangement,

and reduced gene expression’ [12].
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Wasserfrösche. Zeitschrift Feldherpetologie Beiheft,
vol. 9. Bielefeld, Germany: Laurenti Verlag. In
German.

81. Collares-Pereira MJ, Matos I, Morgado-Santos M,
Coelho MM. 2013 Natural pathways towards
polyploidy in animals: the Squalius alburnoides fish
complex as a model system to study genome size
and genome reorganization in polyploids. Cytogen.
Genome Res. 140, 97 – 116. (doi:10.1159/
000351729)

82. Morgado-Santos M, Carona S, Magalhaes MF,
Vicente L, Collares-Pereira MJ. 2016 Reproductive
dynamics shapes genomotype composition in an
allopolyploid complex. Proc. R Soc. B 283,
20153009. (doi:10.1098/rspb.2015.3009)

83. Janko K, Kotusz J, De Gelas K, Slechtovà V,
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