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Abstract

Background: Network meta-analysis (NMA) is a methodology for indirectly comparing, and strengthening direct
comparisons of two or more treatments for the management of disease by combining evidence from multiple
studies. It is sometimes not possible to perform treatment comparisons as evidence networks restricted to
randomized controlled trials (RCTs) may be disconnected. We propose a Bayesian NMA model that allows to include
single-arm, before-and-after, observational studies to complete these disconnected networks. We illustrate the
method with an indirect comparison of treatments for pulmonary arterial hypertension (PAH).

Methods: Our method uses a random effects model for placebo improvements to include single-arm observational
studies into a general NMA. Building on recent research for binary outcomes, we develop a covariate-adjusted
continuous-outcome NMA model that combines individual patient data (IPD) and aggregate data from two-arm
RCTs with the single-arm observational studies. We apply this model to a complex comparison of therapies for PAH
combining IPD from a phase-III RCT of imatinib as add-on therapy for PAH and aggregate data from RCTs and
single-arm observational studies, both identified by a systematic review.

Results: Through the inclusion of observational studies, our method allowed the comparison of imatinib as add-on
therapy for PAH with other treatments. This comparison had not been previously possible due to the limited RCT
evidence available. However, the credible intervals of our posterior estimates were wide so the overall results were
inconclusive. The comparison should be treated as exploratory and should not be used to guide clinical practice.

Conclusions: Our method for the inclusion of single-arm observational studies allows the performance of indirect
comparisons that had previously not been possible due to incomplete networks composed solely of available RCTs.
We also built on many recent innovations to enable researchers to use both aggregate data and IPD. This method
could be used in similar situations where treatment comparisons have not been possible due to restrictions to RCT
evidence and where a mixture of aggregate data and IPD are available.
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Background
Decision making bodies for national health care providers,
such as the National Institute for Health and Care Excel-
lence (NICE) for the NHS in England and Wales or the
Pharmaceutical Benefits Advisory Committee (PBAC) in
Australia, have a need to consider all available treatments
when making recommendations for clinical practice. There
is rarely a single definitive study comparing these treat-
ments and it is often necessary to synthesise the best avail-
able evidence to come to a decision [1].
Network meta-analysis (NMA) for indirect mixed treat-

ment comparisons of multiple treatments is a general-
ization of standard meta-analysis, which is used to combine
the results of multiple studies, to the comparison of two or
more than treatments. This has become a well-established
methodology for evidence synthesis [2,3] and is routinely
used and recommended by NICE [4,5]. The gold-standard
of evidence to be included in a NMA are randomized
controlled trials (RCTs) which include a control arm and
whose populations are randomized to reduce bias and
improve precision. The results are usually available from
literature as only aggregate data. Access to individual pa-
tient data (IPD), when available, can be used to under-
stand the relationship between covariates and outcomes
[6,7]. Methods for the inclusion of IPD in pairwise meta-
analysis have been developed by Sutton et al. [8] and Riley
et al. [9,10] and these were extended to the network meta-
analysis of binary outcomes by Saramago et al. [7] and
Donegan et al. [6]. This model can easily be adapted to
continuous outcomes and provides a covariate-adjusted
NMA model combining IPD and aggregate data.
One of the requirements to perform an NMA is to have

a connected network [4], which can be challenging when
not enough RTCs are available, as illustrated in Figure 1
for the case of a NICE technology assessment follicular
lymphoma [11]. This is often a problem in new indications
for small populations or orphan diseases [12]. However, a
decision on the most appropriate treatment is still needed
and including non-randomized studies to complete the
network and conduct the comparison is a potential solu-
tion [13]. A commonly available type of non-randomized
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Figure 1 Example of a disconnected network from network
meta-analysis of first-line treatments for stage III-IV follicular lymphoma.
study is the single-arm observational study, or before-and-
after study [14], in which outcomes in a group of patients
are investigated before and after an intervention.
Several methods have been proposed to incorporate

such observational studies [15]. One approach is the
three-level hierarchical model which allows the incorp-
oration of evidence from many different study designs
[16,17]. An example of such a model consists of an over-
all effect for each treatment j, which can be labelled dj.
Treatment effects for each different type of study, such
as an RCT effect φj1, a before-and-after study effect φj2,
and a case-control study effect φj3, could then be normally
distributed around this overall effect. At the bottom level
of the hierarchy are the individual study effects δjki for
each treatment j, study type k, and study i, which could be
normally distributed around the study type treatment ef-
fects φjk. This approach has the advantage of keeping the
inference from each type of trial separate but is not applic-
able in cases where the number of studies per study type
per treatment is small.
An alternative approach to including observational

studies, and thus connecting the network, is that of pro-
pensity scores which are the probability that a patient
would be given a particular treatment on the basis of their
background characteristics [18-20]. These probabilities are
often estimated using logistic regression. However, differ-
ent propensity score models are required for each treat-
ment and a great many studies are therefore required for
each study. This is a particular drawback if IPD is not
available for most of the treatments. Another disadvantage
is the difficulty of incorporating propensity scores into the
existing covariate-adjusted NMA models.
A final alternative for including observational studies

in disconnected networks is the method of constructing
empirical priors informed by these observational studies
[15,21]. These empirical priors inform parameter estima-
tion via:

P θð jDataÞαL θð jRCTsÞ � L θð jObs½ Þ�αP θð Þ

where the L(θ|RCTs) is the likelihood on the basis of the
RCT evidence, L(θ|Obs) is the likelihood on the basis of
the observational evidence, P(θ) is the prior, and α is a
parameter representing the strength given to the obser-
vational evidence. If α = 1, for example, the observational
evidence would be given the same weight as the RCT
evidence. This approach shares the advantage of the hier-
archical method in that it explicitly separates the RCT and
observational evidence but also shares the disadvantage of
the propensity scores method that it is difficult to merge
with existing NMA models.
The method we choose to build upon is the construc-

tion of control arms for before-and-after studies by match-
ing their baseline characteristics to those of control arms
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in included RCTs [20,22]. This analysis of covariance
method uses regression models to estimate the effect of
treatments not included in the study. We adapted this
in a natural fashion to covariate-adjusted NMA models
through an assumption of exchangeability (random-ef-
fects) on the placebo effects of study arms. A similar ap-
proach was originally applied to meta-analysis [23] and
has recently been proposed for the construction of base-
line natural history models in NMA [24]. However, re-
cent work has been critical of placing random-effects on
the trial-level baseline improvements, namely the placebo
effect [24,25], as it interferes with the randomization of
the RCTs and learns across trial information. Despite
these concerns, in cases such as the application we will
discuss necessitate this approach as it would otherwise
not be possible to compare the treatments of interest due
to the disconnectedness of the evidence network.

Illustrative example: mixed treatment comparison of
combination therapies for pulmonary arterial hypertension
We will illustrate our method for the inclusion of before-
and-after studies in a mixed treatment comparisons of
therapies for pulmonary arterial hypertension (PAH). PAH
is a rare disease characterised by progressive elevation of
pulmonary vascular resistance leading to right heart fail-
ure and death [26]. Current treatments include endothelin
receptor antagonists (ERA), phosphodiesterase-5 inhibi-
tors (PDE5i), and prostacyclin analogues (Pr) [27]. These
drugs are often used in combination to try to improve out-
comes [28,29]. The anticancer therapy imatinib is an oral
therapy which has also recently been studied in PAH and
its use is of interest to clinicians. No systematic compari-
son of available monotherapies and combination therapies
for PAH has been conducted and, in particular, imatinib
as add-on to other combination therapies has not been in-
vestigated. Imatinib was being evaluated as an alternative
to prostacyclins as additional therapy for patients on a
combination of ERA and PDE5i. The comparison of ima-
tinib with prostacyclins for this patient group was not pre-
viously possible on the basis of direct evidence or through
indirect NMA comparisons restricted to RCTs and we
thus took it as our primary objective for treatment com-
parison. However, our comparison should be viewed as il-
lustrative and should not be used to guide clinical practice
as the evidence is indirect and the analysis relies on a
number of model assumptions that were necessary to fa-
cilitate the comparison.
Our primary evidence base for the NMA was the IPD

from the IMPRES trial [30]. This was a randomized
placebo-controlled Phase-III trial to investigate the effi-
cacy and safety of imatinib as an add-on to combination
therapy for the treatment of PAH. The study included pa-
tients with severe PAH and receiving two or more PAH-
specific treatments.. Patients were initially on one of four
combination treatments, namely ERA + PDE5i, ERA + Pr,
PDE5i + Pr, or ERA + PDE5i + Pr., were randomized
within these background treatment groups to either
imatinib or placebo and were followed-up for at least 24
weeks. Patient group characteristics are reported in
Table 1, where heterogeneity in baseline characteristics
between randomized groups is exhibited. The high drop-
out rates in this trial reflect the severity of the disease and
the side-effects of the treatments.
The continuous outcome of short term change in 6

minute walk distance (6MWD) from baseline, in meters,
is used in licensing decisions by agencies such as the
Food and Drug Administration [31] and as a result is the
primary outcome in nearly all Phase-III trials in PAH. Al-
though adjusting final 6MWD for baseline 6MWD is the
recommended approach when analysing trial results [32],
this was not possible as we had only aggregate data from
most of the studies and many only reported the change
outcome. We therefore chose change in 6MWD as our
efficacy measure. Short term was defined as 12 weeks to 1
year, as clinical opinion was that patients would derive
maximal benefit from treatments within 12 weeks.
Six covariates of interest were identified by a mixture

of exploratory analysis of the IMPRES data and expert
clinical opinion. The covariates identified were: the age
at baseline (AGE), an indicator for whether a patient is
male (SEX), the 6MWD at baseline (WALK), the World
Health Organization New York Health Assessment sta-
tus (STATUS) and pulmonary vascular resistance (PVR).
STATUS categorises the severity of PAH into one of four
increasingly severe categories, ranging from no limita-
tion of activity and no symptoms with ordinary physical
activity to marked limitation of activity and symptoms
with any activity, even at rest. PVR is a measure of the
resistance of the pulmonary vasculature calculated from
the pressure drop across the pulmonary vascular bed di-
vided by the pulmonary blood flow. Means of the covari-
ates were used for the aggregate data.

Systematic literature review of studies in the literature
The results of a systematic literature review were avail-
able and was used to identify a network of studies to be
included in the analysis. In this review, the MEDLINE®
and EMBASE® databases were searched simultaneously.
Patient Intervention Comparator Outcome Study type
(PICOS) [33] criteria were followed and the quality assess-
ment was performed according to the NICE checklist for
RCTs [34]. Details of the PICOS terms are included in
Additional file 1. Search terms included a combination of
free-text and thesaurus terms relevant to PAH, ERA, pros-
tacyclins, PDE5i, and RCTs, although case-control and
cohort studies were also included. The Cochrane Central
Register of Controlled Trials was also searched using a
similar strategy. The relevance of each citation identified



Table 1 Summary statistics of patients in IMPRES RCT

Baseline
therapy

Add-on
Therapy

Size¶ Drop out§ Mean 6MWD
improvement

Mean age Prop male Mean STATUS Mean 6MWD
baseline

Mean PVR

ERA + PDE5i Placebo* 23 4 2.54 (16.25) 50.30 0.30 2.96 342.07 1157.0

ERA + PDE5i Imatinib 20 12 43.7 (14.27) 50.15 0.10 2.60 328.95 1282.1

ERA + Pr Placebo 8 2 7.81 (14.36) 37.00 0.25 2.38 381.56 1146.6

ERA + Pr Imatinib 10 5 48.3 (16.12) 47.20 0.00 2.80 331.60 1071.9

ERA + PDE5i + Pr Placebo 33 8 −8.27 (10.47) 47.03 0.18 2.73 355.79 1176.6

ERA + PDE5i + Pr Imatinib 27 15 33.37 (11.54) 47.74 0.19 2.85 360.70 1232.5

PDE5i + Pr Placebo 16 4 36.03 (10.53) 43.19 0.06 2.56 358.72 1193.9

PDE5i + Pr Imatinib 9 5 40 (14.59) 53.00 0.11 2.78 380.56 1050.8

*ERA is any endothelin receptor antagonist, PDE5i is phosphodiesterase 5 inhibitor, and Pr is prostacyclins (oral, inhaled, intravenous or subcutaneous).
¶ Group size was number of patients taking 6MWD test at baseline and 24 weeks.
§ Dropout is number of patients dropping out of the study between baseline and 24 weeks. Dropout due to death, adverse events, consent withdrawal, protocol
deviation, abnormal laboratory result, administrative error, or adverse reaction to study drug.
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from the databases was based on title and abstract accord-
ing to the PICOS criteria. As we wanted to explore the
effects of covariates, studies that did not report two or
more of the 6 covariates of interest were excluded, while
we would use IMPRES data to perform single imputation
when only one covariate is missing. From this review, we
identified and included 5 monotherapy [35-39] and 4
combination therapy [28,40-42] RCTs, summary statistics
for which are provided in Table 2 and Table 3, respect-
ively. Additionally, 6 before-and-after studies investigating
monotherapies and combination therapies were included
[43-48] and their summary statistics are reported in
Table 4. PRISMA flowcharts are provided for the sys-
tematic searches in Figure 2 and Figure 3 and a PRISMA
checklist is provided in Additional file 2 [49]. Although
there were substantial differences across trials in the
Table 2 Details of included monotherapy RCTs*

Reference Badesch 2002 Rubin 2002 (BREATHE-1) Ba

Baseline therapy None None No

Add-on therapy ERA Placebo ERA Placebo ERA

Treatment dose 62.5 mg bosentan
twice daily,
increased to 125
mg twice daily after
4 weeks.

62.5 mg bosentan
twice daily,
increased to either
125 mg or 250 mg
twice daily after
4 weeks.

62.
twi
inc
mg
4 w

Patients at end
of trial

21 11 144 69 60

Duration 12 weeks 16 weeks 18

Change 6MWD 70 (23.4) −6 (50.5) 36 (6.5) −8 (9.5) 23

Baseline 6MWD 360 (18.8) 355 (24.7) 330 (6.2) 344 (9.1) 337

Age 52.2 47.4 48.7 47.2 49

Sex (% male) 0.19 0 0.21 0.22 0.2

STATUS 3 3 3.097222 3.057971 2.6

PVR 896 942 1014 880 880

*ERA are endothelin receptor antagonists, PDE5i are phosphodiesterase 5 inhibitors
doses of the administered treatments, as recorded in
Tables 2, 3 and 4, clinical opinion was such that their ef-
fects would be comparable.
Only two-arm RCTs were identified, with each arm in-

volving the addition of some treatment or placebo to a
group of patients who were either treatment naïve or on
some baseline treatment. In these studies, included patients
had been on the baseline treatment for a time period be-
fore randomization (eg. ERA for at least 4 months prior to
randomization [42] which was assumed sufficient to derive
maximal benefit from the baseline treatment. This assump-
tion implies that any improvement was due to the add-
itional treatment or the placebo effect.
The before-and-after studies were single-arm observa-

tional studies which reported the 6MWD of a group of
patients on a particular background therapy before and
rst 2006 (STRIDE-2) Barst 1996 Galie 2005 (SUPER-1)

ne Conventional None

Placebo Pr (iv ep) Conventional PDE5i Placebo

5 mg bosentan
ce daily,
reased to 125
twice daily after
eeks.

mean dose of
intravenous
epoprostenol
9.2 ng/kg/min

80 mg sildenafil
orally 3 times daily

62 41 40 71 70

weeks 12 weeks 12 weeks

(9.3) −6.5 (9.2) 32 (24.8) −15 (33) 50 (9) 2 (7)

(10.1) 321 (10.8) 316 (18) 272 (23.0) 339 (9.4) 344 (9.4)

53 40 40 48 49

2 0.24 0.24 0.3 0.21 0.19

5 2.693548 3.243902 3.275 2.619718 2.557143

880 1280 1280 918 1051

, Pr are prostacyclin analogues. iv ep is intravenous epoprostenol.



Table 3 Details of included combination therapy RCTs*

Reference Barst 2011 (PHIRST-1) Simonneau 2008 (PACES) McLaughlin 2006 (STEP) Humbert 2004 (BREATHE-2)

Baseline therapy ERA Pr (iv epo) ERA None

Add-on therapy PDE5i Placebo PDE5i Placebo Pr (inh ilp) Placebo ERA ERA+ Pr (iv epo)

Treatment dose 40 mg tadalafil
once daily

3x20mg sildenafil daily,
increased to 40 and
80 at 4 week intervals

5 μg inhaled iloprost 62.5 mg bosentan twice daily, increased
to 125 mg twice daily after 4 weeks.
Intravenous epoprostenol started at
2 ng/kg/min and increased up to 14 ± 2
ng/kg/min after 16 weeks.

Patients at end of trial 42 45 133 123 34 33 19 10

Duration 16 weeks 16 weeks 12 weeks 16 weeks

Change 6MWD 40.2 (8.5) 18.8 (9.2) 29.8 (5.3) 1 (5.3) 30 (10.3) 4 (10.6) 72 (11.47) 46 (19.61)

Baseline 6MWD 360.9 (11.6) 348.5 (12.7) 348.9 (6.2) 341 (6.7) 331 (73) 340 (64) 323.04§ 323.62§

Age 50 51.7 47.8 47.5 49 51 45 47

Sex (% male) 0.21 0.22 0.18 0.23 0.21 0.21 0.23 0.45

STATUS 2.5 2.7 2.8 2.8 3.0 3.0 3.23 3.27

PVR 863.3 863.3 856.8 754.9 815 783 1511 1426

*E are endothelin receptor antagonists, P5 are phosphodiesterase 5 inhibitors, Pr are prostacyclin analogues. iv ep is intravenous epoprostenol, inh ilp is
inhaled iloprost.
§Imputed based on linear model for baseline 6MWD with covariates for Age, Sex, mean STATUS, and mean right arterial pressure.
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after administering a new treatment. For example, Mathai
et al. [47] studied the effect of initiating additional PDE5i
therapy on a group of patients already on ERA monother-
apy, thus providing evidence on the additional benefit of
adding PDE5i over ERA alone.
Table 4 Details of included observational studies*

Reference Jacobs 2009 Akagi 2008 Channick

Baseline therapy ERA + PDE5i Pr ERA

Add-on therapy Pr ERA Pr

Prostacyclin analogue intravenous
epoprostenol
and subcutaneous
treprostinil

intravenous
epoprostenol

inhaled
treprostini

Treatment dose 10-20 ng/kg/min
subcutaneous
treprostinil, 38.4 end
of observation. 6-8
ng/kg/min intravenous
epoprostenol, 16.2 end
of observation

62.5 mg
bosentan
twice daily

6 on 30 m
inhaled tre
4 daily 6 o
mug 4 dai

Patients at end
of study

10 7 11

Duration 16 weeks 1 year 12 weeks

Change 6MWD 41 (38) 3 (23) 67 (45)

Baseline 6MWD 387 (30) 392 (16) 339 (26)

Age 37 32 51.2

Sex (% male) 0.19 0.13 0.09

STATUS 3 2 3

PVR 957.8¶ 776 744

*ERA are endothelin receptor antagonists, PDE5i are phosphodiesterase 5 inhibitors
inhaled iloprost, sc trep is subcutaneous treprostinil.
¶Imputed from linear model for PVR based on Age, right arterial pressure, MPAP an
Methods
The final evidence network of observational studies and
RCTs for the NMA is shown in Figure 4. The treatment
effects are labelled βi and are the expected short term
improvement in 6MWD. Arrow directions indicate the
2006 Hoeper 2003 Mathai 2007 Hoeper 2004

Pr ERA None

ERA PDE5i ERA

l
oral beraprost and
inhaled iloprost

NA NA

cg
prostinil
n 45
ly.

62.5 mg bosentan
twice daily, increased
to 125 mg twice
daily after 4 weeks.

20 mg sildenafil
(up to 100 mg
included)
once daily

62.5 mg bosentan
twice daily, increased
to 125 mg twice
daily after 4 weeks.

20 25 9

6 months 12 weeks 3 months

58 (9.6) 20 (28) 57 (35)

346 (23.7) 265 (19) 346

46 56.2 39

0.30 0.04 0.22

3.2 3.1 3.1

1147 928 1549

, Pr are prostacyclin analogues. iv ep is intravenous epoprostenol, inh ilp is

d cardiac output.



Figure 2 PRISMA flowchart for selection of monotherapy and combination therapy RCTs.
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interpretation of these parameters, eg. Positive β2 means
that prostacyclins are more effective than placebo. The
network of primary interest is highlighted in bold, and
the comparison of primary interest β8 − β6, the effective-
ness of imatinib against prostacyclins as an add-on to
ERA + PDE5i, is highlighted by a bold, dashed, indirect
link. This illustrates the necessity of including observa-
tional evidence as this network would be disconnected
had it been restricted to RCTs. Although this indirect
comparison could have been conducted with evidence
from only IMPRES and the Jacobs et al. studies, the in-
clusion of a wider range of evidence strengthens our es-
timates of covariate adjustments and the short term
placebo improvements in 6MWD in PAH patients. The
following sections explain our development of a NMA
model to estimate the parameters βi by synthesizing all
available evidence. As only two-arm RCTs and single-
arm observational studies were identified, the models
we develop will not be designed for trials with more
than two arms. This model development is summarized
in Table 5.
Model M1: network meta-analysis of aggregate data from
RCTs and observational studies
The first model we considered was a simple network
meta-analysis of aggregated data from the IMPRES study
and aggregate data from the literature. The mean short
term change in 6MWD for each study i and arm j, �Y ij ,
was modelled as:

�Y ij eN αi þ θij; SEij
� � ð1Þ

where SEij is the standard error of the observed change
in 6MWD in arm j of study i. It should be noted that
this parameterization is slightly different to that used in
other network meta-analyses [15,50] as we are using a
trial level placebo effect αi in combination with a trial
level effect of treatment, θij. The placebo effect is the
mean improvement in 6MWD that a group of patients
would experience if they entered trial i and received only
placebo, in addition to their background therapy, and is
assumed to be the same for each of the arms of the trial.
The effect of treatment in arm j is a linear combination



Figure 3 PRISMA flowchart for selection of monotherapy and combination therapy observational studies.

Figure 4 Network of evidence for comparison of effectiveness of monotherapies and combination therapies for PAH. E are endothelin receptor
antagonists, P5 are phosphodiesterase-5 inhibitors, Pr are prostacyclin analogues. Obs indicates that the study is observational, while all others are
RCTs. IPD was only available for the IMPRES trial.
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Table 5 Summary of NMA models used for comparison of treatment combinations for PAH synthesising aggregate
data from the literature and IPD from IMPRES study

Model Data Description Section with model details

M1 Aggregate data only Aggregates the IPD and includes observational data through random effects on
change from baseline 6MWD

2.1

M2 Aggregate and IPD Extends M1 to combine aggregate data and IPD 2.2

M3 Aggregate and IPD Extends M2 to include covariate adjustments on change from baseline 6MWD 2.3

M4 Aggregate and IPD Extends M3 to include interactions between treatment effect and covariates 2.4

S1 Aggregate and IPD Same as M4 but SE in observational studies are inflated by a factor of 10 to
downweight their evidence

3.3

S2 Aggregate and IPD Same as M4 but constructed a control arm for observational studies where all
patients assumed to deteriorate by 25 m from baseline in 6MWD

3.4
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of the effects of additional treatments initiated in that
arm at the start of the trial:

θij eN f ij βð Þ; σ2β
� �

; ð2Þ

θij = effect of additional treatment initiated in j th arm
of i th study
β = vector of treatment effects
fij = linear function with coefficients +1 or -1
In Equation (2), random effects with common variance

σ2β were placed on the treatment effects θij in the i th

study and j th arm, as they were assumed to be exchange-
able and independent. The entries of the treatment effects
vector β are the treatment effect parameters βl, which we
assumed to be fixed effects. For arms receiving only a pla-
cebo, it was assumed that θiC = 0 so that the improvement
in 6MWD is only the placebo effect αi. Two-arm trials
with no placebo arm would have mean improvements of
αi + θi1 and αi + θi2, where θi1 and θi2 are the effect of
the treatment combinations in the first and second
arms, respectively.
Observational studies consist of only one arm and their

inclusion required an assumption about their αi. We as-
sumed that these αi, the placebo improvement in a trial,
which would subsume the placebo effect, would be ex-
changeable across trials. In the model above, we expressed
this by placing a Normal random effect with common
mean α and variance σ2

α on the αi s:

αi eN α; σ2α
� � ð3Þ

This use of random effects enables evidence from all
RCT and before-and-after observational studies to esti-
mate the expected change in 6MWD. Note that this as-
sumption possibly interferes with randomization as the
αi will be drawn towards the mean α and thus the treat-
ment effects β may be biased. An alternative would be
to treat the αi as fixed effects [24,25,51] and thus pre-
serve randomization, but this would not allow the inclu-
sion of before-and-after studies.
The linear functions fij() were almost always single
values, eg. β6 for Jacobs et al. as the only additional treat-
ment was prostacyclin analogues [43]. In the BREATHE-2
study [40], labelled study i for convenience, arm j = 1 was
a treatment naïve group started on bosentan (ERA) and
intravenous epoprostenol (Pr) while arm j = 2 was a treat-
ment naïve group started on bosentan (ERA) alone. This
was represented by the functions:

f i1 βð Þ ¼ β1 þ β3

f i2 βð Þ ¼ β1

which could be read from Figure 4. The βi are our ana-
logues of the basic parameters in the standard indirect
treatment comparison model described in Dias et al. [5],
while fij(β) are our analogues of the functional parameters.
The choice of priors for α and the βl s was based on

the assumption that no patient would change their walk-
ing distance by more than 400 meters, which implied a
standard deviation of 200 meters. Assuming that the smal-

lest study had at least 10 patients, this gave SE ¼ 200 ffiffiffiffi
10

p
.

and therefore a prior variance for effects on the mean of
SE2 = 4000. We represented these prior beliefs via Normal
distribution, which were judged appropriate in the context
of changes in 6MWD through exploratory analysis of the
IMPRES data and expert clinical opinion. For σ2β and σ2α ,

the vague assumptions that σβ ≤ 50 meters and σα ≤ 50
meters were used, which expressed the belief that individ-
ual patients would not differ from the mean improvement
in 6MWD by more than 100 meters. Following the
recommendation of Lambert et al. [52], a uniform prior
representing this belief was placed on the standard devi-
ation. These considerations gave the priors:

α eN 0; 4000ð Þ

βl eN 0; 4000ð Þ

σβ eU 0; 50ð Þ
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σα eU 0; 50ð Þ
which completed the specification of a NMA model for
aggregate data only.

Model M2: network meta-analysis of IPD and aggregate
data from RCTs and observational studies
We extended the aggregate data model described by
Equation (1) in Section 2.1 to include individual patient
data through the relation:

Y ijk e N αi þ θij; σ
2

� � ð4Þ
for the change in 6MWD for patient k of arm j and
study i, where σ2 is a common variance parameter to be
fit to the data. Although in general we would use a sep-
arate σ2, with a subscript, for each IPD trial, we have
dropped the subscript to simplify the notation as our ap-
plication only includes a single IPD trial. The treatment
effects and placebo effects were as in the aggregate data
model M1:

θij e N f ij βð Þ; σ2β
� �

ð5Þ

αi eN α; σ2α
� � ð6Þ

Normal prior distributions were again assumed for the
means of the Normal distributions and Uniforms were
placed on the standard deviations. As in the specification
of priors for α and the βl s in model M1, we reasoned
that if a patient was assumed not to have an improve-
ment exceeding 400 meters, their standard deviations
should be 200 meters and therefore have variances of
40000. These assumptions resulted in the priors:

βl eN 0; 40000ð Þ
σ eU 0; 50ð Þ:

As the evidence for the treatment effects βl came from
both individual patient and aggregate (mean) level data,
the ‘vaguer’ prior was used. The prior for the placebo ef-
fect α and for the standard deviations σα, and σβ were
kept the same as in the aggregate data models in Section
2.1. This was appropriate as they have the same meaning
in both the IPD and aggregate data models.

Model M3: across-study and within-study covariate ad-
justments on the placebo effect
To account for across-study heterogeneity, we extended
the model to include covariate adjustments on the pla-
cebo effects, the αi s. A further advantage was that these
adjustments for differences in the patient populations
led to better assessments of the placebo improvement in
the single-arm before-and-after studies due to their
better explanation of the heterogeneity. We also adjusted
for heterogeneity within the studies, which is between-
patient heterogeneity, for which we had IPD. The model
was defined for a mean covariate �Xij and individual co-
variate Xijk as follows:

�Y ij eN αi þ φ�Xij þ θij; SEij
� � ð7Þ

Y ijk e N αi þ φ�Xij þ π Xijk−�Xij
� �þ θij; σ

2
� � ð8Þ

θij eN f ij βð Þ; σ2β
� �

ð9Þ

αi eN α; σ2α
� � ð10Þ

The last two equations are as in models M1 and M2.
In this model, φ was the effect of the mean and accounted
for across-study differences, while π was the effect of an
individual’s covariate and accounted for within-study
differences.
Note that the difference between π and φ in Equation

(8) quantifies ecological bias, a bias that arises when the
effect of the mean of a covariate is different from effect
of the covariate itself, and that if π = φ then there would
be no ecological bias.
Priors for α, βl, σ, σα, and σβ were as in the model with

no covariate adjustments of Section 2.2, while a vague
Normal distribution for mean effects was used for φ and
a vague Normal distribution for individual effects was
used for π:

φ eN 0; 4000ð Þ
π eN 0; 40000ð Þ

which completed the NMA model combining IPD and
aggregate data with covariate adjustments on the pla-
cebo effect.

Model M4: within-study covariate adjustments on
treatment effects
Our final extension was to include covariate adjustments
for the effect of patient characteristics on the efficacy of
treatments, the βl s in the models. Such a model would
be useful for predicting efficacy and evaluating cost-
effectiveness in patient subgroups with specific baseline
characteristics. As only a small number of studies were
available in our example for each treatment effect, it
was not practical to account for across-study heterogen-
eity. We therefore restricted treatment effect covariate
adjustments to the within-study level, and thus to only
the treatment effect of imatinib for which IPD was avail-
able. The model was defined as

�Y ij e N αi þ φ�Xij þ θij; SEij
� � ð11Þ

θij e N f ij βð Þ; σ2β
� �

ð12Þ
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Y ijk e N αi þ φ�Xij þ π Xijk−�Xij
� �þ θijk ; σ

2
� � ð13Þ

θijk eN f ij βþ γ Xijk−�Xij
� �� �

; σ2β

� �
ð14Þ

αi eN α; σ2α
� � ð15Þ

Where Equations (7) and (14) are modifications of
Equations (8) and (2) to include patient specific treat-
ment effects. The elements γl of γ were the effects of the
covariate on the treatment effect βl. The linear functions
fij() therefore acted on linear combinations of the treat-
ment effects β and their covariate adjustments γ.
The same priors as before were used for α, βl, σ, σα, σβ, φ

and π, while a Normal distribution for individual patent
level effects was used for the γl, i.e.

γl eN 0; 40000ð Þ

This completed the specification of an NMA model
for combining IPD and aggregate data from RCTs and
observational studies with covariate adjustments on the
placebo and treatment, of imatinib, effect. The models
described in these sections are summarized in Table 5
and we applied them to the PAH example.

Covariate selection via DIC-based forward stepwise
selection
Model M4 potentially includes covariates at three differ-
ent levels and the full model space can be quite large. In
our PAH example there are 6 possible covariates, so a
total of 218 possible models. Although a model that in-
cludes all of these covariates would be highly adjustable
to populations in which predictions are desired, it is ne-
cessary to avoid over fitting to the data. To avoid over
fitting and produce robust predictions, we use the Devi-
ance Information Criterion (DIC, [53]). This is a predictive
criterion that balances fit and complexity. It is computa-
tionally infeasible to investigate the full model space so
we instead apply DIC-based forward stepwise selection
[54,55]. This allows us to search through the space of
models using the following steps:

1. Initially chosen model has no covariates
2. Fit extended models with one extra covariate from

chosen model
3. Choose minimum DIC model from original and

extended models.
4. Return to step 2.

Initially, for the PAH example with 6 covariates of inter-
est, Step 2 involves a search of 18 possible models. The
second time through involves 17 possible models, and so
on. This leads to a maximum of 171 models to search,
which is computationally feasible.

Results
All results presented here are from an implementation
of the models described in Section 2, and summarized in
Table 5, in the WinBUGS [56] software package. This is
a Windows based software for Bayesian inference using
Gibbs sampling. The code for these models is provided
in Additional file 3 and the authors are happy to respond
to any queries about its use. All results were sampled
from 250 000 iterations of a single Markov chain Monte
Carlo (MCMC) chain following a burn-in of 100 000 it-
erations. We also sampled a second chain from alternate
initial values and confirmed that 250 000 iterations was
sufficient for convergence on the basis of the Gelman-
Rubin statistic [57].

Results of models M1 and M2: NMA with no covariate
adjustments
Summary statistics of the posterior distributions of the
placebo and treatment effects, on the scale of change in
6MWD in meters, for the comparison of imatinib against
prostacyclin analogues as add-on to ERA and PDE5i from
the model M1, described in Section 2.1, are presented in
Table 6 and Figure 5. This NMA combined only summary
statistics from the IMPRES trial and did not make use of
the available IPD. The posterior means and 95% credible
intervals are comfortably within the prior ranges specified
in Section 2.1. The summary of the placebo effect α im-
plies that a randomly selected group of patients would
be expected to have a mean 6MWD improvement of
4.78 meters, and for this mean to lie within the range of
-4.8 and 14.6 meters with a probability of 95%, were
they to enter a placebo arm of one of the studies. This is
not unreasonable on the basis of the means and stand-
ard errors of the observed changes in 6MWD in the
control arms of the RCTs, reported in Table 2 and
Table 3. The wide and inconclusive 95% credible inter-
vals for the treatment effects and comparison are indi-
cative of the weakness of the evidence. Also provided in
Table 6 and Figure 5 are the results of model M2, de-
scribed in Section 2.2, which combined available aggre-
gate data with IPD from the IMPRES study. The means
of the posterior distributions do not change very much
but the credible intervals for parameters based on IPD
from IMPRES, the α (imatinib to E + P5) and treatment
effect β8, shrink. This reduction in the width of the
credible intervals is due to the complex interaction be-
tween the vague priors in the different parameterisation
of model M2 from M1 and is not due to any improve-
ment in the use of the evidence. Even vague priors are
somewhat informative and this is illustrated by the re-
duction in the credible intervals.



Table 6 Results of four network meta-analyses: based on only aggregate data; combining IPD and aggregate data with
no covariate adjustments; combining IPD and aggregate data with covariate adjustments for individual patient AGE,
baseline STATUS and baseline PVR at within-study level; using the covariate adjusted IPD and aggregate data model
with the observational studies down-weighted by inflating their standard errors by a factor of 10; using the covariate
adjusted IPD and aggregate data model with constructed control arms for observational studies with an assumed
deterioration of 25 meters in 6MWD

Model M1 M2 M3 S1 S2

Model description Aggregate data only IPD and aggregate
with no covariate
adjustments

IPD and aggregate with
covariate adjustments

Down-weighted
observational studies

Constructed
control arms

αi, Jacobs 2009 4.77 (-18.60,29.12) 4.55 (-19.07, 29.45) 4.39 (-18.77, 28.59) 4.07 (-17.16, 26.84) −1.10 (-22.54, 17.77)

αi, (imatinib to
ERA + PDE5i)

4.27 (-14.13, 22.59) 3.63 (-10.57, 17.78) 3.50 (-10.59, 17.69) 3.55 (-9.78, 17.12) 0.93 (-11.93, 14.71)

α (mean of αi s) 4.78 (-4.77, 14.60) 4.39 (-5.14, 14.80) 4.30 (-4.73, 14.17) 3.99 (-4.87, 13.68) 0.02 (-8.74, 8.78)

π1 (AGE) NA NA −0.90 (-1.52, -0.27) −0.90 (-1.52, -0.27) −0.89 (-1.53, -0.26)

π3 (STATUS) NA NA −11.89 (-28.20, 4.44) −11.92 (-28.29, 4.36) −12.02 (-28.64, 4.60)

π5 (PVR) NA NA −0.05 (-0.70, -0.02) −0.05 (-0.07, -0.02) −0.05 (-0.07, -0.02)

β6 (Pr to ERA +
PDE5i)

35.98 (-44.15, 114.70) 35.16 (-43.81, 113.80) 34.65 (-42.18, 113.20) 22.64 (-168.30, 217.00) 40.65 (-37.09, 117.80)

β8 (imatinib to ERA +
PDE5i)

39.09 (2.72, 75.80) 39.91 (11.31, 68.36) 40.06 (13.38, 67.67) 39.40 (13.83, 66.03) 42.62 (15.18, 69.79)

(β8 − β6) imatinib v
Pr to ERA + PDE5i

3.11 (-83.70, 89.27) 4.75 (-77.88, 87.10) 5.41 (-76.65, 85.24) 16.76 (-179.26, 209.80) 1.97 (-78.62, 83.53)

Results sampled from 250000 iterations following a burn-in of 100000.

-200 -150 -100 -50 0 50 100 150 200 250

M1

M2

M4

S1

S2

Short-term
meters
change 
6MWD from 
baseline

Figure 5 Forest plot of mean and 95% credible interval of posterior
distribution for difference in treatment effect of imatinib and Pr
given to patients on combination of ERA and PDE5i, on scale of
short term change in 6MWD from baseline in meters.
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Results of model M3 and M4: NMA of IPD and aggregate
data with covariate adjustments
Summary statistics of the results of the application of
the covariate adjusted NMA model of Section 2.3, model
M3, to combining IPD from the IMPRES trial with ag-
gregate data from the literature are reported in Table 6
and Figure 5, while further parameter estimates are pro-
vided in Additional file 4. We used DIC-based forward
stepwise selection to choose the covariate adjustments at
across-study and within-study level on the placebo ef-
fects and within-study level on the treatment effect of
imatinib. It was found that the DIC-minimizing model
had no across-study covariate adjustments on the pla-
cebo effect but had within-study adjustments for AGE,
STATUS and PVR on the placebo effect.
The benefit of including IPD is again indicated by the

reduction in the 95% credible interval for the treatment
effect of imatinib added to ERA and PDE5i (β8) from
that of model M1 of aggregated data. The 95% credible
interval for the indirect comparison of imatinib against
prostacyclins as add-on to ERA and PDE5i, (-76.65, 85.24)
from model M3, remains approximately the same width as
in the aggregate data model, (-83.70, 89.27) from model
M1, as illustrated in Figure 5. This is because the effect of
additional prostacyclins is based on only aggregate data.
The direction of the effects of AGE (-0.90), STATUS
(-11.89), and PVR (-0.05) on the expected 6MWD im-
provement of a patient in the IMPRES trial imply that
older and sicker patients have a lower expected im-
provement, which is reasonable. The non-selection of
across-study covariates indicates that the imputed values
for missing covariates, such as PVR in Jacobs et al., have
no effect on the results. That some values were imputed
may affect the DIC-based selection but this is unlikely to
be a strong effect as the covariate adjustments were gener-
ally found to have little impact.
We further fit model M4, described in Section 2.4, and

applied DIC-based stepwise selection to choose covariate
adjustments on the treatment effect of imatinib. However,
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no such covariate adjustments were included so the chosen
model M4 was identical to M3.
In addition to applying our NMA methodology to the

PAH example, we also tested the impact of its assump-
tions through sensitivity analyses.

Sensitivity analysis, model S1: down-weighting the
observational studies
In our standard NMA models M1, M2, M3 and M4, we
gave equal weight to the results of the before-and-after
observational studies and those of two-arm RCTs. An al-
ternative to this assumption is to down-weight the results,
recognizing internal bias due to lack of rigor, through a
multiplicative adjustment to the standard errors of the re-
sults in either or both arms of the aggregate data, i.e.

S̃E i ¼ SEi
�
δi

where δi is the quality weight of the i th study, based on
a subjective assessment. This is similar to the weighting
of the empirical priors derived from observational evidence
discussed in the background section [15,21]. If δi = 1, it
would represent a study that was judged to be of the high-
est quality, and its evidence would be given full weight.
This was the value we assigned to RCT data. Using the
covariate adjusted model of Section 3.2, we repeated the
simulations with δi = 0.1, increasing observed standard
errors by a factor of 10, for the observational studies,
thus down-weighting them, relative to RCTs, to repre-
sent their poorer quality.
For example, the observed change in 6MWD from

baseline in Jacobs et al. was 41 meters with a standard
error of 38, as reported in Table 4. This sensitivity ana-
lysis would assume that this standard error had been
380, substantially larger than any of the observed stand-
ard errors reported in Tables 2, 3 or 4 (maximum was
about 50). We can therefore conclude that if our analysis
is robust to down-weighting by a factor of δi = 0.1, it is
likely to be robust to most levels of uncertainty we could
plausibly observe.
The results from this sensitivity analysis, labeled model

S1, are presented in Table 5 and Figure 5. The main
change from the results of the model without down-
weighting of the observational studies, models M1, M2
and M3 in Table 5, was the increased range of the 95%
credible intervals for treatment effects estimated on the
basis of observational studies, such as β6. The range of
the 95% credible interval of the comparison of imatinib
against prostacyclins as add-on to ERA + PDE5i was also
increased, by a large factor, illustrated in Figure 5, due to
its reliance on the down-weighted observational studies.
The magnitude of the comparative effectiveness (β8 − β6)
also increased substantially, but is most likely due to the
increased random variation illustrated by the expanded
credible intervals.
This decrease in the accuracy of the treatment effect

estimates and indirect comparisons indicates the influence
of the observational studies. As the effect was largely on
the accuracy of these estimates and not on their direction,
it could be concluded that the NMA methodology was ro-
bust to the down-weighting of the observational studies,
although its reliance on possibly weak and biased observa-
tional evidence was highlighted.

Sensitivity analysis, model S2: constructed control arms in
the observational studies
The lack of control arms in the observational studies pre-
sented a difficulty of not knowing what would have hap-
pened had patients not been given additional treatment.
The NMA models of Section 2 placed Normally distrib-
uted random effects on the expected improvements in pa-
tients who had entered a study but only received a placebo,

αi eN α; σ2α
� �

An alternative was to construct a control arm for the
observational studies by making an assumption about
�Y iC , the mean change in 6MWD for patients who did
not receive additional therapy. As the Jacobs et al. study
[43] looked at patients who were deteriorating on oral
therapy, we assumed that patients’ 6MWD would de-
crease during the trial if they were not given any new
treatments. This study included patients whose 6MWD
had decreased by 58 meters over a mean time of 20.6
months before entering the study. Our short term follow-
up was approximately 24 weeks, which is less than half of
20.6 months, so we assumed a mean change of �Y iC≈−25m
would be observed in missing control arms over this short
term follow-up. We further assumed that the standard
error of the mean in this constructed control arm, SEiC, is
the same as that observed in the treatment arm. We used
these assumptions to construct control arms for all obser-
vational studies.
We repeated the analysis using the covariate-adjusted

model from Section 3.2 with the constructed control
arms, giving the results, labeled model S2, presented in
Table 5 and Figure 5. It was difficult to interpret the dir-
ection of the change in placebo and treatment effects,
due to the effect of covariate adjustments. The direction
of the comparison of imatinib against prostacyclins was
shifted in favor of prostacyclins, which was expected due
to the conservative assumption about the control arms.
However, the wide confidence intervals and overall dir-
ection of the comparisons remained so the analysis was
judged to be robust to this alternative assumption about
the control arms.
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Discussion
In this paper we have considered the problem of how to
perform a network meta-analysis when the RCT evidence
does not form a complete network. Our proposal was to
complete the network using single-arm before-and-after
observational studies by building a covariate adjusted
random effects model on the placebo improvements. We
built on recent innovations to construct a model which
combines IPD and aggregate data from RCTs and before-
and-after studies and allows for the inclusion of covariate
adjustments for heterogeneity at across- and within-study
level on the placebo effect and within-study level on the
treatment effect. Using this model, we performed a
clinically novel comparison of the benefit of imatinib
against prostacyclins as add-on therapy to PAH patients
on a combination of ERA and PDE5i. This comparison
was only possible through inclusion of observational
studies as an evidence network restricted to RCTs would
be disconnected.
As the credible intervals were very wide, the results of

our application to PAH were considered to be inconclu-
sive. This was due to the weakness of the evidence as only
a few studies, with small sample sizes, were available for
each edge of the network. This data limitation may also be
the reason why we found that covariate adjustments had
little effect on the NMA results and that no across-study
adjustments were included on DIC grounds, although we
can also interpret this as evidence that heterogeneity had
little effect on the NMA. It is possible that important co-
variates were not reported by IMPRES or other studies, or
that reported covariates were incorrectly considered to be
of no importance due to the weakness of the data. It is
also possible that the stepwise selection algorithm missed
important covariates as it only investigates a small portion
of the total 218 possible models. A simulation/robustness
study could address these concerns but would be compu-
tationally intensive as the model selection step, even using
stepwise selection to reduce the set of models under con-
sideration, was resource intensive. The best strategy to im-
prove the practical utility of this application of NMA to
PAH is to collect further evidence, ideally IPD from a new
or existing RCT.
Apart from these data limitations, which are specific to

the application, there are a number of limitations and
untestable assumptions of the model itself. As in many
meta-analysis and NMA models [15], we assumed the ef-
fects of particular treatments were the same across studies
by placing a fixed effect on each βl. In cases where suffi-
cient data are available, this could be relaxed to a random
effects assumption where we assume the βl from different
trials follow a common, possibly Normal, distribution.
Our model also assumed, in Equation (2), that effects of
additional treatments had the same variance σ2β in all stud-
ies, no matter how many additional treatments were being
administered. This is possibly implausible as a the effect of
a combination of three new treatments should have a
higher variance than the effect of a single new treatment.
As in the case of fixed effects, this assumption could be
relaxed in cases where sufficient data are available. A fur-
ther simplification that limits the generalizability of our
model is that it is restricted to single- or two-arm trials.
To extend the model to trials with three or more arms
would require careful consideration of correlation in treat-
ment effects across arms and within studies [5,50].
An assumption of our model that is common to most

NMA models is the transitivity or consistency of treat-
ment effects across studies. This is the assumption that
studies informing the comparison of treatment A against
treatment B and of treatment A against treatment C can
be used to inform the comparison of B against C. Our evi-
dence network was sparse and contained only one loop,
making it impractical to test for consistency of direct and
indirect evidence using node-splitting [58] or other mea-
sures of inconsistency [59,60]. If more studies became
available, it would be recommended to test that compar-
ing ERA + Pr to ERA using the direct evidence [44,46]
gave similar results, within some range of acceptability, to
performing the comparison with only indirect evidence.
The principle assumption that allowed the inclusion of

single-arm before-and-after observational studies was that
the placebo effects, the αi s, were exchangeable or that
there was no a priori reason that there would be system-
atic differences between these effects. This assumption
allowed us to model the αi s using a random effects distri-
bution. We recommend the use of this assumption and
our model in cases where networks are not densely popu-
lated or fully connected when restricted to RCT evidence,
such as the PAH example. Decision makers would still
need to give a recommendation on which treatment to
use in such situations [13] and, indeed, in Australia the
PBAC already considers non-randomized observational
evidence, particularly in the absence of RCTs [1]. How-
ever, this type of evidence is considered to be weak and
subject to bias by decision making bodies such as NICE
[14]. Additionally, the GRADE scale, which is followed by
PBAC, rates the quality of such as evidence as low [61]. In
cases where networks can be densely populated and fully
connected by RCT evidence, this assumption may shrink
placebo effects towards the mean and thus interfere with
randomization [24,25,51]. In those cases, we recommend
treating the αi as independent fixed effects, or nuisance
parameters, and not including observational evidence.
In the PAH application, clinical opinion supported the

assumption of exchangeable placebo effects, although this
assumption is not testable statistically. That no across-
study adjustments were included in the model selection
step gave an indication that there were no systematic dif-
ferences in these expected improvements and that our
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exchangeability assumption was warranted. The simple al-
ternative of constructing a control arm for observational
studies was investigated but was found to have little effect
on the results. We also explored down-weighting the ob-
servational evidence and found, as expected, a reduction
in the accuracy of our findings, but no change in the over-
all direction of the indirect comparisons results.
Our model can be criticized on the grounds that the

single-arm studies contribute to the estimation of the
distribution for the placebo effects αi. We considered an
alternative formulation of our model where only the
RCTs would contribute to this estimation and the αi s
for the observational studies would be sampled separ-
ately from this distribution. This is the method proposed
for baseline natural history models by Dias et al. [24].
However, our model is designed to be applied to cases
where data would already be limited, such as the PAH
example, so a further reduction of the evidence base
would be undesirable, although in practice the contribu-
tion of the observational studies to the αi estimation will
be limited.
A very simple alternative to a random effects assump-

tion for the placebo effects is to use a single fixed effect
α for the αi s. This is an assumption that all patient pop-
ulations started on placebo have the same short term
expected improvement in 6MWD and that any differ-
ences are due to the treatment or covariate effects. We
repeated the NMA with this assumption and found that
the results were similar in magnitude and direction to
those of the random effects model and that the DIC was
considerably higher, with 1889 for fixed effects versus
1870 for random effects. This DIC gives evidence in
favor of our random effects model. The single fixed ef-
fect model was also not clinically plausible as there were
many inherent differences in the studies so a common
placebo effect would be difficult to justify.
Several additional sensitivity analyses were conducted.

Firstly, as no across-study covariates were included, we
applied our final NMA model to an evidence network
which included the studies which were excluded due to
non-reporting of covariates. This included one extra RCT
[62] and three observational studies [63-65]. The results
of this sensitivity analysis, not reported in this paper, were
almost identical to those of the base case. Prior sensitivity
analyses, where we tried prior distributions with greater
variances, led us to conclude that the results were not
dependent on our choice of prior parameters. Although
non-normal priors could be easily implemented if the ap-
plication required them, normal priors were judged to be
appropriate for the continuous outcome of change in
6MWD through expert clinical opinion and exploratory
analysis of the IMPRES data.
Aside from the extensions to multi-arm trials, separation

of the placebo estimation between RCT and observational
studies, and other possibilities so far discussed, there are a
variety of directions for future extension of our method-
ology. One such direction would be to apply the model to
non-continuous outcomes such as binary outcomes. NMA
models combining IPD and aggregate data for binary
outcomes have been discussed in the literature [6,7] and
the use of a random effects model for placebo effects to
include single-arm studies would be a straightforward
extension. Our methods are also readily applicable to
pairwise meta-analysis, as it was in this setting that the
use of random effects modelling of placebo effects to in-
clude single-arm studies was first proposed [23]. Al-
though in pairwise meta-analysis the model would no
longer be justified on the grounds of completing evi-
dence networks, it may be useful in cases where there
are only a limited number of small RCTs and large, high-
quality single-arm studies are available. An additional
direction for research is the joint network meta-analysis
of multivariate outcomes, such as PVR and change in
6MWD in PAH [66]. This approach would treat all co-
variates as responses and would account for missing
values, a reason for exclusion of several studies, through
a form of multiple imputation. This would have the ad-
vantage of using the evidence more consistently, rather
than our approach of singly imputing missing covari-
ates, such as PVR in Jacobs et al. [43]. However, this ex-
tension would require a greater evidence base than was
available for the PAH example.
All of the limitations we have discussed should be kept

in mind if applying our model in order to avoid being
misled by the results of an analysis in which observa-
tional evidence is included. We would recommend con-
ducting the sensitivity analyses we have described to
ensure the model and the implications of its various as-
sumptions are fully understood.
Conclusions
We have developed an extension of existing NMA meth-
odology to allow the completion of disconnected net-
works of RCT evidence through the inclusion of single-
arm before-and-after observational studies. This model
also brings together many recent developments in network
meta-analysis of IPD and aggregate data. Our application
to PAH demonstrated the utility of our methodology as
comparisons impossible to conduct on the basis of RCTs
alone could be conducted through the inclusion of obser-
vational studies. Although IPD and covariate adjustments
were found to make little difference to the results, we
believe this model could be easily applied to many
other disease areas and settings which require the in-
clusion of observational evidence. Our work therefore
furthers the range of evidence synthesis problems that
can be approached through NMA.
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