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Nano-medicines that include nanoparticles, nanocomposites, small molecules, and
exosomes represent new viable sources for future therapies for the dysfunction of
cardiovascular system, as well as the other important organ systems. Nanomaterials
possess special properties ranging from their intrinsic physicochemical properties, surface
energy and surface topographies which can illicit advantageous cellular responses within
the cardiovascular system, making them exceptionally valuable in future clinical translation
applications. The success of nano-medicines as future cardiovascular theranostic agents
requires a comprehensive understanding of the intersection between nanomaterial and the
biomedical fields. In this review, we highlight some of the major types of nano-medicine
systems that are currently being explored in the cardiac field. This review focusses on the
major differences between the systems, and how these differences affect the specific
therapeutic or diagnostic applications. The important concerns relevant to cardiac nano-
medicines, including cellular responses, toxicity of the different nanomaterials, as well as
cardio-protective and regenerative capabilities are discussed. In this review an overview of
the current development of nano-medicines specific to the cardiac field is provided,
discussing the diverse nature and applications of nanomaterials as therapeutic and
diagnostic agents.
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INTRODUCTION

Nano-medicines have shown great promise various cardiac applications due to their unique and
characteristic properties. In stark contrast to bulk implants, nanomaterials present the capacity to be
mobile in both intra- and extra-vascular systems, making them ideal cargo delivery systems and/or
potential imaging agents.When designing a delivery system, it is not only important to consider what
the intended load will be, but also what type of material will be utilized. Material-chemistry affects the
physical properties of the system, and subsequently the system’s performance ability.

Nanomaterials have demonstrated great potential for cardiovascular medicine applications due to
their ability to be utilized for multiple purposes. Nanostructured surfaces have the ability to, via
topographical cues, control and selectively direct cell activities (Park et al., 2007; Brammer et al.,
2008; Oh et al., 2009; Pan et al., 2012). This ability to selectively guide cellular activity is one that can
be very useful in engineered approaches to where the activity of one cell type needs to be suppressed,
while the activity of another cell type needs to be promoted. By coating a coronary stent with the
proper nanostructured surface could potentially suppress the growth of smooth muscle cells (SMCs),
while encouraging the attachment and proliferation of endothelial cells (ECs) (Serruys et al., 2006).
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In this review, we highlight some of the major types of nano-
medicine systems that are currently being explored in the cardiac
field. With special attention given to the major differences
between the systems, and how these differences affect the
specific therapeutic or diagnostic applications of the systems.
The important concerns relevant to cardiovascular nano-
medicines, such as cellular responses, toxicity of
nanomaterials, as well as cardio-protective and regenerative
capabilities are discussed. This review provides an overview of
the current development of nano-medicines being developed for
use in the cardiac field, while displaying the diverse nature and
applications of nanomaterials as therapeutic and diagnostic
agents.

TYPES OF SCAFFOLD IN NANO-MEDICINE

Nano-medicines, whether fabricated for therapeutic or
diagnostic, or both [theranostic (Kelkar and Reineke, 2011)]
purposes can consist of organic or inorganic substrates.
Organic substrates, for the purposes of this review are defined
as those consisting of mostly a carbon backbone, with additional
hydrogen, oxygen or nitrogen covalently bound to it. Inorganic
substrates on the other hand, include salts, metal oxides andmetal
frameworks for example, but more specifically, they are
compounds that do not contain the (-CH-) bonds associated
with organic compounds (see Table 1 for a brief summary). The
type of material utilized in the fabrication of nano-medicines is
greatly affected by the application of the system. The following
section will delve into some of the prevalent materials that have
been explored and utilized in cardiac nano-medicines, specifically
considering the benefits and potential drawbacks of each.

Organic Scaffolds
Poly(lactic-co-glycolic acid) (PLGA) has long been known for its
high biocompatibility and exceptionally low cytotoxic effects. It is
one of the most published on biodegradable polymeric materials
used in drug delivery systems and has been able to get
endorsements from regulatory bodies, like the US FDA and
European Medicine Agency (EMA). PLGA, an aliphatic
polyester, has dominated the medical field since its inception

in the 1970s, primarily due to its exceptional physicochemical
properties and diverse range of biomedical applications (Danhier
et al., 2012; Kapoor et al., 2015; Martins et al., 2018). High
biocompatibility and low cytotoxicity are attributed to the
degradation byproducts—lactate and glycolate—which can
easily be incorporated into cellular metabolic pathways
(Figure 1) (Chereddy et al., 2018). Due to these highly
desirable properties, PLGA has been widely studied as both a
therapeutic and diagnostic agent in the cardiac field as well (Oduk
et al., 2018; Zhang et al., 2019; Fan et al., 2020a; Fan et al., 2020b).
With improvements in processing and production techniques,
PLGA has also enjoyed a lot of attention due to the relative ease
with which comparatively large batches of nano-medicines can be
produced via emulsion polymerization. Using this specific
approach, a wide variety of water-soluble and–insoluble loads
have been incorporated into PLGA delivery systems (see Types of
Loads Delivered section for more details).

In recent years, great interest has been shown in
polycaprolactone- or PCL-based biomaterials for applications
in the biomedical, pharmaceutical, controlled drug delivery,
and tissue engineering fields (Kweon et al., 2003; Erndt-
Marino et al., 2015; Uto et al., 2016). Even though certain
properties, including biocompatibility, biodegradability,
mechanical, and structural stability are well-characterized and
show great potential, PCL’s lack of bioactivity, due to high
hydrophobicity, have resulted in reduced cellular affinity and
minimal tissue regeneration rates (Patrício et al., 2013).
Approaches to overcome these limitations include the use of
nanocomposites, like carbon nanotubes [CNTs (Ho et al., 2017),
see Inorganic Scaffolds section] as well as co-polymerization with
protection-groups like polyethylene glycol (PEG) (Zhou et al.,
2016). Viability studies on 3D printed PCL-CNT structures
showed that H9C2 myoblasts were able to successfully attach
and were healthy for up to 4 days (Ho et al., 2017). Unfortunately,
PEGylated PCL nanoparticles did not yield such promising
results, as an in vivo zebrafish study showed that these
particles had a dose-dependent inhibitory effect on
angiogenesis, while also upregulating the p53 pro-apoptotic
pathway and inducing cellular apoptosis (Zhou et al., 2016).

TABLE 1 |Short summary showing the differences between organic and inorganic
compounds.

Organic compounds Inorganic compounds

Contains carbons and hydrogens (-CH-) groups No (-CH-) groups
Covalent bonds Ionic and covalent bonds
Examples include: Examples include:

FIGURE 1 | PLGA degradation byproduct. PLGA hydrolysis releases
glycolate, lactate and H+. Image adapted from Chereddy et al. (2018).
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Among many of the natural polymers that have been
investigated as nano-medicines and drug delivery systems
(Pereira de Sousa et al., 2015; Mandracchia et al., 2016;
Mandracchia et al., 2017), silk is of particular interest, due to
its mechanical, physicochemical and biological features (Fu et al.,
2009; Crivelli et al., 2018). Silk fibroin (SF), the major constituent
of silkworm (Bombycidae family) silk, has been an FDA-approved
biomaterial since 1993 (Melke et al., 2016). Chen and coworkers
found that layer-by-layer (LbL) deposition of chitosan/SF onto
nanofibrous patches fabricated via electrospun cellulose
nanofibers yielded a 3D micro-environment, leading to
enhanced adipose tissue-derived mesenchymal stem cell (AD-
MSCs) adherence and engraftment to the epicardium of the
infarct-damaged region in rat hearts (Chen et al., 2018). The
addition of the SF complemented the impressive mechanical
properties demonstrated by the cellulose scaffolds, by making
the structures more biocompatible. All in vivo assessment and
post-operative histology showed that the CS/SF-modified
nanofibrous patches promoted the functional survival of the
engrafted AD-MSCs and reduced ventricular remodeling post-
MI via attenuation of myocardial fibrosis.

Due to their versatile chemistry, interest in polyurethanes
(PU) as nano-structured delivery devices and/or targeting
agents has been increasing as of late (Mattu et al., 2012; Mattu
et al., 2013; Mattu et al., 2015). Unfortunately, very little has been
reported with regard to these types of systems with respect to the
cardiac field. During the past 5 years, a mere handful of studies
have come out. Atorvastatin-loaded PU NPs have been
investigated as a potential intravenous route of administration
(Eftekhari et al., 2017). Here, fabrication via emulsion-diffusion
resulted in NPs of diameter ranging from 174.04 to 277.24 nm,
with entrapment efficiencies as high as ∼85% reported. In vitro
release kinetics showed an 8 day release curve, with both diffusion
and polymer-relaxation contributing to the release of the
atorvastatin from the PU NPs. Borcan et al. demonstrated that
ginger extract could successfully be loaded into PU NPs via
spontaneous emulsification (Borcan et al., 2019). The resulting
NPs were had a very low water-solubility, and an almost neutral
pH, while also being heat resistant up to 280°C. Encapsulation
efficiencies as high as 83% were reported, with 60% of the
encapsulated ginger extract being released after 5 days.

Inorganic Scaffolds
Inorganic-based nano-medicines have been of especial interest as
diagnostic agents. Magnetic systems, which include
superparamagnetic iron oxide nanoparticles (IONs) have
shown great promise as an alternative to traditional imaging
agents and have gained substantial attention in the past decades
(Mahmoudi et al., 2011). These magnetic particles can be utilized
as theranostic agents in multimodal imaging facilities including,
but not limited to simultaneous magnetic resonance/optical/
positron-emission tomography (PET)/single-photon-emission
computed tomography (SPECT)/fluorescence imaging (Kim
and Judd, 2003; Yen et al., 2013; Bietenbeck et al., 2016;
Andrews et al., 2017). Clinical ION-based contrast studies
have shown that these particles are not only safe to use, but
also demonstrate superior characterization capabilities of

myocardial infarct pathology (Alam et al., 2012). It was
hypothesized that a major advantage of these particles was
their high rate of envelopment by macrophages without
envelopment by the peripheral blood monocytes of the study
patients (Sosnovik et al., 2007; Yilmaz et al., 2013). In a study with
IONs and mesenchymal progenitor cells (MSCs), Han and
coworkers found that IONs have the ability to develop the
active gap junctional crosstalk of cells like cardiomyoblasts
(H9C2) with MSCs for future therapeutic applications (Han
et al., 2015). It was found that IONs significantly augmented
the expression of the gap junction protein, connexin 43 (Cx43), in
the H9C2 cells, which is vital for proper cell-cell communication
with MSCs in co-culture. MSCs co-cultured with ION-treated
H9C2 showed active cellular crosstalk with the H9C2 cells while
also displaying significant increases in electrophysiological
cardiac biomarkers along with a paracrine expression profile
that was decidedly favorable for cardiac repair, all indicators
of this system’s potential for MI repair. Unfortunately, drug
delivery via IONs suffers from a number of shortcomings.
When conjugating drug molecules to the surfaces or
superparamagnetic IONs, systems tend to exhibit reduced
drug entrapment efficiencies along with increased failure of
drug elution at the target site due to covalent binding.
Furthermore, instances of cytotoxicity due to residual
concentration of catalysts, like copper, used during the
covalent linking of drugs to IONs have been reported, with
ION cytotoxicity being reported anywhere between the ranges
of 0.1–10 and 100 μg/ml (Ankamwar et al., 2010). These wide
ranges in the reported literature strongly suggest that ION
cytotoxicity greatly depends on the varying physicochemical
characteristics of the particles. Other authors have greatly
reduced and even avoided the cytotoxic effects of IONs by
coating them with various polymers, including, but not limited
to polyvinyl alcohol (PVA) (Mahmoudi et al., 2009a), poly
(ethylene glycol)-co-fumarate (PEGF) (Mahmoudi et al.,
2009b) and dextrans (Wang et al., 2001).

Nanoscale gold particles (AuNPs) have a wide scope in terms
of potential applications in the biomedical world due to their
unique biological properties, as anti-oxidative activity and
potential to be functionalized as drug delivery systems
(Grzelczak et al., 2008; Lewinski et al., 2008; Chandirasekar
et al., 2011). PEG coated AuNPs have been shown to be
effective mediators of cardiac hypertrophy by attenuating the
expression of β-adrenergic receptor levels in mouse models (Qiao
et al., 2017). A previous study performed by the same group also
showed that the cardiac AuNP content was 6-fold higher in mice
undergoing cardiac remodeling than in normal mice. The
increased accumulation of AuNPs in the cardiac tissue did
not, however, exacerbate isoproterenol-induced cardiac
hypertrophy, cardiac fibrosis or cardiac inflammation (Yang
et al., 2013). Taken together, these results suggest that AuNPs,
especially when modified with a surface coating like PEG, possess
exceptional biocompatibility under not only physiological, but
also pathological conditions, would likely be safe for cardiac
patients and have great translational potential.

Numerous other metal- and metal oxide scaffolds have been
investigated as options for cardiac nano-medicines, including but
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not limited to copper (CuNPs) (Sharma et al., 2018a; Sharma
et al., 2018b), cerium oxide (CeO2) (Niu et al., 2007), aluminum
oxide (Al2O3) (El-Hussainy et al., 2016), manganese oxide MnO
(Zheng et al., 2018) and zinc oxide (ZnO) (Li et al., 2020). Sharma
et al. reported that CuNPs showed cardio-protective abilities
against ischemia/reperfusion-induced MI (Sharma et al.,
2018a; Sharma et al., 2018b). The cardio-protective mechanism
was associated with the inhibition of GSK-3 β, with additional
improvement noted when the CuNP treatment was combined
with exercise preconditioning and training. CeO2 NPs have been
shown to protect cells in culture from lethal stress, ranging from
oxidative stress to radiation-induced stress (Tarnuzzer et al.,
2005; Schubert et al., 2006). Niu and colleagues found that
intravenous administration of CeO2 NP doses as low as
15 nmol twice a week, over a 2 week period, markedly reduced
progressive left ventricular (LV) dysfunction and dilatation in
their monocyte chemoattractant protein (MCP)-1 mice (Niu
et al., 2007). The expression of certain significant endoplasmic
reticulum (ER) stress-associated genes, including glucose-
regulated protein 78 (Grp78), protein disulfide isomerase
(PDI), and heat shock proteins (HSP25, HSP40, HSP70), were
suppressed by treatment with CeO2 NPs. Although Al2O3 has
been shown to have great antifouling properties, these same
characteristics make Al2O3 a potentially highly cytotoxic
material. Studies with Al2O3 NPs have found that it can lead
to myocardial dysfunctions, with variability in myocardial
concentrations of nitric oxide (NO), significant decreases in
connexin 43 (Cx43) (El-Hussainy et al., 2016). It should be
noted that Al2O3 NP cytotoxicity is highly dependent on
concentration as well as crystalline structure (Hashimoto et al.,
2016; Nogueira et al., 2019). ZnO NPs, which are widely utilized
in the pharmaceutical industry, have been shown to have
potential adverse health effects (Jacobsen et al., 2015). A
recent study by Li et al. demonstrated that ZnO NPs had both
a concentration- and time-dependent cytotoxic effect on in
hiPSC-CM (Li et al., 2020). At concentrations, ZnO NOs
significantly promoted the generation of reactive oxygen
species (ROS) and induced mitochondrial dysfunction. These
particles were also noted to impair mitochondrial biogenesis and
inhibit the peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1α) pathway. Additionally, when
ZnO NP concentrations were increased they were found to
trigger cardiac electrophysiological alterations as evidenced by
decreased beating rates and spikes in amplitudes.

Graphene-based systems, which include carbon nanotubes
(CNT), carbon nanotube fibers (CNTf) and graphene oxide
(GO) products are of great interest to the biomedical community
due to their exceptionally diverse range of chemical and physical
properties, which allow for numerous versatile applications.
Graphene has both extraordinarily interesting electrical and
mechanical properties, combining the conduction properties of a
metal with the mechanical strength and stiffness of a polymer fiber
with the added benefit of high biocompatibility (Behabtu et al., 2013;
Liu et al., 2013; Xu et al., 2016). In the field of cardiac regeneration,
re-establishing and facilitating the necessary electrical signaling
throughout the damaged tissue are major hurdles still currently
faced.Whenmyocytes from neonatal rat ventricles were cultured on

substrates with multiwall carbon nanotubes (MWCNTs), they
acquired a physiologically more mature phenotype compared to
control samples that were cultured on gelatin substrates (Martinelli
et al., 2013). It was demonstrated that MWCNT substrates induced
the expression of genes associated with terminal differentiation and
physiological growth, with a 2-fold increase in α-myosin heavy
chain expression (p < 0.001) as well as the upregulation of
sarcoplasmic reticulum Ca2+ ATPase 2a. Single walled carbon
nanotubes (SWCNTs) have been employed in the production of
a conductive bacterial nanocellulose-based 3D printable biopatch
for use in normalization of disrupted cardiac conduction patterns
(Pedrotty et al., 2019). These 3D printed patches were shown to not
only improve conduction velocities of damaged canine ventricular
tissue post-implantation, but to restore them to baseline
(∼24–25 cm/s) as noted prior to surgical disruption. CNTfs, with
their superior physical properties, have been proposed as an
alternative to non-conducting fatigue-resistant fibers used as
surgical sutures (McCauley et al., 2019). In this approach, the
combined electrical conduction capabilities of the CNTfs, along
with their low impedance to ionic charge transfer, biocompatibility,
and physiological stability make them ideal candidates that could
potentially offer a restorative option while repairing myocardial
lesions (Figure 2). It was found that when sewn across the epicardial
scar in a sheep model, CNTfs acutely improve conduction.
Furthermore, the CNTf/myocardial interface has such low
impedance that the CNTfs are able to facilitate the local,
downstream myocardial activation.

Research has also shown that these materials are easily
functionalized, making them highly useful as theranostic tools
(Cai et al., 2003). GO has furthermore been demonstrated to not
only be biocompatible, but that it can act as a natural antioxidant
to reduce inflammatory polarization of macrophages (M1) via
ROS reduction within macrophages (Han et al., 2018). The anti-
inflammatory effect of the GO NPs was further enhanced with
loading of IL-4 plasmid DNA (IL-4 pDNA) which further
polarized M1 macrophages to M2 macrophages leading to
significant increases the expression of reparative biomarkers
associated with cardiac repair.

TYPES OF LOADS DELIVERED

Nano-inspired delivery vehicles have been used to encapsulate a
plethora of loads in the hope of alleviating the growing burden that
various cardiovascular diseases, like ischemic heart injury, place on
themedical industry and research fields (Johnson et al., 2014; Jackson
et al., 2018; Arnett et al., 2019). Many strategies depend on
encouraging remuscularization and/or revascularization of the
damaged region, reduction of inflammatory signals or the
recruitment of specialized cells via delivery of growth factors, small
molecules (chemicals) or exosomes. This section will consider each of
these strategies, illuminating the strengths and potential weaknesses of
each (see Table 2 for a summary of these systems).

Growth Factor Delivery
One of the most widely researched growth factors for cardiac
regeneration, specifically due to its vasculogenic properties, is
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vascular endothelial growth factor (VEGF) (Henry et al., 2001;
Sato et al., 2001; Henry et al., 2003; Carmeliet and Jain, 2011; Riley
and Smart, 2011). Unfortunately, direct intravenous delivery of
VEGF has not yielded any remarkable effects or improvements in
preclinical studies (Sato et al., 2001), most likely due to short-
lived efficacy and high instability of the protein when injected
directly. Intravenous administration of VEGF is further limited
by its short in vivo half-life (∼30 min) with overall dosages being
hampered by off-target site toxicity (Eppler et al., 2002). These
hurdles have made encapsulation and entrapment one of the go-
to approaches for sustained VEGF delivery. Great interest was
shown in producing VEGF PLGA NPs since the early 2000s
(Davda and Labhasetwar, 2002; Golub et al., 2010). Golub et al.
were able to achieve sustained VEGF release from their ∼400 nm
diameter NPs over a 2 week period (Golub et al., 2010). Around

70% of their entrapped VEGF eluted during the first 2 days.
Murine aortic ring angiogenesis assays showed significant
increases in sprout number with the administration of VEGF-
NPs compared to both saline (p � 0.001) and empty NPs (p <
0.05). Oduk et al. developed VEGF-loaded PLGA NPs with a
mean diameter of ∼113 nm using a double emulsion process
(Oduk et al., 2018). These NPs showed an encapsulation
efficiency of 53.5 ± 1.7% (107.1 ± 3.3 ng VEGF/mg NP), with
continuous VEGF release over a 31 day period. In vivo studies in
murine MI models yielded significant increases in vascular
density in the peri-infarct region, reduced infarct sizes, and
improvements in LV contractile function 4 weeks post-treatment.

Insulin-like growth factor-(IGF)-1-dependent signaling
pathway has been suggested to be involved in cardiac
development, acting through the IGF-1 receptor (Wang et al.,

FIGURE 2 | In vivo restoration of myocardial conduction with CNTfs. Conductive CNTfs sutured across a blocked area can significantly decrease conduction time
to near-normal values. Image adapted from McCauley et al. (2019).

TABLE 2 | Short summary showing the various nanoparticle systems and their loads, as discussed in this review.

Materials/NP system Load/
Therapeutic

In vitro/In vivo Reference

PLGA NPs VEGF In vitro: aortic ring bioassay
In vivo: mouse femoral artery ischemia model

Golub et al. (2010)

PLGA NPs VEGF In vitro: HUVEC proliferation, tube formation, NP uptake in HUVECs
In vivo: murine myocardial infarction model

Oduk et al. (2018)

PLGA/PEI NP
complexes

IGF-1 In vitro: assessment of apoptosis inhibition in freshly isolated CMs
In vivo: murine myocardial infarction model

Chang et al. (2013)

PLGA NPs CHIR99021 +
FGF1

In vitro: assessment of cell cycle progression in vascular cells (ECs and SMCs)
In vivo: murine myocardial infarction model as well as pig model of IR injury

Fan et al. (2020a)

PLGA NPs CHIR99021 +
FGF1

In vitro: assessment of apoptosis inhibition, proliferation and cell cycle activity in hiPSC-CMs
In vivo: murine myocardial infarction model

Fan et al. (2020b)

PLGA NPs Pioglitazone In vivo: Mouse and porcine myocardial IR injury model and MI model Tokutome et al.
(2018)

PLGA NPs TAK-242 In vivo: Mouse and myocardial IR injury model Fujiwara et al. (2019)
PLGA NPs FK506 In vivo: Rat heterotopic heart transplantation model Deng et al. (2020)
mPEG–PLGA NPs NO-releasing In vitro: Cytotoxicity assessed on HUVECs, human EP cells, mouse fibroblasts, MCF-7, A549 and C6

cells. Tube formation assay, aortic ring assay
Yang et al. (2018)

Hyaluronan-
sulfate NPs

miRNA-21 mimic In vivo: Intravenous administration in a mouse MI model Bejerano et al.
(2018)

RGD-PEG-PLA NPs microRNA-133 In vivo: Rat MI model Sun et al. (2020)
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1998). IGF-1 is also vital in myocardial function regulation and
has been demonstrated to not only promote cardiomyocyte
growth but also ensure cardiomyocyte survival. Clinical studies
using IGF-1 treatment, have shown that it improves myocardial
function post-MI (Duerr et al., 1995; Donath et al., 1998).
Unfortunately, extended IGF-1 overexpression has been shown
to reduce cardiac functional recovery post-MI, making controlled
delivery vital for its future use as a cardiac medicine (Prêle et al.,
2012). Chang and coworkers developed PLGA-IGF-1 complexed
NPs of different sizes—60 nm, 200 nm, and 1 μm specifically
(Chang et al., 2013). Following MI in murine models, the NPs
were administered via intra-myocardial injection. It was found
that PLGA-IGF-1 NP treatment allowed for retention of
significantly more IGF-1 in the myocardium than IGF-1 free-
drug treatment at 2, 6, 8, and 24 h respectively. Most importantly,
it was noted that a single intra-myocardial injection of the PLGA-
IGF-1 NPs was sufficient to prevent cardiomyocyte apoptosis (p <
0.001), reduce infarct sizes (p < 0.05), and improve LV ejection
fraction (p < 0.01) 21 days post-MI.

Recent studies showing the synergistic effects of using a
combination of extended delivery of CHIR99021 (a Wnt1
agonist/GSK-3β antagonist) and fibroblast growth factor 1
(FGF1) to protect ischemia-threatened cardiomyocytes from
apoptosis, while accelerating angiogenesis through the
promotion of endothelial and vascular SMC proliferation, and
consequently enhance myocardial protection have been
published (Fan et al., 2020a; Fan et al., 2020b). These studies
found that PLGA NPs loaded with CHIR99021 or FGF1 allowed
for effective delayed release for up to 4 weeks. Intra-myocardial
injection of these NPs enabled myocardial protection and
reduced infarct sizes by 20–30% in murine or porcine models
of post-MI LV remodeling. The combination of CHIR and FGF1
was also found to promote cell cycle progression.

Small Molecule Delivery
A variety of small molecules have been loaded into nano-delivery
systems for numerous purposes, ranging from enticing
angiogenic responses, to preventing cardiac allograft rejection
via altering inflammatory responses (Giannouli et al., 2018;
Tokutome et al., 2018; Yang et al., 2018; Fujiwara et al., 2019;
Deng et al., 2020). Monocyte-mediated inflammation is one of the
major issues faced during myocardial ischemia–reperfusion (IR)
injury as well as the healing process following acute myocardial
infarction (AMI). Tokutome et al. found that pioglitazone, a
peroxisome proliferator-activated receptor-gamma (PPARγ)
agonist, had unique anti-inflammatory effects on monocytes/
macrophages and when administered via a targeted NP approach,
it had the potential to ameliorate IR injury and cardiac
remodeling in preclinical animal models (Tokutome et al.,
2018). Fujiwara and coworkers developed PLGA NPs
containing TAK-242 (TAK-242-NP), a chemical inhibitor of
Toll-like receptor 4 (TLR4) intracellular domain. Intravenous
administration of TAK-242-NP (1.0 or 3.0 mg/kg TAK-242-NP)
at the time-of-reperfusion reduced infarct sizes in wild type
murine models (Fujiwara et al., 2019). Additional studies were
performed with TLR4-deficient mice to eliminate the possibility
that TAK-242-NP reduced infarct sized via TLR4-independent

mechanisms. Immunosuppressive agents, such as FK506, greatly
reduce chances of allograft rejection. Although FK506 has shown
a high efficiency, its long-term systemic administration inevitably
induces side-effects, including but not limited to nephrotoxicity,
neurotoxicity, hypertension and diabetogenic effects. Recently, a
rat heterotopic heart transplantation model was established to
determine the therapeutic efficacy and potential effects of PLGA
NPs loaded with FK506 (FK506-NPs), which were prepared via
an emulsion solvent evaporation method (Deng et al., 2020).
FK506-NPs not only successfully alleviated acute allograft
rejection, but also prolonged graft survival compared with free
FK506 treatment (mean survival time, 17.1 ± 2.0 vs. 13.3 ± 1.7
days).

Nitric oxide (NO) is known to induce multiple biological
functions by stimulating cellular signaling pathways. Some NO-
driven functions include various human physiological processes,
such as immune responses, inhibition of platelet aggregation,
angiogenesis and apoptosis (Seabra et al., 2015). Of special
interest in the clinical milieu is the angiogenic activity of NO
and its potential for repairing or regenerating damaged tissue
specifically caused by the degradation of the extracellular matrix
(Clapp et al., 2009). Issues with NO’s short half-life have been
skirted by using NO donor molecules, including but not limited
N-diazeniumdiolate (NONOate) and S-nitrosothiol (RSNO) for
example. Yang et al. developed methoxy PEG-PLGA (mPEG-
PLGA) NO-releasing NPs, via diethylenetriamine NONOate
entrapment (Yang et al., 2018). In vitro tube formation assays
confirmed the angiogenic potential of the NO-releasing NPs,
while aorta ring assays were used ex vivo. Tubular formation
increased 189.8% in NO-NP–treated groups compared with that
in the control group, while rat aorta demonstrated vigorous
sprouting angiogenesis in response to NO-NPs.

ExosomeDelivery and “Synthetic”Exosome
Design
In the field of cardiovascular medicine, specifically the area
related to treatment via implanted cells and structures, a lot of
speculation remains regarding the extent of the effects that
paracrine signaling has on the repair process (Gnecchi et al.,
2005). Recent studies have shown that many of the therapeutic
potential of MSCs and human induced pluripotent stem cells
(hiPSCs) for example can be largely attributed to exosomes, a
specific type of extracellular vesicle (EVs). These EVs have
diameters ranging between 50 and 200 nm, contain proteins
and RNAs, and are involved in intercellular communications
by acting as carriers of bioactive molecules (Lai et al., 2010;
Beltrami et al., 2017; Gao et al., 2020). The therapeutic potential of
exosomal delivery and treatment derives from the fact that RNAs
and proteins in the exosomes transferred from the parental cells
to the recipient cells are functional in the recipient cells and
participate in the regulation of intracellular signaling cascades
(Valadi et al., 2007; Bang and Thum, 2012). Unfortunately, the
clinical therapeutic potential of exosomes are greatly hampered
by production capability limitations relative to the amount
required for patient treatment (Dai et al., 2008; Katsuda et al.,
2013). The idea of creating an exosome-mimetic nano-vesicle or a
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“synthetic” exosome is thus a very attractive prospect from a
clinical point of view.

Bejerano et al. showed that the delivery of a miRNA-21 mimic
with hyaluronan-sulfate NPs in macrophage-enriched areas of
the infarcted heart could induce a phenotypic switch, from pro-
inflammatory to reparative (Bejerano et al., 2018). Following
intravenous administration in a mouse MI model, the
miRNA-21 NPs targeted cardiac macrophages at the infarct
zone, induced their phenotype switch from pro-inflammatory
to reparative, promoted angiogenesis, while also reducing
hypertrophy, fibrosis and cell apoptosis in the remote region
of the myocardium.

Following left anterior descending (LAD) coronary artery
ligation in rats, Sun et al. administered PEG-PLGA NPs
modified with arginine-glycine-aspartic acid tripeptide (RGD),
loaded with microRNA-133 via tail vein injections (Sun et al.,
2020). The RGD-PEG-PLA NPs were able to target the infarcted
hearts, while improving cardiac histopathological changes,
reducing the apoptotic effects on cardiomyocytes, and
decreasing the expression levels of factors associated with
myocardial injury. It was postulated that the regulation of the
SIRT3/AMPK pathway was involved in the protective role that
the NPs played.

CONCLUSION

Nano-medicines have shown great promise, not only as therapeutic
agents, but as diagnostic agents as well. Recently great interest has

been shown in combining these aspects into theranostic
applications, which would allow for less invasive and more
effective treatment of patients in the future. Even though many
in vivo studies have shown great promise with their optimized
nano-medicine systems, wash-out of the particles still remains an
ever-present limitation, which may be overcome by combining NP
delivery with tissue engineering approaches, including but not
limited to polymer scaffolds or cardiac muscle patches which can
be implanted in the damaged region for example. Further advances
have been made with new delivery methods, including inhalation,
surpassing previous needs for painful implantation procedures or
injections (Miragoli et al., 2018). With advancements made in
fields including chemistry, physics andmaterial engineering, nano-
medicines are expected to become more commonplace in the
cardiac field in the future.
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