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Abstract
The flower pollination algorithm (FPA) is a highly efficient metaheuristic optimization algorithm that is inspired by the

pollination process of flowering species. FPA is characterised by simplicity in its formulation and high computational

performance. Previous studies on FPA assume fixed parameter values based on empirical observations or experimental

comparisons of limited scale and scope. In this study, a comprehensive effort is made to identify appropriate values of the

FPA parameters that maximize its computational performance. To serve this goal, a simple non-iterative, single-stage

sampling tuning method is employed, oriented towards practical applications of FPA. The tuning method is applied to the

set of 28 functions specified in IEEE-CEC’13 for real-parameter single-objective optimization problems. It is found that the

optimal FPA parameters depend significantly on the objective functions, the problem dimensions and affordable com-

putational cost. Furthermore, it is found that the FPA parameters that minimize mean prediction errors do not always offer

the most robust predictions. At the end of this study, recommendations are made for setting the optimal FPA parameters as

a function of problem dimensions and affordable computational cost.
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1 Introduction

In many complex multi-modal design problems in industry

and engineering, tracking global optimum solutions

remains a highly challenging task. Often, conventional

optimization methodologies do not perform adequately in

this class of problems as they may be trapped in local

optima. Then, the use of nature-inspired metaheuristic

algorithms is recommended (Yang 2008). There is a high

number of well-established metaheuristic optimisation

algorithms in the literature, including the Genetic Algo-

rithm (GA) (Holland 1975), Firefly Algorithm (Yang

2010), Particle Swarm Optimization (PSO) (Kennedy

2011), Cuckoo Search (CS) (Gandomi et al. 2013) as well

as very recent ones such as the Coronavirus Herd Immunity

Optimizer (CHIO) (Al-Betar et al. 2021) and the Aquila

Optimizer (Abualigah et al. 2021).

The Flower Pollination Algorithm (FPA) was developed

by Xin-She Yang in 2012 and it is a population-based

metaheuristic optimization algorithm inspired by the evo-

lution process of flowering plants. FPA is characterised by

simplicity and flexibility in its formulation as well as high

efficiency in its computational performance (Alyasseri

et al. 2018). Furthermore, many studies show that it can

outperform other well-established metaheuristic optimiza-

tion algorithms (e.g. Yang 2012; Bekdas et al. 2015;

Mergos and Mantoglou 2020). A simple explanation of the

efficiency of FPA is based on the fact that it mimics the

reproduction process of flowering plants. The latter has

been so successful that flower species dominate the land-

scape of earth (Walker 2009).

As a result, FPA has been adopted by many optimization

studies and it has been applied successfully to numerous

optimization problems in diverse scientific fields, including

electrical and power systems (e.g. Abdelaziz et al.

2016a,2016b; Singh and Salgotra 2016), structural design

(e.g. Bekdas et al. 2015; Mergos and Mantoglou 2020,
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Nigdeli et al. 2016), computer gaming (e.g. Abdel-Raouf

et al. 2014a), meteorology (e.g. Heng et al. 2016), image

science (e.g. Zhou et al. 2016a) and many others (Alyasseri

et al. 2018; Abdel-Basset et al. 2018b).

Following its original development, several studies

proposed modified and hybridized versions of FPA to

improve its performance for different optimization prob-

lems (Alyasseri et al. 2018). For example, Abdel-Raouf

et al. (2014b) developed an improved FPA variant by using

chaotic maps instead of random numbers and they found

significant increase in the computational performance.

Zhou et al. (2016b) developed an elite opposition-based

FPA version that was tested with 18 benchmark functions

yielding excellent results. Putra et al. (2016), developed a

modified version of FPA with dynamic switching proba-

bility and the use of real-coded GA as mutation for local

and global search to solve economic load dispatch opti-

mization problems in power generation systems. Draa

(2016) developed a new FPA variant based on the so-called

generalized opposition-based learning (GOBL). Wang

et al. (2016) merged the standard FPA with the concept of

the bee-pollinator to solve the data clustering problem. Al-

Betar et al. (2019) used the island model population tech-

nique to restrain premature convergence of FPA. Abdel-

Basset et al. (2018a) developed a modified FPA version

based on the crossover for solving the multidimensional

knapsack problems. Zhou et al. (2017) developed the dis-

crete greedy flower pollination algorithm that is using

order-based crossover, pollen discarding behaviour and

partial behaviours for solving the spherical traveling

salesman problem. Fouad and Gao (2019) developed a

novel FPA variant for global optimization by generating a

set of global orientations for all members of the population

and constructing a set of best solution vectors relating to all

generated global orientations. Rodrigues et al. (2015)

developed a binary version of FPA to address combinato-

rial and discrete optimization problems. Multi-objective

versions of FPA have also been developed (e.g. Yang et al.

2014; Tamilselvan and Jayabarathi 2016; Gonidakis 2016)

to solve optimization problems with more than one design

objective. In addition, hybridized FPA versions have been

proposed in the literature to achieve better balance between

local and global search. In these versions, hybridization of

FPA is achieved using local search algorithms (e.g. Jensi

and Jiji 2015; Abdel-Basset and Hezam 2016), population-

based algorithms (e.g. Abdel-Raouf et al. 2014c; Dubey

et al. 2015; Hezam et al. 2016; Nigdeli et al. 2017) or other

components.

In the previous studies, researchers apply specific sets of

parameters of the original FPA or their invented FPA

variants that outperform some benchmarks optimization

algorithms on benchmark problems. Nevertheless, the

selection of these parameters sets is typically based on

conventions, empirical choices and/or experimental com-

parisons of limited scale. The latter typically take place for

very specific and limited in scope and numerical opti-

mization problems that cannot drive to more general

conclusions.

In this paper, a comprehensive and systematic experi-

mental study is conducted to identify appropriate FPA

parameters values that maximize its computational per-

formance on a wide range of optimization problems. To

serve this goal, FPA parameters tuning is conducted herein,

which represents a separate optimization problem with

FPA parameters set as the design variables and computa-

tional performance set as the design objective. It is clarified

that the tuning approach followed herein aims at identify-

ing fixed optimal parameter values. The adaptation and

control of these parameters during the run of the algorithm

to further maximise its performance is not examined in the

present study. In the following, Sect. 2 discusses the

inspiration and formulation of the FPA algorithm, Sect. 3

sets FPA parameters tuning as an appropriate optimization

problem, Sect. 4 describes the functions used to tune FPA

parameters and Sect. 5 presents the main findings of this

study.

2 Flower pollination algorithm

FPA imitates the reproduction process of flowering plants.

Similar to other biological systems, the ultimate goal of

flower species is reproduction, which is achieved by pol-

lination. Flower pollination, which is typically related to

the transfer of pollen, is either biotic or abiotic (Yang 2012;

Glover 2007). In the former pollination type, pollen

transfer takes place by animals and insects (e.g. bees, bats,

butterflies, birds) which are called pollinators. Pollinators

are capable of flying long distances. Therefore, biotic

pollination could be considered as a global optimization

mechanism (Yang 2012). Furthermore, the flight behaviour

of pollinators has similar characteristics to Lévy flights

(Yang 2008; Pavlyukevich 2007). In the abiotic type of

pollination, pollen is transferred by the wind and/or water

diffusion. A well-known example of abiotic pollination is

the grass (Yang 2012; Glover 2007). Typically, abiotic

pollination occurs at short distances. Hence, it could be

considered as a local optimization mechanism (Yang

2012). An additional important feature of flower pollina-

tion is the so-called flower constancy. More particularly,

some pollinators tend to select specific flower species and

bypass others (Yang 2012). In this way, flowers manage to

transfer more pollen to the same species. Furthermore,

pollinators avoid the risks related to exploring other flower

species and ensure guaranteed nectar intake.
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The afore-described types of flower pollination process,

the behaviour of pollinators and flower constancy have

been idealized in the following basic rules of FPA:

1. Biotic pollination is treated as a global pollination

process with pollinators performing Lévy flights.

2. Abiotic pollination is treated as a local pollination

mechanism.

3. Flower constancy is considered by the assumption

that the reproduction probability is proportional to the

similarity of flowers involved.

4. The type of pollination mechanism (local or global) is

governed by a switching probability p in [0, 1].

In the following, for simplicity, it is assumed that each

plant develops one flower, which produces only one pollen

gamete (Yang 2012). Following this assumption, there

exists no need to differentiate between pollen gametes,

flowers and plants.

In FPA, a solution vector xi is represented by a flower i.

The algorithm employs two different search procedures:

global and local pollination. Following the first and third

rules of FPA, the global pollination procedure could be

represented mathematically by the following equation:

xtþ1
i ¼ xti þ c � L kð Þ � g� � xti

� �
; ð1Þ

where xti represents flower i at iteration t, g* is the best

flower of all the population of flowers at iteration t, k is a

constant, c is a constant scaling factor to control the step

size, and L kð Þ[ 0 is the Lévy flight step size that repre-

sents the strength of the pollination and is drawn from a

Lévy distribution, where C kð Þ is the standard gamma

function and s[ 0.

L�
kC kð Þ sin pk

2

� �

p
� 1

s1þk
; s[ 0ð Þ; ð2Þ

On the other hand, the local pollination rule (second

rule) and flower constancy (third rule) are represented by

the following equation, where xtj and xtk are different

flowers of the same population and e is drawn from a

uniform distribution in [0, 1].

xtþ1
i ¼ xti þ e � xtj � xtk

� �
: ð3Þ

Following the fourth rule, the type of flower pollination

(local or global) is controlled by a switch probability p in

[0, 1]. Summarizing the previous information, the

flowchart of FPA is shown in Fig. 1, where d represents the

number of problem dimensions and n is the size of flowers

population.

3 Parameter tuning

Parameter tuning of an optimization algorithm aims at

finding appropriate values of its parameters that maximize

its computational performance. Therefore, parameter tun-

ing can be considered as an optimization problem in the

search space of the algorithm’s parameters (Yang 2008,

Eiben and Smit 2011). In the case of stochastic evolu-

tionary algorithms, parameter tuning can represent a highly

complex optimization problem of stochastic nature, inter-

acting design variables, multiple local optima and very

expensive objective function evaluations (Yang 2008,

Eiben and Smit 2011).

If A represents an evolutionary optimization algorithm

with a vector of parameters p, U stands for a specified

optimization problem and n represents a measure of com-

putational performance, then parameter tuning can be sta-

ted as:

maximize n ¼ A U; pð Þ: ð4Þ

In order to maximize the performance of an evolutionary

algorithm, appropriate performance metrics are necessary.

These metrics should refer to either the solution speed or

the solution quality achieved by the algorithm. Solution

speed may be quantified in terms of the computational

effort (e.g. number of function evaluations Nr) required to

achieve a minimum value d (target value) of the objective

function f(x). In this case, the parameter tuning problem of

Eq. (4) can be stated as:

minimize Nr ¼ A U f xð Þ; dð Þ; pð Þ;where : ð5Þ
U f xð Þ; dð Þ ¼ minimize f xð Þ to reach target value d

Alternatively, computational performance can be

expressed in terms of solution quality which may be

quantified as the best fitness value fb achieved after ter-

minating a pre-specified computational effort in terms, for

example, of function evaluations N. In this case, parameter

tuning may be written in the following form:

minimize fb ¼ A U f xð Þ;Nð Þ; pð Þ;where : ð6Þ
U f xð Þ;Nð Þ ¼ minimize f xð Þ after N function evaluations

Due to the stochastic nature of evolutionary algorithms,

multiple runs on the same optimization problem with the

same set of parameters may yield different results. There-

fore, statistical measures are required to quantify the

computational performance such as the mean fb and Nr

values as well as their standard deviations after a number of

independent solution runs.

A wide variety of tuning methods exist in the literature

(Eiben and Smit 2011). They can be classified as non-

iterative or iterative depending on if they generate a fixed

set of parameter vectors or if they start with a set of
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parameter vectors that modify iteratively during execution.

Furthermore, they can be categorized as single-stage or

multi-stage procedures depending on whether they conduct

the same number of tests for all parameter vectors or they

use a more sophisticated approach. In addition, they can be

incorporated into four main categories: sampling methods,

model-based methods, screening methods and meta-

heuristic methods (Eiben and Smit 2011). Sampling

methods reduce the number of parameter vectors with

respect to a full-factorial design. They are characterised by

simplicity but they can lead to high computational costs.

Model-based methods generate metamodels of the objec-

tive function landscapes. They can reduce greatly the

required computational effort, but their accuracy depends

on the quality of the approximation of the real functions.

Screening methods focus only on those parameter vectors

that show more promising results. In this manner, they can

reduce the computational cost, but they are also prone to

get trapped in local optima. Metaheuristic methods use

evolutionary algorithms to search for the parameters vector

that is maximizing computational performance. These

methods can be highly efficient in terms of both compu-

tational cost and quality of obtained solutions. Neverthe-

less, their computational performance depends on the

values of their parameters, which could drive to an iterative

procedure when the same metaheuristic algorithm is used

Fig. 1 Flowchart of the original FPA
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to tune its own parameters in a so-called self-tuning

framework (Yang et al. 2013).

Due to its simple formulation, FPA has only three

parameters variables. These are the size of the population

n, the switch probability p, and the scaling factor to control

the Lévy flight step sizes c. An additional parameter that

could be considered is constant k of the Lévy distribution.

However, since this value is more generally related to Lévy

flights it was decided to assume in this study a fixed value

of this parameter k ¼ 3=2, following the recommendations

of Yang (2012). Based on the previous observations, the

FPA parameters vector examined herein is the vector

p ¼ n; p; cð Þ.
The method employed in this study for tuning FPA

parameters is a simple non-iterative, single-stage sampling

method. This decision is made because FPA relies on a

very limited number of independent parameters. Further-

more, in practice, these parameters are given limited

rounded values. This effectively means that a sampling

method of adequate density can represent sufficiently the

range of parameters used in FPA practice. Moreover, this

approach offers insight into how the performance of the

FPA algorithm varies with its parameters revealing useful

information regarding its robustness, distribution of solu-

tion quality and sensitivity. Nevertheless, it is clarified that

the adopted approach may not be the most appropriate in

cases where the degree of solution accuracy sought and/or

the number of algorithm parameters are high since the

associated computational cost can become prohibitive.

In the rest of this study, the following discrete values

sets are examined for the different FPA parameters. An

exhaustive search of all 5�6�5 = 150 combinations of these

parameter values is conducted to specify the optimal

parameter vector p� that maximizes FPA performance.

Each of these combinations is termed as an FPA instance

following the terminology recommended in Eiben and Smit

(2011).

n ¼ 20; 40; 60; 80; 100ð Þ;
p ¼ 0; 0:2; 0:4; 0:6; 0:8; 1:0ð Þ

c ¼ 10�4; 10�3; 10�2; 10�1; 1
� �

4 Optimization problems

As described in the previous section, the optimization

problems related to parameter tuning can be described by

Eqs. (5) or (6). The first component of these problem set-

tings is the objective function f xð Þ that is bound to be

minimized. In this study, the set of functions specified in

IEEE-CEC’13 (Liang et al. 2013) for real-parameter sin-

gle-objective optimization problems is employed. This set

is comprised of 28 benchmark functions fi (i = 1, 2, …, 28)

shown in Table 1 (Liang et al. 2013) together with their

global optimum values. All fi functions represent mini-

mization problems with a variable number of dimensions

d. Three different dimensions are examined herein: d = 5,

10 and 20. All test functions are scalable and shifted to

o = [o1, o2,…, od], which is randomly distributed in [- 80,

80]d. Moreover, the search space for all functions is defined

in [- 100, 100]d. In addition, some functions are rotated by

using orthogonal (rotation) matrices that are generated

from standard normally distributed entries by the Gram-

Schmidt orthonormalization. The test functions can be

classified into three main categories: unimodal, basic

multimodal and compositions functions that are generated

by combinations of the former functions (Liang et al.

2013).

For each FPA instance (i.e. set of parameters), 20

independent runs are performed for each function fi (i = 1

to 28) and number of dimensions d (i.e. d = 5, 10, 20),

conducting in total 10,000�d maximum function evalua-

tions (MaxFES) for each run as recommended in Liang

et al. (2013). Uniform random initialization within the

search space is assumed. For each algorithm run, the error

value (i.e. the best solution found by the algorithm minus

the global optimum of the test function shown in Table 1)

is recorded when the number of function evaluations

becomes equal to N = (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1.0)�MaxFES to assess the speed of convergence

of the different instances following the recommendations

in Liang et al. (2013). It is recalled herein that an FPA

instance is specified by a combination of the following

parameters:

• n

• p

• c

An instance run is assumed to converge to a global

optimum of a function when the solution error becomes

less than 10-8. Since FPA instances do not necessarily

converge to the global optima within 10,000�d MaxFES,

especially for the complex multi-modal functions of

Table 1, the parameter tuning optimization problems

addressed herein assume the form of Eq. (6), where the

number of function evaluations N takes all eleven values

where function errors are recorded. In this manner, the

variation of the optimal FPA parameters as a function of

the provided computational effort will also be identified.

The total number of optimization problems examined in

the following is equal to 28 different functions times 3

different dimensions and 11 different numbers of function

evaluations (i.e. 28�3�11 = 924). For each of these prob-

lems, the performance of all 150 FPA instances is exam-

ined and compared in terms of means or standard
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deviations of the error values calculated from the 20

independent runs. The parameters vector of the FPA

instance with the smallest mean error or standard deviation

of errors represents the optimal parameter tuning for the

problem under investigation.

5 Calculation results

In this section, the main results obtained by the different

FPA instances for the optimization problems of §4 are

presented. Tables 2, 3, 4, 5, 6, 7 present the best mean

errors and corresponding standard deviations achieved by

all FPA instances from 20 independent runs for all the

optimization problems described above. It is important to

clarify that these results do not originate from a specific

instance but the optimal instances for each optimization

problem. It is clear, in these tables, that the errors are more

significant for the complex multi-modal functions. Fur-

thermore, they always reduce with the number of function

evaluations, but they tend to be higher as the number of

dimensions increases. It is also worthy of mentioning that

for most of the unimodal functions convergence to global

optimum is achieved for all 20 independent runs from one

or more FPA instances. For the cases where all runs of

more than one instance converge to a global optimum, then

the best FPA instance is defined herein as the one that

achieved on average the earliest convergence. This effec-

tively means that the optimization problem assumed in

these cases takes the form of Eq. (5).

Figure 2 presents, in the form of boxplots, the popula-

tion sizes of the optimal FPA instances for all 28 CEC’13

functions as a function of the number of evaluations and

the number of problem dimensions. In this figure, the

optimal instances are determined on the basis of minimum

mean errors. The box plots show the minimum, maximum

Table 1 IEEE-CEC’13 benchmark functions

Function No Function Name Global optimum fi
*

Unimodal 1 Sphere Function - 1400

2 Rotated High Conditioned Elliptic Function - 1300

3 Rotated Bent Cigar Function - 1200

4 Rotated Discus Function - 1100

5 Different Powers Function - 1000

Basic Multimodal 6 Rotated Rosenbrock’s Function - 900

7 Rotated Schaffers F7 Function - 800

8 Rotated Ackley’s Function - 700

9 Rotated Weierstrass Function - 600

10 Rotated Griewank’s Function - 500

11 Rastrigin’s Function - 400

12 Rotated Rastrigin’s Function - 300

13 Non-Continuous Rotated Rastrigin’s Function - 200

14 Schwefel’s Function - 100

15 Rotated Schwefel’s Function 100

16 Rotated Katsuura Function 200

17 Lunacek Bi_Rastrigin Function 300

18 Rotated Lunacek Bi_Rastrigin Function 400

19 Expanded Griewank’s plus Rosenbrock’s Function 500

20 Expanded Scaffer’s F6 Function 600

Composite Multimodal 21 Composition Function 1 700

22 Composition Function 2 800

23 Composition Function 3 900

24 Composition Function 4 1000

25 Composition Function 5 1100

26 Composition Function 6 1200

27 Composition Function 7 1300

28 Composition Function 8 1400
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and median (red line) n values. Inside the boxes, the 25th to

75th percentiles are contained. It can be seen that the

optimal population sizes can take any value between 20

and 100, which are the boundaries assumed in this study,

but the majority of optimal n values lie between 20 and 60

flowers. The optimal population sizes seem to be increasing

as the function evaluations and the problem dimensions are

increasing. The median optimal n value is 20 for almost all

steps of function evaluations for d = 5 and the early eval-

uation steps for d = 10 and 20. However, the same median

population size increases to 40 for the later evaluation steps

of d = 10 and 20. These observations drive to the conclu-

sion that larger population sizes can be more effective for

high-dimensional problems and where higher computa-

tional effort is afforded.

Furthermore, Fig. 3 shows the population sizes of the

optimal FPA instances for the same optimization problems

as a function of the number of function evaluations and the

number of problem dimensions when these instances are

determined based on the minimum standard deviations of

the errors of the 20 independent runs. These instances are

termed here as ‘robust’ since they manage to minimize the

uncertainty in the FPA outcomes. It can be seen that again

the robust n values tend to increase with the number of

problem dimensions and function evaluations. The median

values range between 40 and 60 for d = 5 and 10 but they

can increase up to 80 for d = 20. Comparing these results

with Fig. 2, it can be concluded that the optimal FPA

instances based on minimum expected errors do not always

match with the most robust instances and that larger pop-

ulation sizes tend to produce more robust FPA outcomes.

Figure 4 presents the switch probabilities of the optimal

FPA instances, based on minimum average errors, for all

the objective functions under consideration as a function of

the number of function evaluations and the number of

problem dimensions. It is found that the optimal p values

tend to increase with the number of dimensions with a

typical median of 0.2 for d = 5 and 10 and a median of 0.4

for d = 20. This observation shows that global (biotic)

pollination can be more advantageous to high-dimensional

problems. It is also interesting to note that the optimal

p values tend to slightly decrease with the number of

function evaluations, especially for the low-dimensional

problems. This decrease of the optimal switch probabilities

in the later evaluation steps can be explained by the fact

Fig. 2 Variation of optimal n values, based on minimum mean errors,

with the number of function evaluations for different problem

dimensions

Fig. 3 Variation of optimal n values, based on minimum error

standard deviations, with the number of function evaluations for

different problem dimensions

Fig. 4 Variation of optimal p values, based on minimum mean errors,

with the number of function evaluations for different problem

dimensions
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that it allows for more extensive exploitation of the search

space via local pollination.

Moreover, Fig. 5 illustrates the most robust switch

probabilities as a function of the computational effort and

number of dimensions. It is observed that the most robust

p values vary in large ranges with a typical median of 0.4

for d = 5 and 10 and of 0.6 for d = 20. The robust p values

seem to be independent of the number of function evalu-

ations. On the other hand, they tend to increase with the

problem dimensions. When compared with the optimal

switch probabilities based on minimum expected errors, the

robust switch probabilities seem to obtain larger values.

This observation could be explained by the fact that larger

switch probabilities allow for more extensive exploration

of the search space by biotic pollination and therefore it is

less likely that FPA is trapped in local optima.

Figure 6 illustrates the scale factors c of the Lévy flight

step sizes of the optimal FPA instances, based on minimum

expected errors, of the different CEC’13 functions with

respect to the number of objective function evaluations and

problem dimensions. It is observed that the majority of

optimal c values range between 1 and 0.1, with a typical

median of 0.1 for d = 5 and 10 and of 1.0 for the last

evaluation steps of d = 20. The latter observation may be

due to the fact that high-dimensional problems require

larger Lévy flight steps for the search space to be suffi-

ciently explored. The optimal c values do not seem to be

significantly influenced by the amount of function

evaluations.

In addition, Fig. 7 shows the most robust c values as a

function of the computational effort and number of

dimensions. It is observed that most of the robust c values

vary in broader ranges than previously (i.e. between 1 and

0.0001) with a typical median of 0.1 in the very early

evaluation steps and 0.01 in the later steps. These results do

not seem to be significantly affected by the number of

problem dimensions. When compared with the optimal c
values based on minimum expected errors, the robust scale

factors seem to get smaller values. This observation could

be explained by the fact that smaller step sizes allow for

better exploitation of the search space.

From the previous discussions, it can be concluded that

the optimal instances for minimum average errors and error

standard deviations of the 20 independent runs do not

necessarily coincide. Hence, it is interesting to examine the

Pareto fronts of average errors versus error standard devi-

ations obtained from the various FPA instances. Figure 8
Fig. 5 Variation of optimal p values, based on minimum error

standard deviations, with the number of function evaluations for

different problem dimensions

Fig. 6 Variation of optimal c values, based on minimum mean errors,

with the number of function evaluations for different problem

dimensions

Fig. 7 Variation of optimal c values, based on minimum error

standard deviations, with the number of function evaluations for

different problem dimensions

14442 P. E. Mergos, X-S. Yang

123



presents such Pareto fronts obtained for the objective

function f7 with d = 20 after 4000�d and 10,000�d function

evaluations. It can be seen in this figure that the best mean

error drops considerably from 20.2 for 4000�d function

evaluations to 11.4 for 10,000�d function evaluations. On

the other hand, the minimum error standard deviation drops

slightly from 4.1 to 3.4 for the same numbers of function

evaluations. The points that correspond to minimum stan-

dard deviations have mean errors of approximately 35.6 for

4000�d and 17.5 for 10,000�d function evaluations. This

means that, for the specific optimization problems, the

mean errors of the robust solutions are 1.8 and 1.5 times

higher than the minimum mean errors for 4000�d and

10,000�d function evaluations, respectively.

To obtain a broader image of the trade-offs between the

robust optimal solutions and the solutions for minimum

mean errors, Fig. 9 presents the ratios of the mean errors of

the robust optimal solutions to the minimum mean errors

obtained for all optimization problems as a function of the

number of function evaluations and the number of problem

dimensions. It is interesting to note that the vast majority of

these ratios range between 1 and 2 with typical median

values ranging between 1.1 and 1.4. This shows that the

robust solutions and the solutions for minimum mean errors

are typically in close proximity. The ratios seem to increase

slightly with the number of problem dimensions but there

is no clear trend between these ratios and the number of

function evaluations.

In the previous, the ranges of optimal parameter values

are presented for the various optimization problems con-

sisting of different objective functions, number of function

evaluations and number of problem dimensions. Compar-

isons are also presented between the most robust FPA

instances and the FPA instances yielding the minimum

average errors after a number of independent runs. How-

ever, for practical applications, it is also important that

specific parameter values are recommended herein that are

also independent of the examined objective functions. The

latter is useful because in practice FPA is applied to

objective functions other than the ones specified in Table 1.

(a) (b)

Fig. 8 Mean error versus standard error deviation Pareto fronts of function f7 and d = 20 after a 4000�d; b 10,000�d function evaluations

(a) (b)

Fig. 9 Ratios of the mean errors of the robust optimal solutions to the minimum mean errors obtained for all optimization problems as a function

of a function evaluations and b the problem dimensions

Flower pollination algorithm parameters tuning 14443

123



To recommend these optimal parameter values, for each

objective function, number of function evaluations and

problem dimensions, the FPA instances are ranked

according to their average errors from the 20 independent

runs. Then, the average rankings from all 28 objective

functions are obtained for each combination of function

evaluations and problem dimensions. The FPA instance

with the minimum ranking is considered as the optimal

FPA instance for the specific combination of function

evaluations and problem dimensions.

Figure 10 presents the derived optimal parameters as a

function of problem dimensions and function evaluations

and Tables 8, 9, 10 present the same values for more

clarity. Figure 10a shows that a population of 20 individ-

uals is optimal for small numbers of function evaluations.

For the later stages of function evaluations, the results

depend on the number of problem dimensions. The larger

the number of dimensions the earlier it is required to use a

population of 40 individuals. More specifically, for d = 20,

n = 40 becomes optimal after 5000�d function evaluations,

for d = 10 after 7000�d and for d = 5 after 10,000�d func-

tion evaluations. Regarding the switch probabilities,

Fig. 10b presents that p = 0.2 is always the optimal value

for d = 5 and p = 0.4 for d = 20. For d = 10, the results are

less clear as it seems that the optimal p-value fluctuates

between 0.2 and 0.6 depending on the number of function

evaluations. With respect to the Lévy flight steps scale

factor c, Fig. 10c shows that c = 0.1 is almost always

optimal for d = 5 and 10. However, the optimal step size

increases to c = 1 for most function evaluations when

d = 20. In almost all cases, optimal c ranges between 0.1

and 1.

It is worth noting here that Figs. 10a–c can be used

synchronously to fully determine optimal FPA parameter

settings. For example, it can be deduced that for an opti-

mization problem with d = 20 dimensions where

10,000�d function evaluations are afforded, the optimal

parameter setting consists of a population size n of 40

individuals, switch probability p of 0.4 and step size c of 1.

(a)

(c)

(b)

Fig. 10 Optimal parameter values based on minimum mean errors as a function of problem dimensions and function evaluations for different

objective functions: a n; b p and c c
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6 Conclusions

The Flower Pollination Algorithm (FPA) is a recently

developed population-based metaheuristic optimization

algorithm imitating the evolution mechanisms of flowering

plants. FPA is characterised by simplicity in its formulation

as well as high computational performance and it has been

found to outperform other well-known optimization algo-

rithms. Previous studies related to FPA assume pre-fixed

parameter values based on rather empirical choices and/or

experimental comparisons of limited scale and scope.

In this study, a systematic effort has been made to

specify appropriate FPA parameters values that maximize

its computational performance on a wide range of opti-

mization problems. To serve this goal, a simple non-iter-

ative, single-stage sampling method is employed for

parameters tuning oriented towards practical applications

of FPA. The tuning method is applied to the set of 28

functions specified in IEEE-CEC’13 for real-parameter

single-objective optimization problems for three different

numbers of problem dimensions and eleven numbers of

function evaluations.

It is found that the FPA parameters that minimize the

average errors depend significantly on the objective func-

tion, the problem dimensions and function evaluations.

More particularly, the optimal population sizes seem to be

increasing as the function evaluations and the problem

dimensions are increasing. The respective optimal switch

probabilities and Lévy flight step scale factors seem to

increase with the number of problem dimensions and not to

be affected significantly by the number of function

evaluations.

In addition to the FPA parameters minimizing average

prediction errors, the parameters yielding the most robust

FPA predictions for a number of independent runs are also

examined herein. It can be seen that the robust parameters

can differ significantly from the minimum mean error

parameters. Nevertheless, it is found that the mean errors of

the robust parameter sets do not vary highly from the

minimum mean errors.

At the end of this study, an effort is made to recommend

FPA parameter values that are independent of the exam-

ined objective functions. These recommendations are based

on the average rankings of the different parameter sets for

the different objective functions. It is found that the opti-

mal population sizes vary between 20 and 40 individuals

depending on the problem dimensions and number of

function evaluations. Similarly, the optimal switch proba-

bilities typically vary between 0.2 and 0.4 and the optimal

Lévy flight steps scale factors between 0.1 and 1.0 again

depending on the problem dimensions and afforded func-

tion evaluations.

Further studies will focus on the application of the

proposed tuning method to test and tune other nature-in-

spired algorithms for both the CEC test suites and other

real-world design benchmarks. Different performance

Table 8 Optimal n values based

on minimum mean errors for

different objective functions

Dimensions Number of function evaluations normalized to MaxFES = 10,000�d

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

d = 5 20 20 20 20 20 20 20 20 20 20 40

d = 10 20 20 20 20 20 20 20 40 40 40 40

d = 20 20 20 20 20 20 40 40 40 40 40 40

Table 9 Optimal p values based

on minimum mean errors for

different objective functions

Dimensions Number of function evaluations normalized to MaxFES = 10,000�d

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

d = 5 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

d = 10 0 0.2 0.4 0.4 0.6 0.6 0.6 0.2 0.2 0.2 0.2

d = 20 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Table 10 Optimal c values

based on minimum mean errors

for different objective functions

Dimensions Number of function evaluations normalized to MaxFES = 10,000�d

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

d = 5 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1

d = 10 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

d = 20 1 1 1 1 1 0.1 0.1 1 1 1 1
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metrics will be investigated and compared, together with

other tuning methods, in future studies.
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