Clinical Science (2016) 130, 1039-1050 doi: 10.1042/CS20160043

Review Article

COPD and stroke: are systemic inflammation and
oxidative stress the missing links?

Victoria Austin*, Peter J. Crackt, Steven Bozinovski*¥, Alyson A. Miller*? and Ross Vlahos*%1

*School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
tDepartment of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia
FLung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia

Abstract

inflammation and oxidative stress.

Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow limitation and loss of lung
function, and is currently the third largest cause of death in the world. It is now well established that
cardiovascular-related comorbidities such as stroke contribute to morbidity and mortality in COPD. The mechanisms
linking COPD and stroke remain to be fully defined but are likely to be interconnected. The association between
COPD and stroke may be largely dependent on shared risk factors such as aging and smoking, or the association of
COPD with traditional stroke risk factors. In addition, we propose that COPD-related systemic inflammation and
oxidative stress may play important roles by promoting cerebral vascular dysfunction and platelet hyperactivity. In
this review, we briefly discuss the pathogenesis of COPD, acute exacerbations of COPD (AECOPD) and
cardiovascular comorbidities associated with COPD, in particular stroke. We also highlight and discuss the potential
mechanisms underpinning the link between COPD and stroke, with a particular focus on the roles of systemic
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a major incur-
able global health burden and is currently the third largest cause
of death in the world [ 1-3]. Much of the disease burden and health
care utilization in COPD is associated with the management of its
comorbidities and infectious (viral and bacterial) exacerbations
(acute exacerbation of COPD; AECOPD). In the United States
alone, the medical costs attributed to COPD in 2010 were estim-
ated to be in excess of $32 billion [4]. Comorbidities, defined
as other chronic medical conditions, in particular cardiovascular
disease (CVD) markedly impact on disease morbidity, progres-
sion and mortality. Indeed, it is estimated that between 30 % and
50% of COPD-related deaths are due to a cardiovascular comor-
bidity such as coronary artery disease, hypertension and diabetes
[5-7]. In addition, patients with COPD are at increased risk for
stroke and this is even higher in the weeks following an AECOPD
[8,9].

The mechanisms and mediators underlying COPD and its co-
morbidities are poorly understood. However, there is compelling

evidence to suggest that increased oxidative stress and the ‘spill
over’ of lung inflammation into the systemic circulation play
an important role in the pathophysiology of COPD and its co-
morbidities. Therefore, although there are currently no effective
therapies for reversing the lung pathology that is the character-
istic of COPD [10], targeting oxidative stress and lung/systemic
inflammation could prove to be an effective way to improve sur-
vival and quality of life in these patients. In this review, we briefly
describe the pathogenesis of COPD, AECOPD and cardiovascu-
lar comorbidities associated with COPD, in particular stroke. In
addition, we discuss the mechanisms common to both COPD and
stroke and how these could explain why patients with COPD are
at increased risk of stroke.

OVERVIEW OF COPD PATHOPHYSIOLOGY

COPD is a disease characterized by airflow limitation that is not
fully reversible. The airflow limitation is usually progressive and
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associated with an abnormal inflammatory response of lungs to
noxious particles and gases [11]. Cigarette smoking is the ma-
jor cause of COPD and accounts for more than 95% of cases
in industrialized countries [12], but other environmental pollut-
ants are important causes in developing countries [13]. COPD
encompasses chronic obstructive bronchiolitis with fibrosis and
obstruction of small airways, and emphysema with enlargement
of airspaces and destruction of lung parenchyma, loss of lung
elasticity and closure of small airways. Most patients with COPD
have all three pathologic conditions (chronic obstructive bronchi-
olitis, emphysema and mucus plugging), but the relative extent
of emphysema and obstructive bronchiolitis within individual
patients can vary [14].

It is well established that a number of inflammatory cell
types are involved in the pathophysiology of COPD includ-
ing macrophages, neutrophils and T-cells (reviewed in [14-17]).
These cells release a variety of mediators [e.g. tumour nec-
rosis factor (TNF)-, monocyte chemotactic protein-1, react-
ive oxygen species (ROS), leukotriene B, (LTBy), interleukin
(IL)-8, granulocyte-macrophage colony- stimulating factor (GM-
CSF), elastolytic enzymes such as neutrophil elastase and mat-
rix metalloproteinases] in response to cigarette smoke which or-
chestrate and perpetuate the inflammatory response in COPD
(reviewed in [14—17]). In addition to an increase in the number
of macrophages and neutrophils, these cells appear to have an
impaired phagocytic function, resulting in impairment in clear-
ance of apoptotic cells and potentially contributing to the chronic
inflammatory state in the lungs [14]. The above events pro-
mote further inflammation creating a feedback loop that leads
to chronic inflammation. Chronic inflammation induces repeated
cycles of injury and repair that result in structural remodel-
ling of the airway walls (collagen deposition and mucus hy-
persecretion), destruction of the parenchyma and alveolar walls
and hence alveolar enlargement and emphysema. Once induced,
the patient’s condition progressively deteriorates with worsen-
ing inflammation, emphysema, declining lung function and in-
creased breathlessness. Importantly, the mechanisms and me-
diators that drive the induction and progression of chronic in-
flammation, emphysema and altered lung function are not well
understood, and this has severely hampered the development
of effective treatments for COPD. In addition, current treat-
ments have limited efficacy in inhibiting chronic inflammation,
do not reverse the pathology of disease and fail to modify the
factors that initiate and drive the long-term progression of dis-
ease [17]. Therefore, there is a clear and demonstrated need for
new therapies that can prevent the induction and progression of
COPD.

ACUTE EXACERBATIONS OF COPD

An AECOPD is defined as ‘a sustained worsening of the patient’s
condition, from the stable state and beyond normal day-to-day
variation, which is acute in onset and necessitates change in
regular medication in a patient with underlying COPD’ [18].
Exacerbations are a common occurrence in COPD patients and

contribute mainly to morbidity, death and health-related quality
of life [18]. AECOPD is a major cause of avoidable hospital
admissions and often due to viral and bacterial infections with
40 %—60 % attributed to viral infections alone [18]. The majority
of these infections are due to respiratory syncytial virus (22 %),
influenza A (25 %) and picornavirus (36 %), with influenza having
the potential to be more problematic due to the likelihood of
an epidemic [18-20]. Respiratory viruses produce longer and
more severe exacerbations and have a major impact on health
care utilization [20,21]. Currently, bronchodilator combinations
modestly reduce the risk of exacerbation by approximately 30 %
and are even less effective at preventing severe exacerbations that
result in hospitalization [18].

The understanding of the cellular and molecular mechanisms
underlying AECOPD are limited, but there is an increase in neut-
rophils and concentrations of IL-6, IL-8, TNF«a and LTB, in
sputum during an exacerbation [22,23] and patients who have
frequent exacerbations have higher levels of IL-6 and lower con-
centrations of SLPI, even when COPD is stable [24,25]. There
is also an increase in the activation of NF-«B in alveolar macro-
phages during exacerbations of COPD [26] which is indicative
of an inflammatory environment.

OXIDATIVE STRESS IN COPD AND AECOPD

There is now extensive evidence to show that oxidative stress
plays an important role in COPD given the increased oxidant
burden in smokers [27,28]. Oxidative stress is initiated by ci-
garette smoke which has more than 10'* relatively long-lived
oxidants/free radicals per puff [29]. These oxidants give rise
to secondary ROS by inflammatory and epithelial cells within
the lung as part of an inflammatory-immune response towards
a pathogen or irritant. Activation of NADPH oxidase 2 (Nox2)
on macrophages, neutrophils and epithelium generates superox-
ide radicals (O,°~), which can then either react with nitric oxide
(NO) to form highly reactive peroxynitrite molecules (ONOO™)
or alternatively be rapidly converted into damaging hydrogen
peroxide (H,0O,) under the influence of superoxide dismutase
(SOD) [30-33]. This in turn can result in the non-enzymatic
production of damaging hydroxyl radical (*OH) from H,0O; in
the presence of Fe?*. Polymorphisms in extracellular SOD have
been associated with reduced lung function and susceptibility to
COPD [34]. Glutathione peroxidases (Gpxs) and catalase serve
to catalyse toxic H,O, into water and oxygen. The ROS O,°*~,
ONOO™, H,O; and *OH then trigger extensive inflammation,
DNA damage, protein denaturation and lipid peroxidation [29].
Consequently, smokers and patients with COPD have higher
levels of exhaled ROS than non-smokers, and these levels are
further increased during exacerbations [35,36]. We have shown
that loss of the antioxidant enzyme Gpx-1 resulted in augmen-
ted cigarette smoke-induced lung inflammation compared with
sham-exposed wild-type mice and that synthetic repletion of Gpx
activity with ebselen reduced cigarette smoke-induced lung in-
flammation and damage [37].

Alveolar macrophages obtained by bronchoalveolar lavage
(BAL) from the lungs of smokers are primed to release greater
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amounts of ROS compared with those obtained from non-
smokers [38]. Exposure to cigarette smoke in vifro has also been
shown to increase the oxidative metabolism of alveolar mac-
rophages [39]. Subpopulations of alveolar macrophages with a
higher granular density appear to be more prevalent in the lungs
of smokers and are responsible for the increased O,°~ production
associated with macrophages from smokers [39,40]. The genera-
tion of ROS in epithelial lining fluid may be further enhanced by
the presence of increased amounts of free iron in the pulmonary
airspaces in smokers [41]. This is relevant to COPD since the
intracellular iron content of alveolar macrophages is increased
in cigarette smokers [42]. In addition, macrophages obtained
from smokers release more free iron in vitro than those from
non-smokers [43].

EVIDENCE OF SYSTEMIC INFLAMMATION
AND OXIDATIVE STRESS IN COPD

In addition to lung inflammation, a state of chronic systemic
inflammation is observed in COPD [44]. Studies have shown
increases in the serum levels of C-reactive protein (CRP), fib-
rinogen, serum amyloid A (SAA) and different pro-inflammatory
cytokines including TNF«, IL-6 and IL-8 in COPD patients [45—
47]. Importantly, these markers of systemic inflammation are
elevated even further during AECOPD [48]. The origin of this
systemic inflammation remains unclear. However, one explana-
tion is that the inflammatory cells and pro-inflammatory mediat-
ors present in the lungs ‘spill over’ into the systemic circulation
[45,49]. This state of chronic low-grade systemic inflammation
is thought to contribute to the development of comorbidities of
COPD [45,49].

The contribution of systemic oxidative stress in COPD has
also been recognized. There is an increased concentration of
H,0, in the exhaled breath condensate (EBC) of smokers and
patients with COPD compared with non-smokers, and those are
further increased during exacerbations [35,36]. In addition, con-
centrations of lipid peroxidation products [e.g. 8-isoprostane,
4-hydroxy-2-nonenal and malondialdehyde (MDA)], LTBy, car-
bon monoxide and myeloperoxidase (MPO) have consistently
been shown to be elevated in exhaled breath or EBC from
patients with COPD [47,50]. Systemic exposure to oxidative
stress in COPD is also indicated by increased carbonyl ad-
ducts, such as 4-hydroxy-2-nonenal in respiratory and skeletal
muscle [51-53]. Moreover, systemic markers of oxidative stress
such as oxidized low-density lipoprotein, advanced oxidation
protein products and MDA are elevated in COPD patients
[54,55].

In order to combat and neutralize the deleterious effects of
ROS-mediated damage, the normal lung has various endogen-
ous antioxidant strategies, which employ both enzymatic and
non-enzymatic mechanisms. Within the lung lining fluid, several
non-enzymatic antioxidant species exist, which include gluta-
thione (GSH), vitamin C, uric acid, vitamin E and albumin [56].
Enzymatic antioxidant mechanisms include SOD, catalase and
Gpx. However, studies have shown that COPD patients have a
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systemic antioxidant imbalance, including reduced vitamin C,
GSH and Gpx [50,57]. Moreover, polymorphisms in extracellu-
lar SOD have been associated with reduced lung function and
susceptibility to COPD [34].

COPD AND CARDIOVASCULAR DISEASE

There is evidence showing that patients with COPD have an in-
creased risk of CVD and thus are at greater risk of dying from
cardiovascular causes [45,58,59]. Comorbid CVD can manifest
itself in one or more various disorders such as angina, stroke,
arrhythmia, hypertrophy of the heart and myocardial infarction
(MI), and its presence greatly reduces the survivability of COPD
patients [60]. Studies have reported that up to 40 % of deaths in
COPD patients is due to CVD [61-64] and more people with
mild to moderate COPD die of cardiovascular causes than of
respiratory failure [58]. Specifically, patients with COPD have a
significantly higher risk of acute MI, arrhythmia and congestive
heart failure [65]. Over 5 years of follow-up and compared with
patients without COPD, patients with COPD had higher rates of
death, MI, stroke and a higher rate of hospitalization due to heart
failure, unstable angina or arterial revascularization [66]. Studies
have shown that over 50 % of patients hospitalized for AECOPD
have a high prevalence of coexisting CVD [67]. It has also been
demonstrated that cardiovascular risk is even more pronounced,
and has a greater effect, during the peri-exacerbation period due to
further increases in pulmonary and systemic inflammation. One
to five days after a severe exacerbation, the risk of MI increases
2-3 times [8] and subclinical ischaemia might be even more com-
mon during these events, as well as during exacerbations of only
moderate severity [68]. A retrospective review examining 24 h
mortality following AECOPD hospitalization found that approx-
imately 60 % of deaths that occurred resulted from cardiovascular
causes [69]. It has also recently been shown that patients with
COPD are at increased risk for stroke and this is even higher
(approximately 7-fold) in the weeks following an acute severe
exacerbation [9].

OVERVIEW OF STROKE PATHOPHYSIOLOGY

In 2013, stroke was the second-leading global cause of death be-
hind heart disease, accounting for 11.8 % of total deaths world-
wide [70]. Moreover, stroke is a leading cause of disability.
Indeed, it is estimated that up to 30% of stroke survivors do
not recover full independence, and thus require assistance with
self-care for the rest of their lives [70]. In 2012, the estim-
ated cost for stroke was $33 billion (U.S.A.) and is projected
to be $1.52 trillion by 2050 for non-Hispanic whites, $313 bil-
lion for Hispanics and $379 billion for blacks (in 2005 dol-
lars) [70]. Thus, the personal and economic burden of stroke is
staggering.

Ischaemic stroke is the most common subtype, accounting
for approximately 80 % of all strokes. This type of stroke typic-
ally occurs as a result of a blockage of a cerebral blood vessel

(© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the

Creative Commons Attribution Licence 4.0 (CC BY-NC-ND).

1041


http://creativecommons.org/licenses/by-nc-nd/4.0/

V. Austin and others

by a thrombotic (usually on an atherosclerotic plaque) or em-
bolic clot, or as a result of cerebral vascular insufficiency due
to structural (e.g. atherosclerosis) and/or functional abnormal-
ities of cerebral blood vessels. Ischaemic stroke can be further
classified depending on the aetiology such as large-artery ath-
erothrombosis, cerebral small vessel disease resulting in lacunar
stroke and cardioembolism. Less frequently, stroke can occur
as a result of haemorrhage (intracerebral approximately 10%
or subarachnoid approximately 3 %) or cardiac arrest. There are
number of traditional risk factors for stroke. Some stroke risk
factors cannot be modified, for example age, genetic predisposi-
tion, gender (male) and race, whereas others are potentially modi-
fiable. These include hypertension, hypercholesterolaemia, atrial
fibrillation, diabetes and smoking, which account for >60% of
stroke risk and often coexist [71]. Moreover, as discussed above,
lung diseases including COPD are emerging as ‘novel’ stroke risk
factors.

The pathogenesis of ischaemic stroke is very complex. In
brain tissue of the ischaemic core, which is a region character-
ized by a severe reduction in cerebral blood flow, cell death occurs
rapidly and largely as a result of energy failure and subsequent
necrotic death [72]. Injury to brain tissue surrounding the infarct
core (the ischaemic penumbra), however, occurs over hours to
days and multiple mechanisms are involved. These include ex-
citotoxicity, calcium dysregulation, mitochondrial dysfunction,
spreading depolarization and apoptotic cell death [72,73]. Ox-
idative and nitrosative stress also play a key role in injury de-
velopment in this region [74]. Compelling evidence implicates
the ROS-generating NADPH oxidases as key drivers of oxidat-
ive stress-induced brain and vascular injury following cerebral
ischaemia [75-79]. Substantial evidence also supports the im-
portance of inflammation and immune system activation in injury
development and expansion after stroke [80,81]. Moreover, there
is a growing appreciation of the vascular contribution, particu-
larly at the level of the neurovascular unit [82]. The neurovascular
unit is a collective term for the structural and functional associ-
ation between neurons, perivascular astrocytes, vascular smooth
muscle cells (pericytes/astrocytes), endothelial cells and the basal
lamina [83]. Together, the components of the neurovascular unit
act to regulate and maintain cerebral perfusion, preserve homoeo-
static balance in the brain and control immune regulation. Fur-
thermore, it represents the primary site of the blood—brain barrier
(BBB). Cerebral ischaemia has devastating effects on both the
structure and functioning of the neurovascular unit. It impairs
endothelial function and thus brain perfusion, disrupts the BBB
by increasing its permeability and enhances inflammatory cell in-
filtration [82]. Collectively, these mechanisms contribute to and
exacerbate brain injury [82].

During intracerebral haemorrhage, the most common type of
haemorrhage stroke, the accumulation of blood within the brain
leads to rapid damage as a result of mechanical injury and in-
creased pressure [84]. Secondary damage can also occur due
to the presence of intraparenchymal blood. Similar to ischaemic
stroke, multiple pathological pathways are involved including ex-
citotoxicity, oxidative stress, inflammation, cytotoxicity of blood,
hypermetabolism and disruption of the neurovascular unit and
BBB [85].

EVIDENCE LINKING LUNG FUNCTION, COPD
AND STROKE

Link between poor lung function and risk of
cerebral events

Studies have shown that impairment in lung function is related to
an increased risk of stroke [86—90]. Previous studies have shown
that reduced FEV, is associated with an increased incidence of
both ischaemic and haemorrhagic stroke, and this association is
independent of smoking status [86-90]. Similar associations have
been observed linking reduced pulmonary function and higher
risk of subclinical cerebrovascular abnormalities, including in in-
dividuals who have never smoked [91,92]. These asymptomatic
lesions, such as silent lacunar infarcts, white matter lesions and
cerebral microbleeds are considered to be precursors of clinical
stroke and manifestations of cerebral small vessel disease [93—
95]. Additionally, associations between lower FEV, and markers
of subclinical atherosclerosis have been reported, although the
relevance of this to the presence of subclinical infarcts and white
matter lesions is unclear [96]. The explanations for these obser-
vations are unclear, although impairments in lung function and
lung volume may reflect impairments in cardiac function [97,98].

COPD and risk of clinical stroke

Previous studies have shown that strokes are more prevalent in
COPD compared with the general population [99-101]. COPD
patients are reported to have an increased risk of approximately
20% for both ischaemic and haemorrhagic strokes [9,65,102].
This risk is estimated to be up to 7-fold higher following an AE-
COPD compared with stable COPD [9], suggesting that COPD
itself'is contributing to an increase in stroke risk, as opposed to the
risk being solely due to shared risk factors. Despite an increased
risk of stroke in COPD, no association between the presence of
COPD and stroke severity or short-term mortality has yet been
shown to exist. However, given that COPD results in systemic
inflammation and oxidative stress, which are key mechanisms of
stroke-related brain injury, one might predict that COPD also res-
ults in a worsening of stroke severity. Consistent with this, studies
have shown that chronic inflammatory airway disease (CIAD) is
an independent risk factor for long-term mortality post-stroke
[103]. It is also known that stroke causes lung injury/dysfunction
per se as evidenced by impaired cough, weakness of respiratory
muscles and increase in the propensity of pneumonia [104-107].
Therefore, it is plausible that worsening of lung function due to
stroke could contribute to the increased in long-term mortality
after stroke.

POTENTIAL MECHANISMS LINKING COPD
AND STROKE RISK

Contribution of shared risk factors

The factors linking COPD and stroke risk are currently not fully
understood and are likely to be interconnected. It is well known
that two of the most important risk factors for COPD, chronic
cigarette smoking and aging, are also established risk factors
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for stroke [108,109]. Thus, the association between COPD and
stroke may be largely dependent on these shared risk factors
[9]. Like other traditional stroke risk factors, aging and chronic
smoking increase the propensity to stroke by impairing the abil-
ity of the cerebral circulation to meet the brain’s high-energy
demands. This largely occurs as a result of structural and func-
tional changes to cerebral blood vessels, resulting in vascular
insufficiency and ultimately brain injury. For example, both risk
factors often alter the structure of intracranial and extracranial
blood vessels by promoting atherosclerosis, vascular atrophy and
remodelling and vascular stiffness [110—114]. Moreover, these
structural abnormalities are typically accompanied by functional
impairments of cerebral blood vessels resulting in alterations in
cerebral blood flow regulation. Indeed, it is well documented that
smoking (and nicotine) and aging cause endothelial dysfunc-
tion [115-121], which in turn, is associated with an increased
risk of stroke [122,123]. Also, they impair neurovascular coup-
ling [124-127], which is an essential adaptive mechanism that
matches cerebral blood flow to neuronal activity. Lastly, aging
and smoking can disrupt the BBB [128-130], which may con-
tribute to the increased risk of intracerebral haemorrhage and
microbleeds in COPD.

Evidence indicates that aging and smoking produce vascu-
lar impairments, at least in part, by promoting oxidative stress,
which is driven primarily by the NADPH oxidases [119,120,124].
Perhaps the best characterized mechanism by which oxidat-
ive stress can cause vascular dysfunction is via the inactiva-
tion of endothelial-derived NO by O,°~ [131]. This reaction
reduces the bioavailability of NO and thus nullifies its vas-
odilator, anti-platelet, anti-proliferative and anti-inflammatory
properties. In addition, ROS can directly promote inflammation
in the vessel wall by inducing the production of cytokines and
pro-inflammatory genes through the activation of NF-«B [132].
Importantly, whereas oxidative stress may set the stage for in-
flammation, it in turn accentuates ROS production, creating a
vicious cycle that worsens vascular dysfunction [73]. Indeed,
pro-inflammatory cytokines such as TNF-o and IL-6 alter the
functioning of cerebral vessels by increasing ROS production
via the NADPH oxidases [133,134]. Moreover, studies of sys-
temic arteries infer that T-cells and macrophages also contribute
[135,136]. Oxidative stress and inflammation can also alter the
structure of cerebral vessels by promoting vascular remodelling,
stiffness, atherosclerosis and BBB disruption [73,137-139].

In addition to producing vascular insufficiency, it is likely that
aging and chronic smoking modulate stroke risk by increasing
the propensity for atherosclerotic plaque rupture [140]. The pro-
thrombotic effects of smoking are well documented. For example,
smoking increases platelet activation and triggers the coagula-
tion cascade [141,142]. Similarly, aging is associated with in-
creased platelet aggregation and enhanced thrombosis [143,144].
Thus, aging and smoking increase the risk of thrombotic/embolic
events.

Association with traditional stroke risk factors

Some but not all studies have shown that an association between
COPD and stroke still exists after adjusting for age and smoking
status [9,95,102]. Thus, although it is difficult to correct for
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the total amount of smoking or environmental smoke exposure
[7,145], stroke risk in COPD might not be wholly explained by
the contribution of shared risk factors. As discussed, multiple
studies have shown a link between COPD and the development
of CVD. Moreover, vascular/stroke risk factors are common in
COPD patients including hypertension, diabetes and hypercho-
lesterolaemia [146,147]. Similar to aging and smoking, these tra-
ditional risk factors increase the propensity to stroke by altering
the structure (e.g. atherosclerosis and vascular remodelling) and
functioning of vessels, and by increasing the propensity for ath-
erosclerotic plaque rupture and thrombus formation [131,137].
Moreover, oxidative (via the NADPH oxidases) and inflammat-
ory mechanisms play vital roles in disease progression [ 148—156].
Thus, although the potential contributions of aging and smoking
cannot be ignored [7], it is conceivable that the systemic inflam-
mation and oxidative stress in COPD may initiate and/or accel-
erate the development of traditional stroke risk factors, thereby
leading to increased stroke risk.

COPD-specific systemic inflammation and oxidative
stress

Systemic inflammation is emerging as a non-traditional risk
factor for stroke [157,158]. For example, systemic markers of
inflammation such as CRP and total leucocyte counts, which
are both elevated in COPD, are predictive markers of ischaemic
stroke risk [159]. As discussed, inflammation and oxidative stress
are major drivers of cerebral vascular dysfunction. Thus, although
definitive proof is lacking, it is conceivable that the systemic
inflammation and increased oxidative stress in COPD may in-
dependently increase stroke risk by directly promoting cerebral
vascular dysfunction and thus vascular insufficiency. Consistent
with this concept, COPD is associated with increased carotid-
femoral pulse wave velocity (PW'V; the ‘gold standard’ measure-
ment of arterial stiffness) independent of cigarette smoke expos-
ure [7,160,161]. Treatment of COPD patients with an antioxidant
cocktail (vitamin C, vitamin E and a-lipoic acid) improves PWV
implicating a role for oxidative stress. In COPD patients with fre-
quent exacerbations, arterial stiffness increases and this is asso-
ciated with inflammation [68]. Importantly, PWV is closely asso-
ciated with lacunar stroke and white matter lesions [162], which
as mentioned are key manifestations of cerebral small vessel
disease. Functional abnormalities of systemic arteries have also
been reported in COPD patients compared with control subjects
and smokers with normal lung function. These include impaired
flow-mediated dilation [161,163], a mechanism that is largely de-
pendent on the production of NO by the endothelium. Moreover,
evidence suggests that impairments in flow-mediated dilation are
related to CRP levels but not pack-years of smoking protein levels
are an independent predictor of flow-mediated dilation suggesting
a role for inflammation [163]. Moreover, an antioxidant cocktail
improves flow-mediated dilation in COPD patients, implicating
a role for oxidative stress [161].

Our knowledge of cerebral artery function in COPD lags
behind those studies of systemic arteries. However, evidence
thus far suggests that COPD is associated with cerebral vas-
cular disturbances. For example, in an experimental model of
COPD, activation of endothelial-dependent dilator pathways
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Figure 1

Increased oxidative stress and lung inflammation in response to cigarette smoke causes a spill over of

cytokines (e.g. IL-6, TNF-« and SAA) into the systemic circulation

Systemic inflammation in COPD initiates and/or worsens comorbid conditions such as CVD/traditional stroke risk factors
and stroke. Viral and bacterial pathogens markedly increase ROS production and systemic inflammation and hence
exacerbate COPD and its comorbidities. Targeted co-inhibition of mechanisms underlying both COPD and stroke (e.g.
oxidative stress, local and systemic inflammation) may lead to increased survival and improvements in quality of life of

patients.

paradoxically leads to constriction of cerebral vessels (e.g.
middle cerebral artery), indicative of endothelial dysfunction
[164]. However, the roles of inflammation and oxidative stress in
this dysfunction were not examined. Studies measuring cerebral
blood flow in COPD patients have revealed contradictory findings
[165-168]. Indeed, some investigators have revealed that cereb-
ral blood flow is reduced in COPD patients [165,166], whereas
other report that it is increased [167,168]. Other studies have
focused on examining acute responses to hypercapnia in COPD
patients [54,165,169]. It is well documented that in a healthy sub-
jects, increased PaCO, results in cerebral vascular dilation and
increased cerebral blood flow. Several mechanisms are respons-
ible including a dilatory response of cerebral arteries, which is
largely dependent on NO production. Some but not all studies
report that COPD patients show decreased sensitivity to hyper-
capnia [54,165,169], inferring that NO-dependent cerebral vas-
odilator responses might be impaired. Consistent with this, one
study found that these abnormalities were eliminated after adjust-
ments were made for markers of oxidative stress, which might
suggest a role for oxidative inactivation of NO [54]. However,
it is important to remember that central chemoreceptors and the
ventilatory response are also involved in hypercapnia cerebral
vascular responses. Thus, it is conceivable that impairments of
these mechanisms might also contribute. Clearly, more research
is needed to fully investigate the impact of COPD (independent
of smoking and aging) on the functioning of cerebral vessels, and
how any such abnormalities relate to stroke risk.

Previous evidence suggests that patients with COPD have
increased platelet activation, with further activation occurring

during AECOPD [170]. CRP levels positively correlate with ac-
tivation of the coagulation/fibrinolysis system after stroke, sug-
gesting a link between coagulation and inflammation [171]. Also,
excess levels of ROS such as H,0O, may lead to platelet hy-
peractivity and pro-thrombotic phenotype [143]. Thus, COPD-
specific inflammation and oxidative stress may also influence
stroke risk by increasing susceptibility to thrombotic or embolic
events.

The link between acute infections and stroke is well docu-
mented. Indeed, numerous studies have shown that acute/chronic
viral and bacterial infections are independent risk factors
[158,172]. Moreover, this mainly relates to acute respiratory in-
fections [173]. Multiple links between inflammation and coagu-
lation may explain the link between infections and stroke per
se [158,172]. Thus, given that systemic inflammation is elevated
even further during an acute exacerbation, it is likely that such
mechanisms may also underpin the increased stroke risk in COPD
patients in the weeks following AECOPD.

Considerable evidence supports a relationship between sys-
temic inflammation and poor outcome in stroke patients and
in models of experimental stroke. Indeed, experimental mod-
els of comorbidities and stroke have shown that various sys-
temic inflammatory mechanisms exacerbate brain damage and
worsen functional deficits by augmenting cerebral vascular in-
flammation, BBB disruption, brain oedema and excitotoxicity
[174-176]. Moreover, systemic inflammation activates microglia
(the brain’s resident immune cells) to induce cyclooxygenase-
dependent neuroinflammation and increased O,°” produc-
tion [177]. Thus, although future research is needed, it is
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conceivable that in addition to increasing stroke risk, COPD-
specific systemic inflammation and oxidative stress may worsen
stroke severity and functional outcomes.

CONCLUSIONS

COPD is a major incurable global health burden and is currently
the third largest cause of death in the world. Much of the dis-
ease burden and health care utilization in COPD is associated
with the management of acute exacerbations and comorbidities
including CVD. Current treatments have limited efficacy and fail
to modify the long-term progression of COPD, its exacerbations
and its comorbidities. No pharmacological treatment has been
shown to reduce the risk of death in COPD in prospective clin-
ical trials. It is now evident that increased oxidative stress within
the local lung microenvironment is a major driving mechanism in
the pathophysiology of COPD and that it may directly influence
other organ (e.g. heart, brain and blood vessels) behaviour in a
‘COPD-specific manner’. Moreover, as discussed in this review,
patients with COPD are at increased risk for stroke and this is
even higher in the weeks following an acute exacerbation. The
mechanisms linking COPD and stroke are not fully understood
and are likely to be interconnected. Shared risk factors (aging
and smoking) and associations with the development of tradi-
tional stroke risk factors are likely to be important. Moreover,
we propose systemic inflammation and oxidative stress may in-
dependently increase stroke risk by promoting cerebral artery
dysfunction and thus vascular insufficiency, and by increasing
susceptibility to thrombotic events due to excessive platelet ac-
tivation (Figure 1). Thus, targeting these pathways may be the
way of preventing stroke in COPD.
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