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Abstract 

Background:  Several hematological indices have been already proposed to discriminate between iron deficiency 
anemia (IDA) and β‐thalassemia trait (βTT). This study compared the diagnostic performance of different hematologi-
cal discrimination indices with decision trees and support vector machines, so as to discriminate IDA from βTT using 
multidimensional scaling and cluster analysis. In addition, decision trees were used to determine the diagnostic clas-
sification scheme of patients.

Methods:  Consisting of 1178 patients with hypochromic microcytic anemia (708 patients with βTT and 470 patients 
with IDA), this cross-sectional study compared the diagnostic performance of 43 hematological discrimination indices 
with classification tree algorithms and support vector machines in order to discriminate IDA from βTT. Moreover, 
multidimensional scaling and cluster analysis were used to identify the homogeneous subgroups of discrimination 
methods with similar performance.

Results:  All the classification tree algorithms except the LOTUS tree algorithm showed acceptable accuracy meas-
ures for discrimination between IDA and βTT in comparison with other hematological discrimination indices. The 
results indicated that the CRUISE and C5.0 tree algorithms had better diagnostic performance and efficiency among 
other discrimination methods. Moreover, the AUC of CRUISE and C5.0 tree algorithms indicated more precise classifi-
cation with values of 0.940 and 0.999, indicating excellent diagnostic accuracy of such models. Moreover, the CRUISE 
and C5.0 tree algorithms showed that mean corpuscular volume can be considered as the main variable in discrimi-
nation between IDA and βTT.

Conclusions:  CRUISE and C5.0 tree algorithms as powerful methods in data mining techniques can be used to 
develop accurate differential methods along with other laboratory parameters for the discrimination of IDA and βTT. 
In addition, the multidimensional scaling method and cluster analysis can be considered as the most appropriate 
techniques to determine the discrimination indices with similar performance for future hematological studies.
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Background
Microcytic anemia is the most common form of anemia, 
as a predominant hematologic disorder. IDA and βTT are 
the two common types of microcytic anemia disorders 

Open Access

*Correspondence:  kazem_an@modares.ac.ir
2 Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares 
University, Tehran, Iran
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-021-01678-5&domain=pdf


Page 2 of 13Rahim et al. BMC Medical Informatics and Decision Making          (2021) 21:313 

[1, 2]. The discrimination between IDA and βTT is a vital 
issue in hematology studies [3, 4]. IDA is a prevalent dis-
order worldwide, and βTT is, in turn, predominant in the 
Mediterranean region [5–10].

The discrimination between these two hematologic 
disorders is necessary to prevent iron overload and its 
complications caused by misdiagnosis and inaccurate 
treatment so as to determine the prenatal causes for 
hemoglobin chain disorders. However, the differential 
diagnosis of IDA from βTT is a major challenge given 
that they provide similar experimental conditions [3, 11, 
12].

In addition to complete blood count (CBC), differ-
ent tests have been already conducted to differenti-
ate between IDA and βTT precisely; however, they are 
time-consuming and expensive. The definitive diagnostic 
methods for the IDA and βTT are respectively based on 
the increase in HbA2 (Hemoglobin A2), the increase in 
TIBC (total iron binding capacity), and also the decrease 
in serum iron and serum ferritin [4, 11, 13–16].

Due to the importance of discriminating between these 
types of anemia, various studies have been conducted 
since 1973 to identify appropriate, rapid, and low-cost 
differential indices for discriminating between IDA and 
βTT [17–41]. The existing gaps in the literature about 
hematological indices showed that each hematological 
index only includes one or some specific blood parame-
ters. In addition, some indices like Nishad [33] and Matos 
and Carvalho [41] are suggested based on the paramet-
ric statistical model like the discriminant analysis. How-
ever, this parametric model needs different assumptions 
(multivariate normality and equality of covariance matri-
ces) and violation of these assumptions affects the results 
[42].

Recently, the accessibility of powerful statistical 
software programs has paved the way for the applica-
tion of advanced statistical models such as data min-
ing techniques in the differential diagnosis of IDA from 
βTT. However, few studies have already employed such 
advanced statistical methods and data mining techniques 
for differential diagnosis of hematological data [40, 43–
52]. Therefore, this study was intended to compare tree 
algorithms as powerful  machine-learning methods and 
support vector machines (SVM) with hematological indi-
ces in differentiation between IDA and βTT. Tree-based 
methods can determine homogeneous subgroups of 
patients needing different treatment strategies or diag-
nostic tests, making these methods useful for subgroup 
analysis [53–56].

The tree-based methods include nonparametric meth-
ods and need no assumptions about the functional form 
of the data. Besides, they deal with the high-dimen-
sional dataset, high-order interactions, and nonlinear 

relationships. These methods are invariant to monotone 
transformations of predictor variables, and are robust to 
outliers, missing values, and also multicollinearity. These 
algorithms can identify the cutoff points of important 
predictors to discriminate the patients. In addition, tree 
algorithms are easy to interpret as they display results 
graphically, making the results understandable without 
requiring statistical experience. These methods can also 
assist the clinician in decision making [57–62].

CART (Classification and Regression Tree) algorithm 
is the best-known classic tree algorithm [63], though it 
suffers from some problems like greediness and bias in 
split rule selection. Tree generating in CART is based 
on the greedy search algorithm, and this search can-
not find a global optimum [64]. The splitting method in 
CART is biased toward independent variables with more 
distinct values [65, 66]. Several tree algorithms are pro-
posed to solve the problems of the CART algorithm. In 
turn, Evtree algorithm (Evolutionary learning of globally 
optimal classification and regression trees) [64] has been 
proposed to solve the greediness problem. Tree algo-
rithms like Quick, Unbiased and Efficient Statistical Tree 
(QUEST) [67], Classification Rule with Unbiased Inter-
action Selection and Estimation (CRUISE) [68], Gener-
alized, Unbiased, Interaction Detection and Estimation 
(GUIDE) [69], Conditional Inference Trees (Ctree) [70], 
and Logistic Tree with Unbiased Selection (LOTUS) [62] 
are, in turn, suggested to solve the bias in split rule selec-
tion problem.

This study aimed to compare the diagnostic perfor-
mance of the CART algorithm and remedial tree algo-
rithms for solving the disadvantages of this algorithm 
and SVM with hematological discrimination indices to 
discriminate between IDA and βTT by using accuracy 
measures such as true positive rate (TPR or sensitiv-
ity), true negative rate (TNR or specificity), false positive 
rate (FPR), false negative rate (FNR), accuracy, Youden’s 
index, positive predictive value (PPV), negative predic-
tive value (NPV), positive likelihood ratio (PLR), nega-
tive likelihood ratio (PLR), diagnostic odds ratio (DOR), 
F-measure, and area under the curve (AUC).

Besides, the multidimensional scaling and cluster anal-
ysis were applied to extract homogeneous subgroups of 
hematological discriminating indices and classification 
tree algorithms with a similar performance according to 
the accuracy measures used.

Methods
Sample and disease type
This study included 1178 patients with hypochromic 
microcytic anemia from Boghrat clinical center in Teh-
ran, Iran. CBC analysis of EDTA-K2 anti-coagulated 
blood samples was performed using Sysmex kx-21 
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automated hematology analyzer to measure hematologi-
cal parameters such as Hb (Hemoglobin), HCT (hema-
tocrit), MCV (Mean Corpuscular Volume), MCH (Mean 
Corpuscular Hemoglobin), MCHC (Mean Corpuscu-
lar Hemoglobin Concentration), RBC (Red Blood Cell 
Count) and RDW (Red Blood Cell Distribution Width). 
In addition, HbA2, TIBC, serum iron and serum ferritin 
were measured for all patients.

Inclusion criteria
Patients with hypochromic microcytic anemia (MCV < 80 
fL, MCH < 27 pg), Hb < 12 g.dl for women and Hb < 13 g.
dl for men were included in the study. Among them, 708 
patients were diagnosed as βTT with HbA2 > 3.5%, and 
470 patients were diagnosed as IDA with serum ferri-
tin < 15 ng/ml according to the World Health Organiza-
tion [WHO] [71, 72].

Exclusion criteria
Patients with simultaneous presentation of both diseases, 
severe anemia (Hb < 8  g.dl), anemia due to chronic dis-
ease, infectious disease, chronic inflammation, pregnancy 
or other hemoglobinopathies were excluded.

Statistical analysis
Descriptive statistics and univariate analysis
Descriptive statistics (mean, standard deviation), median 
and interquartile range) were evaluated for different 
blood parameters. Normality of data was assessed using 
Shapiro–wilk test. Mann–Whitney U test was also used 
to compare the differences between the hematological 
parameters of both groups (IDA and βTT). P < 0.05 was 
considered to be statistically significant.

Hematological discriminating indices for discriminating 
between IDA and βTT
Hematological indices for discrimination between IDA 
and βTT were computed for each patient according to 
their formula and cut off. These indices with their for-
mula are shown in Additional file 1: Table S1.

Classification algorithms
Classification tree algorithms (CART [63], QUEST [67], 
CRUISE [68], J48 [73], GUIDE [69], Ctree [70], Evtree 
[64], C5.0 [74], and LOTUS [62]) and SVM [75] were 
used to discriminate IDA from βTT.

Accuracy measures
Diagnostic performance of discrimination indices was 
compared with classifications tree algorithms using accu-
racy measures such as sensitivity, specificity, FPR, FNR, 
PPV, NPV, Youden’s index (sensitivity + specificity – 1), 
accuracy, PLR, NLR, DOR, F-measure and AUC. The 

discrimination method with sensitivity, specificity, PPV, 
NPV, Youden’s index, accuracy, F-measure and AUC near 
to 1 provided better performance. Likewise, the discrimi-
nation method with PLR > 10, NLR < 0.1 and high DOR 
caused a good performance for discriminating between 
IDA from βTT [76, 77]. Receiver operating characteris-
tic (ROC) curve analysis was used to compute the AUC, 
and compare the value of AUC of discrimination meth-
ods [78].

Multidimensional scaling
Multidimensional scaling method was used to create a 
map based on the Euclidean distance for showing similar-
ity or dissimilarity between observations. This map can 
be in one dimension, two dimensions, and three dimen-
sions or in higher dimensions. Smaller distance among 
two observations indicates more similar and vice versa. 
This used a map in two dimensions for showing similar-
ity/dissimilarity among pairs of discrimination methods 
through accuracy measures such as sensitivity, specificity, 
PPV, NPV, Youden’s Index, accuracy, PLR, NLR, F-meas-
ure, and AUC [79].

Cluster analysis
Cluster analysis is a method for extracting homogene-
ous subgroups of observations. Different algorithms are 
proposed for cluster analysis. This study used a complete-
linkage hierarchical algorithm to determine homoge-
neous subgroups of methods with a similar diagnostic 
performance using accuracy measures. The optimal num-
ber of methods with a similar diagnostic performance 
was selected using 30 appropriate measures. Finally, the 
optimal number was selected based on the majority role 
[80].

Software programs and checklists
Data analysis was done using software R 4.0.0. Pack-
age epiR and package pROC were used to compute the 
accuracy measures and ROC curve analysis, respectively. 
Classification tree algorithms like CART, J48, Ctree, 
Evtree, and C5.0 were fitted using packages rpart, Rweka, 
party, evtree, and C50, respectively. Software for tree 
algorithms like QUEST, CRUISE, GUIDE, and LOTUS 
was obtained from http://​pages.​stat.​wisc.​edu/​~loh/​resea​
rch.​html. SVM algorithm and multidimensional scal-
ing method were fitted using package MASS and pack-
age e1071, respectively. The cluster optimal number, or 
homogeneous groups of diagnostic discrimination meth-
ods with a similar diagnostic performances was deter-
mined using the package of NbClust. This study was also 
conducted based on the Strengthening the Reporting of 
Observational Studies in Epidemiology (STROBE) State-
ment: guidelines for reporting observational studies and 

http://pages.stat.wisc.edu/~loh/research.html
http://pages.stat.wisc.edu/~loh/research.html
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the Standards for Reporting Studies of Diagnostic Accu-
racy (STARD). These checklists can be obtained from 
www.​equat​or-​netwo​rk.​org.

Results
This study included 1178 patients with hypochromic 
microcytic anemia (708 patients with βTT and 470 
patients with IDA) to compare the diagnostic perfor-
mance of hematological discrimination indices with 
classification tree algorithms and SVM, so as to dis-
criminate IDA from βTT. Data balance was, in turn, 
assessed using Shannon entropy [81, 82]. Additional 
file  1: Table  S2 indicated the descriptive statistics of 
hematological parameters across the type of hypochro-
mic microcytic anemia (IDA and βTT). According to 
this table, all variables indicated significant difference 
among the groups (P < 0.001). CRUISE, C5.0, CART, 
and GUIDE algorithms can calculate the normalized 

importance (%) for each predictor variable. These 
algorithms indicated similar ranking of hematologi-
cal parameters importance. In this study, the normal-
ized importance of variables was reported based on the 
classification tree algorithms with the best diagnos-
tic performance (CRUISE and C5.0 algorithms). This 
algorithm showed that MCV and HCT variables had 
the highest and lowest importance for discrimination 
between IDA and βTT, respectively (Additional file  1: 
Table S2).

Figures  1 and 2 indicated that all predictor variables 
except HCT and RDW can be used to split the nodes of 
tree. First variable splitting of tree-based methods except 
tree algorithms such as Evtree, Ctree, and LOTUS were 
based on the MCV with similar rule splitting. GUIDE 
and CART algorithms showed the same tree structure.

Additional file 1: Table S3 displays the values of accu-
racy measures such as sensitivity, specificity, FPR, FNR, 

Fig. 1  Tree structure of classification tree algorithms such as J48, CART, GUIDE, QUEST, and CRUISE (red: βeta thalassemia trait and green: iron 
deficiency anemia)

http://www.equator-network.org
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PPV and NPV for each discrimination method (Addi-
tional file 1: Table S3).

Additional file 1: Table S3 indicated that none of the 
discrimination methods were fully specific for discrimi-
nation between IDA and βTT. This table showed that 
Janel index and CRUISE tree algorithm had the low-
est FPR (while the highest TNR and PPV). In turn, 
the lowest TNR belonged to the Telmissani–MCHD 
index, while the lowest PPV was related to the Bess-
man (RDW) index. Shine and Lal index and Roth index 
showed perfect TPR (100%) and NPV (100%) as com-
pared to other discrimination methods. Also, these 
indices showed the lowest FNR and the highest FPR. 
The lowest TPR (the highest FNR) was related to the 
Bessman (RDW) index, while the lowest NPV belonged 
to the Pornprasert (MCHC) index. All tree classifica-
tion algorithms and SVM showed good performance 
for discriminating between IDA and βTT based on 
the accuracy measures like TPR, TNR, PPV and NPV 
in comparison to other hematological discrimination 
methods (Additional file 1: Table S3).

The values of accuracy measures such as Youden’s 
index, accuracy, PLR, NLR, and DOR for each discrimi-
nation method are shown in Table  1. According to this 
table, the highest Youden’s index/accuracy belonged to 
the CRUISE and C5.0 tree algorithms, while the lowest 
Youden’s index/accuracy was for the MCHC index. Also, 
the highest DOR/F-measure belonged to the CRUISE 
and C5.0 tree algorithms, whereas the Roth index and 
Bessman (RDW) index had the lowest DOR/F-measure. 
Table  1 indicated that only CRUISE tree algorithm had 
PLR > 10 and discrimination methods with NLR < 0.1 
were all tree algorithms except C5.0 tree algorithm and 
indices such as Shine and Lal, Bordbar, Sehgal, and Ker-
man I.

The value of discrimination method AUC for dis-
crimination between IDA and βTT was shown in 
Table  2. The ROC analysis showed that CRUISE and 
C5.0 tree algorithms had the highest AUC. According 
to the AUC, CRUISE and C5.0 tree algorithms indi-
cated excellent diagnostic accuracy, whereas MCHC 
index could not be useful for discrimination between 

Fig. 2  Tree structure of classification tree algorithms such as Evtree, Ctree, LOTUS, and C5.0 (red: βeta thalassemia trait and green: iron deficiency 
anemia)
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Table 1  Youden’s index, accuracy, positive likelihood ratio (PLR), negative likelihood ratio (NLR) and diagnostic odds ratio (DOR) of 
each hematological index and classification tree algorithm for differentiation between iron deficiency anemia (IDA) and β‐thalassemia 
trait (βTT) with their 95% confidence interval

Discriminant method Youden’s Index (%) Accuracy (%) PLR NLR DOR

CART/GUIDE 81.58 (76.26–86.05) 91.51 (89.77–93.04) 7.39 (5.83–9.37) 0.07 (0.05–0.09) 114.12 (75.09–173.43)

J48 85.12 (80.27–89.07) 93.38 (91.81–94.73) 8.41 (6.54–10.81) 0.04 (0.03–0.06) 219.56 (133.69–360.55)

QUEST 79.96 (74.43–84.65) 90.49 (88.67–92.11) 7.37 (5.79–9.36) 0.09 (0.07–0.11) 86.09 (58.24–127.27)

CRUISE 88.03 (83.52–91.59) 94.57 (93.12–95.79) 11.09 (8.28–14.86) 0.04 (0.02–0.05) 311.63 (184.41–526.62)

Ctree 81.23 (75.85–85.75) 91.26 (89.49–92.81) 7.47 (5.88–9.49) 0.07 (0.05–0.09) 105.13 (69.81–158.29)

Evtree 83.49 (78.44–87.66) 92.61 (90.97–94.04) 7.65 (6.02–9.72) 0.05 (0.03–0.07) 169.18 (106.14–269.64)

C50 87.81 (83.34–91.34) 94.65 (93.21–95.87) 9.97 (7.58–13.12) 0.03 (0.02–0.04) 374.66 (212.03–662.03)

LOTUS 39.46 (31.61–46.93) 70.97 (68.28–73.55) 2.085 (1.84–2.37) 0.38 (0.33–0.44) 5.49 (4.26–7.085)

SVM 67.93 (61.37–73.78) 84.38 (82.18–86.41) 4.76 (3.92–5.78) 0.17 (0.14–0.21) 27.86 (20.30–38.24)

England and Fraser (E&F) 48.82 (41.84–55.22) 71.65 (68.98–74.21) 5.097 (3.96–6.56) 0.44 (0.40–0.49) 11.44 (8.33–15.70)

RBC 54.89 (47.68–55.22) 79.03 (76.59–81.32) 2.80 (2.44–3.22) 0.21 (0.18–0.26) 13.28 (9.98–17.68)

Mentzer 71.25 (64.95–76.81) 86.33 (84.24–88.24) 4.99 (4.10–6.06) 0.13 (0.11–0.16) 37.66 (26.96–52.60)

Srivastava 58.83 (51.84–65.18) 78.44 (75.98–80.76) 4.74 (3.83–5.86) 0.30 (0.26–0.34) 15.70 (11.62–21.20)

Shine and Lal (S&L) 15.32 (11.66–18.90) 66.21 (63.43–68.91) 1.18 (1.14–1.23) 0 ∞
Bessman (RDW)  − 15.83 (− 21.04 to − 10.61) 34.38 (31.67–37.17) 0.20 (0.13–0.30) 1.20 (1.14–1.26) 0.17 (0.11–0.26)

Ricerca 3.70 (0.04–7.52) 60.95 (58.09–63.75) 1.04 (1.01–1.07) 0.46 (0.27–0.78) 2.28 (1.31–3.97)

Green and King (G&K) 62.21 (55.29–68.47) 81.15 (78.80–83.35) 4.25 (3.52–5.13) 0.23 (0.20–0.27) 18.42 (13.68–24.81)

Das Gupta 32.87 (26.06–39.44) 71.48 (68.80–74.04) 1.56 (1.44–1.69) 0.21 (0.16–0.27) 7.52 (5.46–10.36)

Jayabose (RDWI) 57.28 (50.30–63.70) 80.64 (78.27–82.86) 2.83 (2.47–3.25) 0.17 (0.13–0.21) 17.01 (12.57–23.02)

Telmissani—MCHD 2.78 (− 0.68 to 6.40) 60.61 (57.76–63.41) 1.03 (1–1.06) 0.52 (0.30–0.90) 1.99 (1.11–3.57)

Telmissani—MDHL 40.70 (33.65–47.24) 66.81 (64.04–69.50) 4.36 (3.38–5.61) 0.54 (0.49–0.58) 8.11 (5.93–11.10)

Huber —Herklotz 6.02 (− 15.26–11.98) 46.10 (43.22–48.99) 1.47 (1.11–1.95) 0.93 (0.89–0.98) 1.58 (1.14–2.20)

Kerman I 60.66 (54.29–66.44) 83.28 (81.02–85.36) 2.77 (2.44–3.14) 0.08 (0.06–0.11) 35.83 (24.36–52.68)

Kerman II 72.96 (66.78–78.37) 86.93 (84.87–88.80) 5.63 (4.56–6.96) 0.13 (0.11–0.16) 42.01 (29.89–59.03)

Sirdah 70.86 (64.73–76.21) 84.38 (82.18–86.41) 8.57 (6.45–11.38) 0.22 (0.19–0.25) 39.28 (27.37–56.37)

Ehsani 73.38 (67.24–78.75) 87.18 (85.14–89.04) 5.67 (4.58–6.99) 0.13 (0.10–0.16) 43.85 (31.12–61.79)

Bordbar 55.05 (49.02–60.56) 81.58 (79.25–83.75) 2.29 (2.06–2.55) 0.04 (0.03–0.07) 54.87 (32.80–91.82)

Matos and Carvalho 57.27 (50.15–63.77) 77.93 (75.45–80.27) 4.20 (3.45–5.13) 0.30 (0.27–0.35) 13.89 (10.38–18.58)

Janel (11 T) 67.62 (61.41–73.08) 82.26 (79.95–84.40) 8.95 (6.63–12.07) 0.26 (0.23–0.30) 34.29 (23.75–49.50)

CRUISE Index 41.87 (34.09–49.23) 72.24 (69.59–74.78) 2.18 (1.92–2.48) 0.35 (0.30–0.41) 6.21 (4.80–8.05)

Index26 71.07 (64.87–76.50) 84.81 (82.63–86.81) 7.55 (5.81–9.81) 0.20 (0.17–0.24) 37.23 (26.29–52.72)

Hisham 51.70 (44.32–58.58) 77.25 (74.75–79.62) 2.66 (2.32–3.06) 0.25 (0.21–0.29) 10.66 (8.09–14.05)

Hameed 11.68 (5.73–17.35) 48.81 (45.92–51.71) 2.25 (1.64–3.08) 0.87 (0.83–0.91) 2.58 (1.80–3.69)

Ravanbakhsh-F1 54.11 (46.87–60.80) 78.69 (76.24–80.99) 2.74 (2.39–3.15) 0.22 (0.18–0.26) 12.74 (9.59–16.94)

Ravanbakhsh-F2 32.29 (24.46–39.83) 68.68 (65.94–71.32) 1.69 (1.53–1.88) 0.39 (0.34–0.47) 4.26 (3.30–5.50)

Ravanbakhsh-F3 50.98 (43.74–57.73) 77.76 (75.27–80.10) 2.43 (2.14–2.75) 0.21 (0.17–0.25) 11.74 (8.81–15.65)

Ravanbakhsh-F4 46.34 (39.79–52.48) 77.50 (75.01–79.86) 1.96 (1.78–2.16) 0.10 (0.08–0.14) 18.87 (12.99–27.42)

Zaghloul1 4.35 (− 3.32 to 11.86) 47.96 (45.08–50.86) 1.16 (0.97–1.39) 0.94 (0.87–1.01) 1.23 (0.95–1.59)

Zaghloul2 3.27 (− 4.43 to 10.85) 47.54 (44.65–50.44) 1.12 (0.93–1.34) 0.96 (0.89–1.03) 1.17 (0.91–1.51)

Kandhrol1  − 4.91 (− 1.31 to 3.40) 48.89 (46.01–51.79) 0.92 (0.83–1.01) 1.12 (0.98–1.28) 0.82 (0.65–1.04)

Kandhrol2 30.29 (22.67–37.66) 68.59 (65.85–71.24) 1.58 (1.44–1.74) 0.37 (0.31–0.45) 4.28 (3.29–5.57)

Alparslan 38.71 (31.29–45.79) 72.67 (70.02–75.19) 1.82 (1.65–2.02) 0.27 (0.22–0.33) 6.77 (5.13–8.94)

Merdin1 58.60 (51.48–65.09) 79.20 (76.77–81.49) 3.89 (3.25–4.69) 0.27 (0.23–0.31) 14.68 (11.01–19.59)

Merdin2 46.40 (39.10–53.16) 70.97 (68.28–73.55) 3.95 (3.18–4.90) 44.93 (40.56–49.76) 8.79 (6.57–11.75)

Roth 14.89 (11.28–18.44) 66.04 (63.26–68.75) 1.18 (1.13–1.22) 0 ∞
Sargolzaie 29.79 (22.21–36.99) 61.63 (58.78–64.42) 2.57 (2.10–3.15) 0.63 (0.58–0.69) 4.07 (3.09–5.35)

Keikhaei 59.29 (52.21–65.76) 80.31 (77.92–82.54) 3.51 (2.97–4.14) 0.22 (0.19–0.26) 15.69 (11.75–20.95)

Nishad 63.96 (57.17–70.09) 82.94 (80.66–85.04) 3.81 (3.22–4.51) 0.17 (0.14–0.21) 22.16 (16.32–30.09)
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IDA and βTT. Table  2 indicated that AUC of all indi-
ces except indices such as Ricerca, Telmissani–MCHD, 
Huber–Herklotz, Zaghloul1, Zaghloul2 and Kandhrol1 
were significantly more than 0.5, and AUC of discrimi-
nation indices such as RDW and MCHC were signifi-
cantly less than 0.5 (P < 0.001).

The comparison between AUC values of classifica-
tion tree algorithms and hematological discrimination 
index with the best diagnostic performance among 
hematological indices (Ehsani index) showed that there 
was a statistically significant difference between AUC 
values of tree algorithms with Ehsani index (P < 0.05). 
In this regard, classification tree algorithms had sig-
nificantly higher AUC than the mentioned hematologi-
cal discrimination index. Also, CRUISE and C5.0 tree 
algorithms had significantly higher AUC than other 
classification tree algorithms, but there was no sig-
nificant difference between AUC values of Ctree and 
CART algorithms (P > 0.05).

Overall, the results showed that CRUISE and C5.0 
tree algorithms had a better performance for discrimi-
nation between IDA and βTT in comparison to all 
indices and other classification tree methods. CRUISE 
tree algorithm extracted six homogenous subgroups 
of patients (Fig.  1). According to the tree structure 
of CRUISE tree algorithm, it can be concluded that 
patients with MCV > 67.65 or 67.65 < MCV ≤ 71.25 and 
Hb ≤ 11.15 or MCV ≤ 67.65 and Hb ≤ 8.85 and MCHC 
≤ 30.32 were classified as βTT. Also, patients with 
67.65 < MCV ≤ 71.25 and Hb > 11.15 or MCV ≤ 67.65 
and Hb > 8.85 or MCV ≤ 67.65 and MCHC > 30.32 were 
classified as IDA.

In addition, multidimensional scaling method extracted 
three subgroups of methods. The diagram of this analysis 
is shown in Fig. 3. One group included hematological dis-
crimination indices such as Pornprasert, RDW, Kandh-
rol1, Huber–Herklotz, Sirachainan, Hameed, Zaghloul1, 
and Zaghloul2, while the other group included Shine and 
Lal, Roth, Ricerca, and Telmissani–MCHD. The third 
group in turn included classification tree algorithms, 
SVM, and some of hematological discrimination indices.

Cluster analysis like multidimensional scaling method 
extracted three homogenous groups of discrimination 
methods. The diagram of this analysis is shown in Fig. 4.

Discussion
The two common types of microcytic anemia disorders 
are IDA and βTT which have similar clinical and experi-
mental conditions [3, 11, 12]. The discrimination between 
these two disorders is clinically important needing time-
consuming and expensive tests like HbA2, serum iron, 
serum ferritin and TIBC [4, 11, 13–16]. Several hemato-
logical indices are proposed for rapid and low-cost dis-
crimination between IDA and βTT which are not fully 
sensitive and specific for differential diagnose [17–41].

This study used classification tree algorithms to dis-
criminate between IDA and βTT. These are efficient and 
low-cost detection methods to extract homogeneous 
subgroups of patients [53–56]. Thus, the diagnostic per-
formance of hematological indices was compared with 
tree-based methods to differentiate IDA and βTT using 
various accuracy measures.

Additionally, multidimensional scaling was used to 
extract homogeneous subgroups of methods with a simi-
lar performance based on the mentioned criteria.

The findings showed that none of the mentioned dis-
crimination methods are fully sensitive and specific in 
discrimination between IDA and βTT. Also, tree-based 
methods exhibited high performance for differential 
diagnosis in comparison with the other hematological 
indices. CRUISE tree algorithm indicated better perfor-
mance than other discrimination methods based on the 
amount of accuracy measures such as Youden’s index, 
accuracy, PLR, NLR, DOR, F-measure and AUC. These 
criteria included both sensitivity and specificity and 
indicated the diagnostic performance of discrimination 
method more accurately than other criteria. So, this algo-
rithm can help physicians make better clinical decision.

Although sensitivity of hematological discrimination 
methods such as Ricerca, Telmissani—MCHD, Bordbar, 
Roth, and Shine and Lal (S&L) was higher than that of 
CRUISE tree algorithm, these hematological indices had 
a high false positive rate as compared to the CRUISE tree 
algorithm. Moreover, with respect to the other measure-
ments, these indices had poor performance in discrimi-
nating between IDA and βTT.

Consistent with the findings of this study, other stud-
ies demonstrated that Ehsani index had good perfor-
mance in discrimination between these two disorders in 

Table 1  (continued)

Discriminant method Youden’s Index (%) Accuracy (%) PLR NLR DOR

Wongprachum 55.33 (48.04–62.05) 78.35 (75.89–80.67) 3.15 (2.69–3.69) 0.26 (0.22–0.30) 12.36 (9.34–16.34)

Sehgal 64.70 (58.66–70.10) 85.23 (83.07–87.21) 3.027 (2.65–3.46) 0.05 (0.03–0.07) 60.80 (38.73–95.44)

Pornprasert (MCHC)  − 32.50 (− 40 to − 24.65) 31.32 (28.68–34.06) 0.40 (0.34–0.47) 1.71 (1.54–1.90) 0.23 (0.18–0.30)

Sirachainan 9.45 (2.23–16.46) 49.58 (46.68–52.47) 1.48 (1.19–1.83) 0.88 (0.83–0.94) 1.68 (1.27–2.21)
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Table 2  F-measure and AUC of each hematological index and classification tree algorithm for differentiation between iron deficiency 
anemia (IDA) and β‐thalassemia trait (βTT) with their 95% confidence interval

Discriminant method F-measure (%) AUC​ Standard Error 95% CI P–value

CART/GUIDE 93.04 0.908 0.009 0.891–0.925  < 0.001

J48 94.61 0.926 0.008 0.909–0.942  < 0.001

QUEST 92.12 0.889 0.009 0.882–0.918  < 0.001

CRUISE 95.54 0.940 0.007 0.926–0.955  < 0.001

Ctree 92.80 0.906 0.009 0.889–0.924  < 0.001

Evtree 93.99 0.918 0.009 0.901–0.934  < 0.001

C50 95.64 0.939 0.007 0.924–0.954  < 0.001

LOTUS 75.85 0.697 0.016 0.666–0.729  < 0.001

SVM 86.88 0.840 0.013 0.815–0.865  < 0.001

England and Fraser (E&F) 72.03 0.744 0.012 0.721–0.767  < 0.001

RBC 83.02 0.774 0.013 0.749–0.799  < 0.001

Mentzer 88.69 0.856 0.011 0.836–0.877  < 0.001

Srivastava 80.61 0.794 0.012 0.771–0.817  < 0.001

Shine and Lal (S&L) 78.06 0.577 0.008 0.560–0.593  < 0.001

Bessman (RDW) 6.76 0.421 0.009 0.401–0.440  < 0.001

Ricerca 74.89 0.519 0.007 0.505–0.532 0.281

Green and King (G&K) 83.84 0.811 0.012 0.788–0.834  < 0.001

Das Gupta 79.39 0.664 0.013 0.639–0.689  < 0.001

Jayabose (RDWI) 84.62 0.786 0.012 0.762–0.811  < 0.001

Telmissani—MCHD 74.76 0.514 0.006 0.502–0.526 0.419

Telmissani—MDHL 65.67 0.704 0.012 0.679–0.727  < 0.001

Huber—Herklotz 29.52 0.530 0.011 0.509–0.551 0.080

Kerman I 87.22 0.803 0.012 0.780–0.826  < 0.001

Kerman II 89.08 0.865 0.010 0.845–0.885  < 0.001

Sirdah 86.06 0.854 0.010 0.835–0.874  < 0.001

Ehsani 89.31 0.867 0.010 0.847–0.887  < 0.001

Keikhaei 83.49 0.797 0.012 0.773–0.820  < 0.001

Nishad 85.93 0.819 0.012 0.797–0.843  < 0.001

Wongprachum 81.83 0.777 0.013 0.752–0.801  < 0.001

Sehgal 88.72 0.824 0.011 0.801–0.846  < 0.001

Pornprasert (MCHC) 27.57 0.337 0.014 0.305–0.370  < 0.001

Sirachainan 41.07 0.547 0.013 0.523–0.572 0.006

Bordbar 86.43 0.775 0.012 0.752–0.798  < 0.001

Matos and Carvalho 80.36 0.786 0.012 0.763–0.809  < 0.001

Janel (11 T) 83.76 0.838 0.010 0.818–0.858  < 0.001

CRUISE 77.02 0.709 0.014 0.683–0.736  < 0.001

Index26 86.63 0.855 0.010 0.835–0.875  < 0.001

Hisham 81.39 0.759 0.013 0.733–0.784  < 0.001

Hameed 33.07 0.558 0.010 0.538–0.578 0.001

Ravanbakhsh-F1 82.77 0.771 0.013 0.746–0.795  < 0.001

Ravanbakhsh-F2 75.12 0.661 0.014 0.634–0.689  < 0.001

Ravanbakhsh-F3 82.42 0.755 0.013 0.729–0.779  < 0.001

Ravanbakhsh-F4 83.49 0.732 0.012 0.708–0.756  < 0.001

Zaghloul1 42.01 0.522 0.014 0.495–0.548 0.207

Zaghloul2 41.81 0.516 0.014 0.489–0.543 0.341

Kandhrol1 56.06 0.475 0.015 0.447–0.504 0.153

Kandhrol2 75.88 0.671 0.014 0.644–0.697  < 0.001

Alparslan 79.04 0.694 0.013 0.668–0.719  < 0.001
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comparison with other hematological indices [83, 84]. 
Meta-analysis studies indicated that Bessman (RDW) 
index had a low AUC in comparison to other hematologi-
cal indices [85, 86].

Overall, the findings showed that CRUISE tree algo-
rithm had better performance in discrimination between 
IDA and βTT as compared to all hematological discrimi-
nation indices and other classification tree methods. 
Moreover, comparison between the AUC of CRUISE 
and C5.0 tree algorithms and Ehsani index (this index 
had the best diagnostic performance in comparison to 
the other hematological indices) showed that there was 

a statistically significant difference between AUC of these 
discrimination methods (P < 0.001); CRUISE and C5.0 
tree algorithms had significantly higher AUC than this 
discrimination index. Indeed, all accuracy measures indi-
cated that CRUISE and C5.0 tree algorithms had the best 
diagnostic performance among the discrimination meth-
ods used.

Tree-based methods were fitted using hematological 
parameters as predictor variables. Based on the results 
obtained from CRUISE and C5.0 tree methods, MCV was 
the main hematological predictor parameter in differenti-
ation between different types of hypochromic microcytic 
anemia. In this regard, it was found that the patient with 
βTT had lower values of MCV. In a previous study which 
used different decision trees for discrimination between 
IDA and βTT, the first split of all algorithms was based 
on the MCV indicating that MCV was an important pre-
dictor variable in discrimination of IDA and βTT [47].

Several studies proposed various tree-based methods 
for differential diagnostic between microcytic anemia 
[43, 44, 47, 50–52]. For instance, Bellinger et  al. used 

Table 2  (continued)

Discriminant method F-measure (%) AUC​ Standard Error 95% CI P–value

Merdin1 81.99 0.793 0.012 0.769–0.817  < 0.001

Merdin2 72.01 0.732 0.012 0.708–0.756  < 0.001

Roth 77.97 0.574 0.008 0.558–0.591  < 0.001

Sargolzaie 60.42 0.649 0.013 0.623–0.674  < 0.001

Fig. 3  Diagram of multidimensional scaling for extracting 
homogeneous groups of hematological indices and classification 
tree algorithms with a similar diagnostic performance (1:England 
and Fraser, 2:RBC, 3:Mentzer, 4:Srivastava, 5:Shine and Lal, 6:Bessman 
(RDW), 7:Ricerca, 8:Green and King, 9:Das Gupta, 10:Jayabose (RDWI), 
11:Telmissani–MCHD, 12:Telmissani–MDHL, 13:Huber–Herklotz, 
14:Kerman I, 15:Kerman II, 16:Sirdah, 17:Ehsani, 18:Keikhaei, 19:Nishad, 
20:Wongprachum, 21:Sehgal, 22:Pornprasert, 23:Sirachainan, 
24:Bordbar, 25:Matos and Carvalho, 26:Janel (11 T), 27:CRUISE 
Index, 28:Index26, 29:CART/Guide, 30:J48, 31:QUEST, 32:CRUISE, 
33:Ctree, 34:Evtree, 35:Hisham, 36:Hameed, 37:Ravanbakhsh-F1, 
38:Ravanbakhsh-F2, 39:Ravanbakhsh-F3, 40:Ravanbakhsh-F4, 
41:Zaghloul1, 42:Zaghloul2, 43:Kandhrol1, 44:Kandhrol2, 45:Alparslan, 
46:Merdin1, 47:Merdin2, 48:Roth, 49: Sargolzaie, 50: C5.0, 51: LOTUS, 
and 52: SVM)

Fig. 4  Dendrogram of cluster analysis for extracting homogeneous 
groups of hematological discrimination indices and classification 
tree algorithms with the same diagnostic performance (each 
rectangles includes discrimination methods with a similar diagnostic 
performance)
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classification algorithms like J48 decision tree, support 
vector machines (SVM), k-nearest neighbours (K-NN), 
multilayer perceptron (MLP) and naϊve Bayes (NB) to 
discriminate between patients with IDA and βTT or 
both [50]. In another study, Setsirichok evaluated the 
classification of blood characteristics by a C4.5 decision 
tree, a NB classifier and a MLP for classifying eight-
een classes of thalassemia abnormality [43]. Likewise, 
Jahangiri et al. (2017) used classification tree algorithms 
for constructing differential scheme and investigating 
the performance of several tree algorithms for the dif-
ferential diagnosis of IDA from βTT. In agreement with 
this study, Jahangiri et al. (2017) reported that CRUISE 
tree algorithm had the highest AUC, and MCV was an 
important predictor variable in the discrimination of 
observations into IDA and βTT, and the first split of 
all algorithms was based on of MCV [47]. Moreover, 
Chakraborty et al. (2017) utilized Ada-boost algorithm 
to generate multiple decision trees by using C4.5 deci-
sion tree for classification of erythrocytes or anemia 
detection. Their proposed approach showed accuracy, 
specificity and sensitivity of 97.81%, 99.7% and 97.33% 
respectively in detecting abnormal erythrocytes [51]. 
Comparing the diagnostic performance of several algo-
rithms such as J48, K-NN, artificial neural networks and 
NB for identifying β-thalassemia carriers, AlAgha con-
cluded that naϊve Bayes had the superior performance 
to differentiate between normal and β-thalassemia car-
riers [52].

Overall, the CRUISE and C5.0 tree algorithms with 
the best performance in this study showed better perfor-
mance in comparison with tree algorithms in the previ-
ous studies [43, 87].

Using advanced methods such as tree-based methods 
for discriminating between IDA and βTT in addition to 
the differential indices can be a good idea for discrimi-
nating between these two hematologic disorders. Though 
each index only includes one or specific blood parame-
ters, machine learning methods can consider the effects 
of all blood parameters simultaneously for data predic-
tion and exploratory modeling. Besides, using decision 
trees for discrimination between IDA and βTT can avoid 
expensive, time‐consuming, and complicated laboratory 
procedures leading to non-satisfactory hematological 
indices in discriminating between these two hematologic 
disorders.

The application of methods like multidimensional 
scaling and cluster analysis are deemed to be useful to 
determine different classification methods with similar 
diagnostic functions. In previous hematological studies, 
such indices were compared subjectively based on the 
accuracy measures. Therefore, the application of mul-
tidimensional scaling method and cluster analysis are 

proposed to determine the hematological discrimination 
indices with similar performance for future hematologi-
cal studies.

Application in practice for medical studies
In medical diagnostic processes, decision making 
with high diagnostic performance is very important. 
Tree-based methods can be considered as appropriate 
methods for decision making, because they generate dif-
ferential diagnosis with high accuracy measures (sensitiv-
ity, specificity, PPV, NPV, PLR, NLR, DOR, accuracy, and 
AUC) in comparison to the discrimination indices. In 
addition, tree algorithms display results graphically, mak-
ing the results understandable with no statistical exper-
tise. These algorithms can be thus useful for diagnostic 
classification scheme of patients in medical studies. This 
study thus considered the discrimination between IDA 
and βTT to prevent iron overload and its complications 
caused by misdiagnosis and inaccurate treatment, and 
also to determine the prenatal causes for hemoglobin 
chain disorders.

Conclusions
Given its diagnostic performance, CRUISE and C5.0 tree 
algorithms are considered as an appropriate method for 
differential diagnosis of patients in comparison to other 
methods. Moreover, tree-based methods are useful along 
with other parameters for discriminating between IDA 
and βTT. In conclusion, considering the advantages of 
tree algorithms, they can help physicians make better 
clinical decisions. The results showed that multidimen-
sional scaling method and cluster analysis are appropri-
ate techniques to determine the discrimination indices 
with similar performance for future studies. In addition, 
the tree-based methods were identified as good methods 
for extracting homogeneous subgroups of observations 
in medical studies.
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