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A B S T R A C T

Improving catalytic ability of enzymes is critical to the success of many metabolic engineering projects, but the
search space of possible protein mutants is too large to explore exhaustively through experiments. To some extent,
highly soluble enzymes tend to exhibit high activity due to their better folding quality. Here, we demonstrate that
an optimization algorithm based on a regression model can effectively design short peptide tags to improve
solubility of a few model enzymes. Based on the protein sequence information, a support vector regression model
we recently developed was used to evaluate protein solubility after small peptide tags were introduced to a target
protein. The optimization algorithm guided the sequences of the tags to evolve towards variants that had higher
solubility. The optimization results were validated successfully by measuring solubility and activity of the model
enzyme with and without the identified tags. The solubility of one protein (tyrosine ammonia lyase) was more
than doubled and its activity was improved by 250%. This strategy successfully increased solubility of another
two enzymes (aldehyde dehydrogenase and 1-deoxy-D-xylulose-5-phosphate synthase) we tested. The presented
optimization methodology thus provides a valuable tool for improving enzyme performance for metabolic en-
gineering and other biotechnology projects.
1. Introduction

The exploration of expressing recombinant proteins started in 1976,
when human peptide hormone Somatostatin was produced in Escherichia
coli (Itakura et al., 1977). As the most commonly used expression host,
E. coliwas investigated intensively to improve the expression and activity
of recombinant proteins (W.-C. Chan et al., 2010; Fang et al., 2018;
Lempp et al., 2019). Various experimental strategies, such as using pro-
tein fusion partners, co-expressing chaperones, choosing suitable pro-
moters, optimizing codon usage, changing culture conditions, and using
directed evolution (Esposito and Chatterjee, 2006; Ganesan et al., 2016;
Idicula-Thomas and Balaji, 2005; Magnan et al., 2009; Reyes et al., 2017;
Tr�esaugues et al., 2004), were adopted to improve protein expression.
For example, the expression of human recombinant enzyme N-acetylga-
lactosamine-6-sulfatase (rhGALNS) in E. coli was unsatisfactory due to
protein aggregation. Several methods including the use of
physiologically-regulated promoters, overexpression of native chaper-
ones and applying osmotic shock were investigated to improve the pro-
duction and activity of rhGALNS (Reyes et al., 2017). Protein activity, a
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phenotype representing the catalytic ability of a protein if it is an enzyme,
is partly determined by its genotype (sequence of its coding gene).
Directed evolution can effectively improve protein activity through
changing the associated genotype, but this approach is
resource-intensive. In the process of improving protein activity via
directed evolution, mutagenesis is performed to change gene sequence
and the mutated genes are inserted into plasmid used for transformation
of a microbe, such as E. coli. Additional techniques are employed to
screen a large number of transformed cells for those that have higher
protein activity. Since most of the protein directed evolution studies were
only interested in the mutants with the highest activity, they did not
reveal the genotype of most proteins that had lower activity. This fact has
caused the challenge that very few databases of protein activity were
available for training computational models that can predict protein
activity from protein sequence. Such models would greatly assist protein
engineering by evaluating protein sequences in silico. A suitable dataset
for training the model should contain both protein activity data and the
associated sequence data, and should be large enough.

Protein activity data cannot be easily pooled together for model
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Fig. 1. Machine learning model assisted optimization of protein solubility. (a)
Illustration of the decision variables, optimization objective and the objective
function. SVR: support vector regression. A SVR model we recently developed
was used in this study (Han et al., 2019). (b) Illustration of the optimization
algorithm. Genetic algorithm was used in this study.
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training if they are related to enzymes that catalyze different chemistries,
which is another reason why it is difficult to generate the aforementioned
datasets for model training. The data of protein solubility from most
types of proteins, however, can be compiled into one dataset, because
protein solubility is a basic protein property. In this study and the rele-
vant literature, protein solubility is defined as the percentage of a pro-
tein’s soluble fraction (Niwa et al., 2009). It is a metric that is often used
to assess the folding quality of a protein, under the assumption that
incorrectly folded proteins form aggregates and are insoluble in aqueous
solution. Protein activity is thus correlated with protein solubility to
some extent, because protein solubility may indicate the quality of pro-
tein folding which influences protein tertiary structure and activity, i.e.
proteins with higher solubility likely exhibit higher activity (Zhou et al.,
2012). Thus, protein solubility may be used as a proxy for protein activity
to develop predictive models that use protein sequence as input. With
such a model, it would be possible to optimize the sequence of a protein
in silico for improving its solubility and activity. For example, a Monte
Carlo optimization method can be used as the procedures as demon-
strated in Fig. 1: (1) a random change is introduced to the protein
sequence, (2) the new protein sequence is evaluated by the model, and
(3) if the predicted solubility is lower than that of the parent sequence,
the change would be rejected, otherwise it would be accepted and used to
initiate the subsequent iteration. This in silico optimization process may
identify promising protein sequences to improve the success rate of the
time-consuming and labor-intensive experiments. If the protein activity
heavily depends on its solubility, the experiment would identify new
protein mutant that has higher solubility and activity.

Recently, Machine Learning has gained increasing attention in
various fields, such as internet commerce, autonomous vehicles, and
image recognition (Bojarski et al., 2016; Ferrucci et al., 2013; Godec
et al., 2019; LeCun et al., 2015; Li et al., 2019; Silver et al., 2016; Weber
et al., 2019; Y. Wu et al., 2016; Zador, 2019). Until now, a large number
of machine learning methods have been explored to predict protein
solubility from amino acid sequence (Agostini et al., 2012; Diaz et al.,
2010; Idicula-Thomas and Balaji, 2005; Niwa et al., 2009; Xiaohui et al.,
2014). Among the previous studies, we developed regression models that
can predict protein solubility in continuous values (Han et al., 2019).
Classification models which only label a protein as soluble or insoluble
were developed in other studies but cannot be used in further in silico
optimization, because it would mistakenly reject most changes that can
result in a small but important increase in the protein solubility. So far,
very few studies performed experimental validation of their
solubility-prediction models and no study used such models to improve
protein properties through the in silico optimization of protein sequence.

To improve protein solubility, some trial-and-error procedures were
developed by introducing small polyionic tags (Bianchi et al., 1994; P.
Chan, Curtis and Warwicker, 2013; Nguyen et al., 2019), because they
were short and less likely to interfere with protein structure (Bianchi
et al., 1994). One study found that non-polar surface and
positively-charged patches were important factors in determining protein
solubility (P. Chan et al., 2013). In another study, a negatively charged
fusion tag, NT11, was developed to enhance protein expression in E. coli
(Nguyen et al., 2019). These previous studies explored negatively
charged tags by trial and error and cannot provide a generally useful
quantitative model which can forecast performance of tags with proteins
which have not been tested.

In our present study, based on a regression model that can predict
protein solubility from protein sequence (Han et al., 2019), we developed
optimization algorithms to increase predicted solubility under con-
straints that have been set after considering experimental feasibility and
impact on protein function. We found that adding short peptide rich in
negatively charged amino acids was effective in improving solubility of a
few proteins. More importantly, we also verified that activity of some
proteins was indeed substantially improved when their solubility was
increased. The short peptide tags characterized in this study and the
workflow used to design them should be useful to metabolic engineers
2

who need to improve activity of rate-limiting enzymes.

2. Materials and Methods

2.1. Protein database

All the information of protein solubility used in our study is from the
eSol database (Niwa et al., 2009) which is a unique database containing
continuous values of protein solubility. After removing items without
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sequence information according to the previous study (Han et al., 2019),
3148 proteins in the eSol dataset were used for this study. In the study
which generated the dataset, the values of protein solubility were
measured by synthesizing the recombinant proteins via the cell-free
protein expression technology. The expressed proteins were then sepa-
rated into soluble and insoluble fractions with centrifugation (Niwa et al.,
2009). Solubility was defined as the ratio of supernatant protein to total
protein which was quantified by SDS-PAGE.

2.2. Training flowsheet

The whole process of rationally engineering proteins with higher
solubility includes data pre-processing, training the Support Vector
Regression (SVR) prediction model, constructing an optimization meth-
odology, and validating the methodology. As the first step, amino acid
composition was extracted from protein sequences by using Amino Acid
Composition Descriptor in protr package (Xiao et al., 2014) within R
software, which converted characters of amino acids into numeric values
indicating amino acid composition. For the second part, the SVR model
was built in MATLAB and trained following the same procedure
described in the previous study (Han et al., 2019). Then SVR was trained
with the whole dataset to predict continuous values of protein solubility
from amino acid composition. For the third step, we selected 58 proteins
with solubility of 0.1 in the original dataset. Proteins with long sequences
are more challenging to synthesize in experiments, therefore the protein
sequences were further filtered to have less than 333.3 amino acids (1 kb,
gene length), which selected 27 proteins. Among the 27 proteins, the one
with the minimum difference between the predicted value and the real
value of protein solubility, named GLCE, was selected as the sample
protein to build a methodology for further optimizing protein solubility.
Genetic algorithm (GA), an optimization method, was explored to search
for maximum predicted solubility with constraints for the sample pro-
tein. The difference between protein solubility before and after muta-
genesis was used to evaluate the optimization performance.
Subsequently, besides the sample protein, ten proteins with solubility of
0.1 which have the least differences between predicted and original
solubility among the 27 proteins mentioned above were selected for
testing the optimization methodology. Six proteins commonly used in
our laboratory were also investigated for improving protein solubility.
Finally, among the 16 proteins selected for optimization, four proteins
that bear low solubility before adding the tags were chosen for experi-
mental validation. Among the four proteins, TAL, DXS and VALC were
from the six proteins commonly used in the lab and AGAW was from the
eSol database. The original andmutated proteins were expressed in E. coli
to validate the predicted change of protein solubility.

2.3. Optimization algorithms

Genetic algorithm (GA), one of the metaheuristic optimization algo-
rithms, is inspired by the process of natural selection observed in nature
(Mitchell, 1996). It is frequently utilized as a randomized algorithm for
solving optimization problems with constrained conditions. GA essen-
tially simulates the way in which life evolves to find solutions to real
world problems. In GA, the solutions to a problem are represented as a
population of chromosomes evolving through successive generations.
The offspring chromosomes are generated by merging two parent chro-
mosomes by crossover or modifying a chromosome by mutation. The
offspring chromosomes are evaluated according to the fitness as defined
by the objective function in each generation. Chromosomes with higher
fitness values have higher possibility to survive and the process will stop
when the offspring chromosomes are almost identical or the termination
conditions set are reached. Strong individuals will dominate the gener-
ation through iterations in the process of mutation, crossover and se-
lection. The final chromosome represents an optimal or near-optimal
solution for the optimization problem. In our problem, the chromosomes
are the amino acid compositions of peptide tags and the fitness function is
3

the predicted solubility for proteins after adding tags. Several hyper-
parameters can be tuned for the optimization algorithm, such as the
population size, the number of iterations for evolution and the number of
individuals mutating in each generation. We used a MATLAB Toolbox to
implement the optimization (iteration number¼ 1,000, other parameters
are provided in Supplementary Table S1). The generic structure of GA in
our study can be described as follows:

begin:

initiate a tag representing by a 20-dimensional vector with con-
strained conditions (sum of the vector is 20 and the value of each
dimension is within the range of 0-20);
evaluate the protein sequence after adding the tag;
while (if termination conditions are not met):

do crossover and mutate parent tag sequences to yield
offspring sequences;
evaluate the protein solubility for the proteins with offspring
sequences;
select and generate offspring sequence with higher solubility;

end while
end

2.4. Data visualization

The heat map in Fig. 6 was plotted by using the “cmap” function of the
matplotlib package in Python. The violin plot of the amino acid com-
positions was made by using the “violinplot” function of the seaborn
package in Python. Violin plot featured a kernel density estimation of the
underlying distribution. Spearman’s rank correlation between amino
acid composition and solubility was computed using the “spearmanr”
function of the scipy.stats package in Python. The equation used was

ρspearman ¼
P

iðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðxi � xÞ2Piðyi � yÞ2

q ; (1)

where the subscript i denoted the ranks, and x and y represented amino
acid composition and solubility respectively.

2.5. Chemicals in experimental validation

All the chemicals used in this study were purchased from Sigma-
Aldrich unless otherwise stated. All reagents used were of analytical
grade. The DNA oligonucleotides used in this study were synthesized by
Integrated DNA Technologies.

2.6. Plasmid construction

All the plasmids used in this work were constructed according to GT
standard (Ma et al., 2019) (Supplementary Tables S7–S10).

2.7. Cell culture and SDS-PAGE analysis of protein solubility

Each plasmid was introduced into E. coli BL21 (DE3) (C2530H, New
England Biolabs) for SDS-PAGE analysis by using standard heat shock
protocol. In order to test the resulting strains, single colony was inocu-
lated into 1 mL of LB with 100 μg/mL of ampicillin, and was cultured
overnight at 37 �C/250 rpm. Fifty microliters of the overnight grown cell
suspension were inoculated into 5 mL of K3 medium (Ma et al., 2019)
with 100 μg/mL of ampicillin. When cell was grown to 0.4–0.6 (optical
density at 600 nm), isopropyl β-D-1-thiogalactopyranoside (IPTG) was
added to a final concentration of 0.1 mM. After incubated overnight at
30 �C/250 rpm, the cell culture was diluted to OD600 ¼ 2.0, and
centrifuged at 5000 g for 10 min. The obtained cell pellets were resus-
pended in 100 μL of B-PER II reagent (78248, Thermo Fisher Scientific).
The mixtures were incubated for 15 min at room temperature with gentle
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shaking, and centrifuged at 16,000 g for 20 min. The obtained super-
natant contained soluble cell lysates. The insoluble cell pellets were
resuspended in 100 μL of 2% w/v SDS. Both soluble and insoluble cell
pellets were analyzed by using SDS-PAGE (Mini-PROTEAN® TGX™
Precast Protein Gels, 4561083, Bio-Rad). The image of the gel was pro-
cessed and quantified by Gel Doc EZ Gel Documentation System
(Bio-Rad).

2.8. TAL activity assay

One milliliter of obtained supernatant containing soluble cell lysates
was added to 4 mL of PBS buffer (pH ¼ 9.0) with 1 g/L tyrosine (final
concentration) in 50 mL falcon tube and incubated at 30 �C/250 rpm.
Three hundred microliters of samples were taken at 0 h, 1 h, 3 h and 12 h
after incubation, and mixed with 700 μL of acetonitrile to dissolve the
produced p-courmaric acid (PCA). The mixture was incubated at 30 �C/
250 rpm for 1 h, and then centrifuged at 13,500 g for 5 min. Two mi-
croliters of the obtained supernatant was analyzed by using HPLC (Agi-
lent 1260 Infinity HPLC) based on a previously reported method (Ma
et al., 2019).

3. Results

3.1. Design of the optimization methodology

In order to improve protein solubility by in silico mutagenesis, we
needed to address several questions regarding how to change the protein
sequence. One can change a protein sequence by adding amino acids to
the sequence (addition), replacing amino acids in the sequence (muta-
tion) and/or removing amino acids from the sequence (deletion). The
protein functions may be frequently abolished by mutation and deletion
as the core protein structure and active sites may be changed. To avoid
such detrimental change to the original function of the protein, addition
was used in our study to change protein sequence for improving protein
solubility. The subsequent decision to make was how many amino acids
should be added. Adding too many amino acids would make experi-
mental validation more expensive and may also negatively affect the
protein function. Adding too few amino acids may not be able to improve
protein solubility substantially. We decided to evaluate adding 20 or 30
amino acids because adding more than 30 amino acids to a protein by
using synthetic oligonucleotides was much more expensive.

To optimize the sequence of the amino acids to be added, we designed
an algorithm based on the support vector regression (SVR) prediction
model we previously developed (Han et al., 2019). The independent
variable in the optimization function was the amino acid composition of
the short peptides to be added, expressed as number of each amino acid
in a vector (Fig. 1). The SVR model we developed only accepted amino
acid composition of a protein as input, so we did not consider the full
sequence information during the optimization. Then the amino acid
composition of a model protein with the added amino acids was calcu-
lated and used as input for the SVRmodel. We used the genetic algorithm
(GA) with the objective function defined as the predicted protein solu-
bility from the SVR model in the format of continuous values between
0 and 1. The sum of the number of amino acids added was set as 20 or 30
and the searching range for the number of each amino acid added was
from 0 to 20 or 30.

3.2. Optimizing protein sequence in silico for improving protein solubility

After designing this optimization algorithm, ten proteins with low
solubility (0.1) in the eSol database (we had used this database to train
our machine learning model (Han et al., 2019)) were selected as model
proteins to test the algorithm (information of these proteins is provided
in Supplementary Table S2). The predicted solubility of all the ten pro-
teins was improved after adding 30 amino acids as peptide tags (Sup-
plementary Fig. S2). One protein’s solubility (name: AGAW,
4

N-acetylgalactosamine-specific enzyme IIC component of PTS) was
improved to 0.9951 from 0.1 after adding the designed short peptide
tags. When we allowed adding only 20 instead of 30 amino acids, the
improvement of predicted solubility slightly decreased (Supplementary
Fig. S2). Since it is easier and cheaper to add 20 amino acids in experi-
ments than 30, we adopted adding 20 amino acids as the constraint in the
rest of this study.

To make this study more relevant to useful applications of recombi-
nant enzymes, we selected six proteins which were important in engi-
neering metabolic pathway of E. coli to produce valuable metabolites
(information of these proteins is provided in the caption of Fig. 2). These
proteins’ predicted solubility was all lower than 0.6. Adding 20 amino
acids also substantially improved the predicted solubility of all the six
proteins (Fig. 2). Three proteins (TAL, DXS and VALC) were chosen to
experimentally validate the optimization results since their original
predicted solubility was low.

We also included AGAW in the test because of the large improvement
we observed in the in silico optimization. The number of the amino acids
to be added was allowed to be decimal during the optimization and was
rounded for experimental validation. The predicted solubility after
rounding the number of the amino acids added was very similar to that
before rounding for all the tested proteins (Supplementary Table S6). To
generate sequence of the two tags to be added to a protein from the
number of amino acids we minimized the occurrence of amino acid re-
peats, which reduced the difficulty in synthesizing the related DNA oli-
gonucleotides. The sequence of the tags for those four proteins is listed in
the Supplementary Tables S7–S10.

3.3. Experimental validation of the optimized protein sequence

We constructed expression vectors to express the four proteins with
and without the optimized tags. Among them, protein AGAW cannot be
expressed (as determined by using SDS-PAGE) with and without the tags,
which may be caused by the unstable protein structure or unsuitable
experimental conditions. Protein VALC can be expressed only without
the peptide tags which may have impaired the protein stability. Protein
TAL and DXS were expressed with and without the tags (Fig. 3). Protein
solubility of TAL and DXS was increased by 118% and 16% respectively
by adding the tags.

By observing the amino acids added to DXS and TAL (Fig. 3b and
Supplementary Table 5), it can be found that their peptide tags were
dominated by aspartic acid (D) and glutamic acid (E). Aspartic acid and
glutamic acid are the two negatively charged amino acids among the 20
amino acids. Adding them may introduce repulsive electrostatic in-
teractions between protein molecules to prevent aggregation and to
provide sufficient time for correct folding of proteins (Paraskevopoulou
and Falcone, 2018). The similarity of the peptide tags inspired us to test
whether one tag designed for one protein can be used to improve solu-
bility of another protein. We found that the tags optimized for improving
solubility of TAL could also increase both predicted and measured solu-
bility of DXS, and vice versa (Fig. 4a). Another protein (name: ADA,
aldehyde dehydrogenase) used in a project of our laboratory was also
tested with the tag designed for TAL and its predicted and measured
solubility were also enhanced (Fig. 4a). The results of switching tags
suggested that the tags we designed may be generally effective in
improving protein solubility.

The dxs tag was slightly better than the tal tag in terms of improving
the solubility of TAL (Figs. 3b and 4a), although the tal tag was designed
specifically for TAL. One reason is that the optimization algorithm we
used may have stopped at local optima rather than global optima,
although it was designed to search for the global optima. Therefore, it
was possible that some better solutions could exist. GA does not guar-
antee finding the global optima for all the types of functions, and the
function in our problem was a black-box model which might not be
continuous. The other reason is that measured solubility from experi-
ments might be affected by multiple factors, such as the sequence of



Fig. 2. The predicted solubility before and after adding 20 amino acids for six
proteins commonly used in metabolic engineering projects. The six proteins
were VALC (valencene synthase), DXS (1-deoxy-D-xylulose-5-phosphate syn-
thase), ADH2 (alcohol dehydrogenase), CHS (chalcone synthase), 4CL (4-cou-
marate-CoA ligase) and TAL (tyrosine ammonia-lyase). The sequences of oligos
used to amplify these proteins are listed in Supplementary Tables S7–S10.
Before adding the tags, the protein solubility of each of them was predicted by
using SVR and recorded. Then Genetic Algorithm was used to improve their
solubility by adding 20 amino acids. The protein solubility after adding the tags
was also recorded for comparison.
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amino acids in the tags, which we did not consider during the in silico
optimization.

The ultimate goal of this project was to improve activity of enzymes.
Following the success of improving protein solubility, we measured ac-
tivity of TAL with and without the tags. Protein TAL is tyrosine ammonia
lyase which can deaminate tyrosine to produce coumaric acid (Fig. 4c),
which is an important precursor of flavonoids (Jendresen et al., 2015;
Rodriguez et al., 2015; Santos et al., 2011). TAL activity was increased by
269% by adding the tags we designed for it (Fig. 4d, based on 12 h re-
action). The extent of the increase in activity was even larger than that in
solubility, suggesting that adding the tags may also increase the expres-
sion level and/or specific activity of soluble TAL. Estimation of the pro-
tein expression level based on band intensity of the SDS-PAGE gels
revealed that the total expression level was reduced by adding the tags
Fig. 3. (a) The SDS-PAGE analysis of protein TAL and DXS expressed in E. coli with
having or not having the peptide tags respectively. “P” and “S” indicate the pellet fract
of TAL and DXS were 53.85 kDa and 67.49 kDa respectively (two arrows were used to
with 20 g/L glucose at 30 �C. This experiment was repeated four times and the other S
presentation of the SDS-PAGE images in a. Solubility of a protein is defined as the
protein amount was estimated by using band intensity on SDS-PAGE images. The sequ
acid S and G on the two ends of the tags were the linkers for GT DNA assembly standa
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(Fig. S5), suggesting that the additional increase should be attributed to
the changes of specific activity. This result proved that our optimization
scheme for protein solubility was also effective for improving protein
activity - at least for this protein - and using protein solubility as a proxy
to increase protein activity was reasonable.
3.4. Design of tags under more constrained conditions

Among the four proteins selected for experimental validation, protein
VALC (valencene synthase) cannot be synthesized only after the tags
were added. This may be caused by the fact that the stability of VALC was
damaged after adding the highly negatively charged tags. Our prediction
model and optimization algorithm only took the protein solubility into
account. However, other properties of the proteinmay be changed during
the addition of highly charged tags, such as the protein stability.
Therefore, we explored whether the peptide tags that contained mainly
aspartic acid and glutamic acid can be replaced by tags that contain less
charged amino acids to improve protein solubility.

The constrained condition that the number of aspartic acid and glu-
tamic acid cannot be more than a threshold was therefore set in the
optimization algorithm. The threshold was from 0 to 10 with step size of
1 for aspartic acid and glutamic acid respectively (Supplementary
Table S11). When the maximal number of aspartic acid and glutamic acid
allowed to be added was reduced gradually from 10, the predicted sol-
ubility was decreasing but the change was small. With the decrease in the
number of aspartic acid and glutamic acid, the number of lysine (K)
increased substantially. Other amino acids only had a relatively small
increase in the optimization solutions. When the constrained condition
was very strict, for example, no aspartic acid and glutamic acid were
allowed, the amino acids introduced were mostly alanine (A).

Another constrained condition was explored which limited the net
charge of the peptide tags. In this case, the upper bound for the absolute
value of the net charge of the tag was set as 5, 4, 3, 2, 1, and 0, respec-
tively (Supplementary Table S12) and it could be observed that the
number of alanine increased substantially with the decrease of net
charge, which was consistent with the results obtained under the other
constraint and supported that introducing alanine may be beneficial for
the dissolution of protein or the optimization failed to find a feasible
solution under such stringent constraints.

The tags with net charge 1, 3, and 5 (Supplementary Fig. S3e, Sup-
plementary Table S12) were used with VALC. These new tags did not
and without tags designed by our optimization algorithm. “þ” and “-” indicate
ion (insoluble) and supernatant fraction (soluble) respectively. Molecular weight
indicate them in the figure). Protein TAL and DXS were expressed in K3 medium
DS-PAGE images were shown in the Supplementary Figs. S3a–c. (b) Quantitative
fraction of the soluble protein molecules among all the protein molecules. The
ences of the designed tags for N-terminal and C-terminal were shown. The amino
rd, which was used to guide plasmid construction in this study (Ma et al., 2019).



Fig. 4. (a) The predicted and measured solubility of TAL, DXS and ADA after adding tags designed for other proteins. The purpose of switching tags was to test if the
solubility-enhancing tags were generally effective in improving protein solubility. The same protein was labelled by using the same color to highlight the data before
and after adding tags. In the data labels, the text before “-” indicates protein name and the text after “-” indicates the tags used if any. In the process of measuring the
solubility, the protein expression condition was K3 medium with 20 g/L glucose at 30 �C. The SDS-PAGE images were shown in the Supplementary Fig. S3d. (b) The
comparison of the tags designed in this study with tags used in previous studies. Protein TAL was the only model protein used in this plot. No tag: solubility of TAL
without any tag. Tal tag: solubility of TAL when we added the tags that were designed by our optimization algorithm for TAL. 5xE tag –N/C: solubility of TAL when
5xE tag (EEEEE) was added to its N- or C-terminus. 5xD tag –N/C: solubility of TAL when 5xD tag (DDDDD) was added to its N- or C-terminus. 3x(GDDD) –N/C:
solubility of TAL when 3x(GDDD) tag (GDDDGDDDGDDD) was added to its N- or C-terminus. 5xD, 5xE and 3x(GDDD) were three tags used in a previous study and
used here for comparison (Paraskevopoulou and Falcone, 2018). Since in previous studies, only one tag was added to one protein, either at N- or C-terminus, we tested
both cases for each tag. The two tags we designed for TAL were added to both ends of TAL (Figs. 1 and 3b). The sequences of all the tags are provided in Supplementary
Tables S7–S10. The SDS-PAGE images were shown in the Supplementary Fig. S3f. (c) The reaction catalyzed by protein TAL. (d) The enzymatic activity of protein TAL
before and after introducing the tal tag. A control was included to show that there was no reaction if TAL protein was absent. The product of the reaction catalyzed by
protein TAL was p-coumaric acid (PCA) and its concentration was used to indicate the activity of protein TAL. Cell lysate containing TAL was used in the reaction. TAL
– tal tag: the strain containing TAL with the tags designed in this study. Tal – no tag: the strain containing TAL without any tag. No TAL: the strain that did not express
TAL. Each bar indicates the mean value of six replicates. The error bars indicate standard error (n ¼ 6).

X. Han et al. Metabolic Engineering Communications 11 (2020) e00138
abolish protein expression, confirming the hypothesis that excessive
amount of aspartic acid and/or glutamic acid destabilized the protein
(Fig. 5 and Supplementary Fig. S3). However, the solubility of protein
VALC was not improved by the tags. VALC may have strong affinity to
cellular membranes and thus cannot be solubilized by the designed tags.

3.5. Comparison with previous studies

To find out if the tags we obtained from our optimization were more
effective than published ones (Paraskevopoulou and Falcone, 2018), we
compared them by using our predictive model and by conducting ex-
periments. We used TAL as the model protein here, because its solubility
was experimentally confirmed to be low and its measured solubility can
be substantially improved by adding tags. All the three previously known
polyanionic tags increased solubility of TAL when added to its N-termi-
nus (Fig. 4b). But none of them outperformed the tags identified in our
optimization, supporting the usefulness of the tags and the optimization
procedure we reported here. In addition, there was a desirable correla-
tion between the predicted protein solubility and measured protein sol-
ubility based on all the solubility data of TAL we obtained (Fig. 4b). The
linear correlation between predicted solubility and measured solubility
was quantified by R2 with a value of 0.57. Although the previous study
explored tags including aspartic acid and glutamic acid by trial and error,
our study provided better optimization performance and a generally
effective quantitative model.
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4. Discussions

4.1. Using machine learning for optimizing protein properties

Usingmachine learning to assist the selection of proteins with specific
properties has been explored recently (Heckmann et al., 2018; Z. Wu,
Kan, Lewis, Wittmann and Arnold, 2019; Yang et al., 2019). Heckmann
et al. utilized machine learning to predict the turnover number of en-
zymes in E. coli, which were further used to parameterize two mecha-
nistic genome-scale models. The machine learning model was trained by
using the information of protein structure, biochemistry properties and
assay conditions in the study (Heckmann et al., 2018), whereas protein
sequences were used to train the predictive model in our study. There-
fore, it would be more difficult to use their model to optimize protein
sequence for improving protein activity. Wu et al. incorporated machine
learning into the directed evolution workflow to help them identify
proteins with high fitness value (Z. Wu et al., 2019). Then it was applied
to engineering an enzyme for stereodivergent carbon–silicon bond for-
mation, a new-to-nature chemical transformation. However, their
training data for machine learning only included variants mutated at four
amino acid residues. A protein might include multiple positions for
mutagenesis and information of four positions is not representative
enough to train a machine learning model to handle other positions. The
selection of mutagenesis positions needs to be customized based on prior
knowledge of the protein structure. Compared with the studies



Fig. 5. (a) The SDS-PAGE analysis of protein VALC
expressed in E. coli without tag (”-“) and with the tag
designed without the charge constraint (”þ“). “P” and
“S” represented the pellet (insoluble) fraction and
soluble fraction respectively. (b) The predicted solu-
bility of protein VALC without tag (grey), with the tag
designed without the charge constraint (blue) and
with the tag designed with the charge constraint
(yellow). (c) The SDS-PAGE analysis of protein VALC
expressed in E. coli without tag (”-“) and with the tag
designed with the charge constraint (”þ“). (d) The
number of amino acid contained in the 20-amino-acid
tag designed for protein VALC.
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mentioned above, we do not need to train our prediction model again
when we handle a new protein. In our study, we utilized the machine
learning model to identify proteins with a generic protein property,
protein solubility. Our training dataset was obtained by using various
proteins of E. coli and the optimization methodology did not need any
customization and knowledge in biochemistry for new target proteins.
With only the sequence information, our optimization model can provide
effective guide for improving protein solubility and activity. We foresee
that our generic model can be combined with the protein-specific models
to achieve additive or even synergistic effect in metabolic engineering
projects.
4.2. The contribution of aspartic acid and glutamic acid

In this study, we applied a predictive model of protein solubility to
improve protein solubility by adding short peptide tags. Aspartic acid and
glutamic acid dominated the tags that were obtained by using our opti-
mization strategy. This finding was consistent with the conclusion of an
experiment we did to determine which amino acids were the most
important in determining accuracy of our solubility prediction model. In
the experiment, we removed the percentage information of two amino
acids and evaluated the negative impact on the performance of the pre-
dictive model. The model’s input was a protein’s amino acid composi-
tion, among which the percentages of 19 amino acids were independent.
As a result, removing information of only one amino acid would have no
impact on model performance and we had to remove the percentages of
two amino acids. We evaluated all the combinations of two amino acids.
After removing aspartic acid or glutamic acid, the decrease in the pre-
diction performance was the most substantial (Fig. 6a), indicating that
they were the most important ones to the accuracy of the model. The
causal relationship between the observations from this experiment
(Fig. 6a) and the finding of the optimization experiment could be that
aspartic acid and glutamic acid had large positive influence on protein
solubility (as seen in the optimization experiment), so they were
important to the accuracy of the model (as observed in the importance
analysis experiment). Arginine, which also showed some influence on the
prediction performance when it was removed (Fig. 6a), was not selected
during the optimization process. This might be caused by that arginine
negatively affected the protein solubility and this hypothesis was tested
(Supplementary Fig. S4). After adding 20 arginine residues to six pro-
teins, the predicted solubility of all of them was decreased. The afore-
mentioned effects of glutamic acid, aspartic acid and arginine were also
supported by their Spearman correlation coefficients (Fig. 6c), which
were obtained by analyzing the dataset we used to train our model. There
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were some amino acids that were identified to be important by Spearman
coefficient (Fig. 6c) but were not found to be critical to model perfor-
mance (Fig. 6a), such as tryptophan and phenylalanine. It may be due to
that Spearman coefficient alone is not sufficient to quantitatively
describe the effects of amino acid on protein solubility because of its
qualitative nature and because it did not consider abundance of other
amino acids (Fig. 6b). In this study, we have shown that our machine
learning model is able to quantitatively describe the relationship and
guide optimization of protein sequence.

When we trained the solubility prediction model through machine
learning, we did not use any biochemistry knowledge. The optimization
of protein tag to maximize protein solubility was also purely mathe-
matical without any dependence on prior knowledge. Yet, the identified
most beneficial amino acids and their influence on protein solubility can
be explained by using known biochemistry knowledge (electrostatic
repulsion). As to why the best tags were dominated by negatively
charged amino acids rather than positively charged ones, the reason
might be that positively charged amino acids may also improve protein
solubility but their influence is less than those of negatively charged
amino acids. When the number of the negatively charged amino acids
was constrained, the optimization algorithm used positively charged
amino acid (lysine) to improve protein solubility, which led to less
improvement in solubility than using the negatively charged ones (Sup-
plementary Tables S11 and S12).

5. Conclusions

In this study, we adopted the strategy of adding small peptides tags
(each tag contained 20 amino acids) to less soluble proteins to improve
protein solubility, which was less likely to disturb the active sites of
target proteins. In an in silico optimization experiment based on GA and a
machine learning model in silico, the amino acid composition of the short
tags were varied to maximize the protein solubility. With the tags
designed by this procedure, the solubility of three enzymes, TAL, DXS
and ADA, was improved substantially in subsequent experimental vali-
dation. Protein TAL, with 118% increase in protein solubility, was
selected as the model protein to test if its catalytic activity was also
improved. An 250% improvement was observed. In addition, we have
also experimentally demonstrated that our peptide tags outperformed the
commonly used polyanionic tags. The tags identified in this study and the
related algorithms should be useful to metabolic engineers who need to
debottleneck the rate-limiting reaction in a metabolic pathway, and/or to
balance activity of multiple enzymes for production of value-added
chemicals.



Fig. 6. (a) Importance of various amino acids in
determining the accuracy of the SVR model. The R2 of
the SVR model was shown by using a heat map after
removing the information of two types of amino acids.
Model training is described in Materials and Methods.
Single letter amino acid abbreviations are used in this
figure. All the combinations of removing two types of
amino acids are tested and the performance of the
resulting models is presented in the upper triangular
matrix. Performance of the models was gauged by
using R2, which is presented here by using color (a
color bar is provided). The darker the color is, the
more important the related amino acids are to the
model performance. (b) The distribution of amino
acid composition (the input variables of the SVR
model we used) among all the proteins in the eSol
database (the date source we used to train the SVR
model). The violin plot showed the mean value and
the range of the amino acid composition used to train
the SVR model. (c) The Spearman’s rank correlation
between actual/predicted protein solubility and
various amino acids. Spearman’s correlation, ρspearman,
is a measure of monotonicity and represents the gen-
eral sensitivity of solubility to amino acid composi-
tion. A comparison between the Spearman’s rank
correlation tornado plot for actual solubility and pre-
dicted solubility depicted how the model captured
and magnified general trends between amino acid
composition and solubility. For example, for both the
actual and predicted solubility of proteins in the eSol
dataset, the composition of D, E, or K was positively
correlated with solubility.
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Codes availability

We present the optimization workflow as a series of notebooks hosted
on GitHub (https://github.com/KangZhouGroupNUS/optimization
_protein-solubility). The workflow can be used as a template for anal-
ysis of other expression and solubility datasets.
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