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Abstract

Novel multiplexed spatial proteomics imaging platforms expose the spatial architecture of

cells in the tumor microenvironment (TME). The diverse cell population in the TME, includ-

ing its spatial context, has been shown to have important clinical implications, correlating

with disease prognosis and treatment response. The accelerating implementation of spatial

proteomic technologies motivates new statistical models to test if cell-level images associate

with patient-level endpoints. Few existing methods can robustly characterize the geometry of

the spatial arrangement of cells and also yield both a valid and powerful test for association

with patient-level outcomes. We propose a topology-based approach that combines persistent
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homology with kernel testing to determine if topological structures created by cells predict

continuous, binary, or survival clinical endpoints. We term our method TopKAT (Topolog-

ical Kernel Association Test) and show that it can be more powerful than statistical tests

grounded in the spatial point process model, particularly when cells arise along the boundary

of a ring. We demonstrate the properties of TopKAT through simulation studies and apply it

to two studies of triple negative breast cancer where we show that TopKAT recovers clinically

relevant topological structures in the spatial distribution of immune and tumor cells.

1 Introduction

Use of spatially-resolved, multiplexed proteomics imaging is rapidly expanding in oncology research

[1, 2, 3, 4]. The ability of spatial proteomic technologies to comprehensively probe the intricate

spatial arrangement of tumor, immune, and stromal cells in the tumor microenvironment (TME)

provides critical knowledge on how the TME affects tumorigenesis and disease progression [5, 6],

treatment response [7], and eventual patient survival [8, 9]. Multiplexed spatial proteomics has

been successfully implemented to elucidate the effect of the TME on clinical outcomes in breast

[8, 7, 10], colorectal [11], and lung cancers [12, 13], among other diseases [14, 15].

Despite the growing usage of spatial proteomic technologies [16], tools for analyzing the resulting

cell-level data lag far behind technical developments, with a serious dearth of tailored, flexible,

and robust analytic methods for studying how cellular arrangements are related to patient-level

outcomes. Many current findings have been derived from inconsistent, informal or qualitative, or

even invalid statistical approaches. Studies using formal, inferential statistical analyses have focused

on summarizing the spatial arrangement of cells within a circle of radius r using spatial summary

statistics [17, 18, 19, 20]. These summary statistics, such as Ripley’s K [21], quantify the degree

to which the cells exhibit clustering, dispersion, or complete spatial randomness. This neglects

the complex geometric arrangements cells form, for example, around dense tumor regions, necrotic

areas, or blood vessels. This geometric information may be clinically or biologically relevant and may

be difficult to detect using summary statistics like Ripley’s K. In addition, these methods rely on the

assumption of homogeneity or the idea that the number of cells per unit area is constant irrespective
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of location. If this assumption is violated, as it often is due to gaps or tears in the tissue during

sample processing [22], we may lose power to detect an effect on clinical outcomes. Finally, existing

approaches are also restricted to a single clinical-outcome type. Several recent approaches work for

binary phenotypes (e.g. treatment response) [23, 20, 24] but do not accommodate other important

outcomes such as right-censored survival or quantitative outcomes. The lack of appropriate and

adaptable tools poses a serious challenge, limiting full utilization and interpretation of the rich data

arising in spatial proteomic studies.

The goal of our work is to characterize the geometry of how cells organize in tissue and ex-

amine if this geometric characterization associates with patient-level outcomes, such as survival

and treatment response. To identify clinically relevant geometric structures among cells, we com-

bine the topological data analysis (TDA) technique known as persistent homology (PH) [25] with

kernel association testing to produce the Topological Kernel Association Test (TopKAT). Opera-

tionally, TopKAT uses PH to characterize the size and number of homologies, namely connected

components and loops, formed by cells in tissue. Then, TopKAT compares whether samples with

similar topological or geometric cell structures also exhibit similar clinical phenotypes using kernel

association testing. While TDA has seen some basic utility in clinical omics [26, 27, 28, 29], it is

notably absent from mainstream analyses of spatial proteomics and existing deployments have not

been integrated with formal statistical hypothesis testing. To address this, we integrate PH with

the powerful nonparametric kernel association testing framework commonly used for other genomic

data types [30, 31, 32].

TopKAT contributes to both statistical methodology and to our ability to derive insights from

spatially-resolved, cell-level imaging data, particularly multiplexed spatial proteomics. In terms of

statistical methodology, TopKAT combines PH, which is often used descriptively [33], with kernel

testing to allow inferential analysis based on the PH summary statistic, the persistence diagram

[25], within a unified framework. TopKAT also facilitates deeper clinical and biological insights

from spatially-resolved, cell-level imaging through a number of advantages. First, in contrast to

existing approaches, leveraging TDA focuses on how cells form geometric structures, including

loops, rather than the relationships between pairs of cells. Second, PH detects these structures
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across a range of scales, offering a holistic assessment of how cells are organized. These advantages

allow us to compare different samples on the basis of the presence, absence, and size of geometric

features, revealing which samples are, geometrically-speaking, more similar. Third, PH possesses a

“smoothing” effect, in the sense that it mitigates noise, such as mislabeled cells or technical artifacts,

within images of the heterogeneous biopsies. PH thus produces a rich, yet robust, description of

how cells are arranged in tissue. Finally, integration with kernel approaches allows one to utilize

these frameworks for rigorous and robust statistical inference across various study designs, clinical

outcome types, and analytic objectives. We demonstrate through extensive simulation studies that

TopKAT offers higher power and better type I error control than existing alternatives which utilize

spatial summary statistics. Further, we apply TopKAT to data from two studies of triple negative

breast cancer (TNBC) [8, 7] to illustrate the importance of topological structure among cells in

describing patient survival and response to immunotherapy treatment.

2 Results

2.1 Overview of TopKAT

TopKAT is a global test for the association between topological (geometric) structures within the

spatial distribution of cells in cell-level imaging and sample-level outcomes, adjusting for potential

confounders. The motivation is that the geometry of the spatial distribution of cells may charac-

terize a phenotype with clinical implications.

Operationally, TopKAT follows a three-step procedure (Figure 1). First, TopKAT captures the

topological structure of the cells within each image using PH and by applying a Rips filtration

[33]. PH reveals the abundance and size of homologies, the generalized concept of a hole. Since

our single-cell images are two-dimensional, we are interested in detecting connected components

(which represent dense masses of cells) and loops (which represent regions where cells arise along

the boundary of a ring but are absent from the center.) The topological structure of each image is

characterized in a summary statistic termed a persistence diagram [33].

The second step is to compute a pairwise distance matrix quantifying the distance (or dis-
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similarity) between each pair of persistence diagrams. We construct a distance matrix for each

homology (connected components and loops) which allows us to describe the differences between

samples based on each type of topological structure. We then convert these distance matrices to

kernel matrices which describe the pairwise similarity between persistence diagrams.

Finally, we use a kernel testing framework [34] to test for an association between the similarity

in persistence diagrams and similarities in continuous, binary, or survival outcomes, adjusting for

covariates. To include information from each homology group, we consider a series of weighted

combinations of the kernel matrices for the connected components and loops. We iterate across

each potential combination and aggregate the resulting p-values using the Cauchy combination test

[35]. If similarities among the persistence diagrams (quantity and size of homologies) align with

similarities in the outcome, topological structures within the TME are associated with outcomes,

such as treatment response or survival.
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Figure 1: Flow chart illustrates the steps of the TopKAT method. The input data for TopKAT are
cell-level images (A). TopKAT then characterizes the topological structures created by cells in each
image and summarizes this information via persistence diagrams (B). TopKAT then calculates the
similarity between each pair of persistence diagrams, quantified in kernel matrices where each entry
reflects how similarity between corresponding pairs of persistence diagrams (C). In this example,
the images arise from two groups of patients (group 0 and group 1) whose cell-level images exhibit
different topological structures. The similarities between images within these groups are highlighted
in red and blue boxes. TopKAT then inputs the kernel matrices into a kernel machine regression
model to test for an association with clinical outcomes (D).
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There are several advantages to using TopKAT. First, PH describes the geometry of the spatial

distribution of cells which can be used to compare the topological differences between samples with

distinct outcomes. This description of the spatial distribution of cells is robust to perturbations in

the data due to technical artifacts [33]. This is essential because our analysis is downstream of a

complex normalization, segmentation, and phenotyping pipeline which may contribute to noise in

the images, such as mislabeled cells. Second, PH can be used to identify global structures within

the TME, such as large masses of immune cells or regions within the TME where immune cells are

unable to penetrate. These attributes are difficult to capture by other approaches, such as spatial

summary statistics [22]. These global structures have been shown to be clinically informative in

breast cancer [8, 7], which we explore in Sections 2.3 and in the Supplementary Materials Section

7.

2.2 Simulation Study

We evaluated the validity (type I error control) and power of TopKAT on simulated images and

compared it to existing approaches to assess the advantage of using topological information to

predict clinical outcomes. We studied three variations of TopKAT: in the first, we only considered

similarities in the number and size of connected components across images; in the second, we only

considered similarities among loops; and in the third, we aggregated the kernel matrices across

similarities in both homology groups using the Cauchy combination test (Supplementary Materials

Section 2). We compared TopKAT to existing approaches grounded in the spatial point process

model, including SPOT [17], FunSpace [18], and SPF [19], which we henceforth refer to as “spatial

methods.” These methods describe the spatial arrangement of cells within circles of radius r, varying

the size of this radius.

We simulated n = 100 samples exhibiting different geometric structures among the cells. We

split the samples into two groups of 50 and selected a different geometric structure to randomly

simulate within each group. This included random numbers of squares (“square”), loops (“loop”),

bivariate Gaussian distributions (“clusters”), simulated tissue images using the scSpatialSIM R

package [36] (“simulated tissue”), and complete spatial randomness (“CSR”). Examples of these
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images are provided in the Supplementary Materials Section 5.2. The simulation conditions are

referred to based on the geometric structures chosen for each group, e.g., squares vs. loops, loop

vs. CSR. To assess power, survival outcomes for these two groups were simulated from exponential

distributions with different rates with a hazard ratio of 2. To assess validity, the outcomes across

both groups were simulated from the same exponential distribution. We simulated survival out-

comes, though TopKAT accommodates continuous and binary outcomes which are illustrated in

our data applications.

The results are given in Table 1. Across all conditions, TopKAT offers higher power, and across

most conditions, more tightly controls type I error than the spatial approaches. This suggests that

(1) topological information (connected components and loops) captures the different geometric and

spatial arrangements among the cells and (2) our choice of distance measure and kernel function

capture the similarities and differences in this topological information between images. TopKAT far

exceeds the spatial methods in power under scenarios in which loops were simulated (“loop vs. CSR”

or “square vs. loop”). All three variations of TopKAT exhibited power around 0.89, whereas the

spatial methods exhibited power between 0.52 and 0.69. This is because TopKAT explicitly detects

the presence and size of loops while the spatial methods capture cell density within a specific radius.

TopKAT, however, also detects differences in cell density, as shown by the “square vs. CSR” and

“cluster vs. CSR” conditions. Here, the images contained either tight masses of cells (squares, which

reflect large connected components), diffuse masses of cells (clusters, which also reflect connected

components), or random noise (CSR). TopKAT and the spatial methods showed comparable power

(around 0.88 for TopKAT and between 0.78 and 0.85 for the spatial methods). Finally, TopKAT

is sensitive to detecting differences due to tissue structure. Under “simulated tissue,” TopKAT

detected differences in tissue structure were associated with sample-level phenotypes. Identifying

these structural associations is essential for real applications [29].

Within TopKAT, we compared using topological information from each homology group: only

the connected components (“dim 0” in Table 1) or only the loops (“dim 1” in Table 1). We

contrasted these with an omnibus test across both groups (“omnibus” in Table 1). Intuitively, in

scenarios with dense regions of cells (e.g. “square vs. CSR”), testing solely based on similarities
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square vs. CSR loop vs. CSR square vs. loop cluster vs. CSR simulated tissue

Model Power Type I Error Power Type I Error Power Type I Error Power Type I Error Power Type I Error

TopKAT (dim 0) 0.899 0.044 0.894 0.054 0.830 0.054 0.886 0.048 0.877 0.050
TopKAT (dim 1) 0.882 0.050 0.895 0.060 0.863 0.059 0.885 0.045 0.876 0.052
TopKAT (omnibus) 0.907 0.048 0.895 0.058 0.851 0.055 0.884 0.047 0.878 0.052
SPOT 0.770 0.051 0.610 0.055 0.593 0.052 0.845 0.052 0.800 0.059
SPF 0.754 0.059 0.609 0.063 0.685 0.067 0.781 0.058 0.726 0.069
FunSpace 0.681 0.047 0.516 0.054 0.578 0.058 0.825 0.050 0.669 0.059

Table 1: Power and type I error rates for TopKAT vs. spatial methods (SPOT, SPF, FunSpace)
across a range of simulated images for a survival outcome. TopKAT (dim 0) refers to TopKAT
using only the kernel matrix derived from the persistence of dimension-0 homologies (connected
components). TopKAT (dim 1) refers to TopKAT using the kernel matrix derived from persistence
of dimension-1 homologies (loops).

among the connected components should yield more power. We observed this to be the case, as

TopKAT (dim 0) power (0.899) slightly exceeded the power of TopKAT (dim 1) (0.882) in this

condition. In scenarios where loops were simulated, detecting only loops should be more powerful

than detecting only connected components. We found that this was the case, though the gain in

power was slight (0.895 for TopKAT (dim 1) vs. 0.894 for TopKAT (dim 0)). Overall, neglecting the

“correct” topological structure for each scenario did not lead to a marked reduction in power. For

example, using only the loops yielded power of 0.88 (vs. 0.90 for TopKAT (dim 0)) under “square

vs. CSR.” This reflects the subtle topological information available in these images. For example,

in images simulated under CSR, there are small loops present among the randomly-scattered cells

which distinguishes these images from large square masses. In general, however, TopKAT using an

omnibus approach offered similar or higher power compared with using a single homology group.

2.3 Application to Multiplexed Ion Beam Imaging of Triple Negative

Breast Cancer

We applied TopKAT to multiplexed ion beam imaging time-of-flight (MIBI-TOF) data obtained

from a study of triple negative breast cancer (TNBC) [8]. This study used MIBI-TOF to probe

the spatial expression of 36 proteins in breast tumor tissue biopsied from 38 TNBC patients. The

goal of the study was to explore the associations between the cellular structure of the TME and

clinical endpoints, including overall survival. The data contains images selected as representative
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of the cellular structure within each tumor sample. Cells were phenotyped as either immune cells

(CD4 T cells, CD8 T cells, CD3 T cells, natural killer cells, B cells, macrophages, dendritic cells,

neutrophils, or monocytes) or non-immune cells (tumor cells, epithelial cells, mesenchymal cells, or

endothelial cells).

Keren et al. discovered that the biopsies exhibited distinct “structured” TMEs. Biopsies could

be categorized as either (1) compartmentalized, where immune and tumor cells segregated into

distinct regions from each other (Figure 2A), (2) mixed, where immune and tumor cells colocalized

(Figure 2B), or (3) cold, where few immune cells were detected within the tumor compartment of

the biopsy. These categories further exhibited differential survival outcomes, with compartmental-

ization associated with improved survival, underscoring the clinical relevance of these global cell

structures within the TME. Of the n = 38 samples, 18 exhibited mixed TMEs, 15 exhibited com-

partmentalization, and 5 were immune cold. These categories were determined based on a “mixing

score” which was computed as the number of immune-tumor cell interactions divided by the num-

ber of immune-immune cell interactions. The resulting categories (mixed, compartmentalized, and

cold) were provided in the published data. The goals of our analysis were to: (1) characterize the

global structure of immune cells among the biopsies using persistent homology and (2) relate this

structure to overall survival.

In the Supplementary Materials Section 6, we describe how TopKAT significantly differentiates

between mixed, compartmentalized, and cold TMEs. Here, we focus on mixed and compartmen-

talized samples and closely examine the topological structures inherent to immune cells among

these biopsies. Figures 2C and 2D show persistence diagrams in two example compartmentalized

and mixed samples. Comparing these two, the compartmentalized TME contained connected com-

ponents and loops that persisted longer than in the mixed TME. Indeed, the average maximum

lifespan for connected components in compartmentalized TMEs was slightly larger than in mixed

TMEs (179.69 vs. 171.66) and was much larger for loops (215.29 vs. 164.45). This is intuitive:

compartmentalized TMEs exhibit large masses of immune cells which persist longer as connected

components within the Rips filtration than in mixed TMEs. Compartmentalized TMEs may also

show large gaps or loops representing regions where tumor cells resided that prevented immune
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cells from infiltrating.

We then followed the procedure given in Section 7.5 to identify the distance between cells at

which mixed and compartmentalized TMEs showed the most distinctions in topological structure.

TopKAT yielded the smallest p-value at a distance of 73.6 (Supplementary Figure 2). In Figures 3A

and 3B we illustrate the simplicial complex built based on the immune cells at this distance on two

example samples. These figures show a close recapitulation of the immune cell structures visualized

in Figures 2A and 2B. We then explored how often immune cells were connected at a distance of

73.6. On average, compartmentalized TMEs exhibited a large number of connections within B cells,

CD4 T cells, macrophages, and CD8 T cells (Figure 3C). These connections potentially reflect the

presence of tertiary lymphoid structures, which arise at sites of consistent inflammation [37]. On

average, mixed TMEs exhibited connections among these immune cell types, but also included more

diverse connections among CD3 T cells, T regulatory cells (Treg), and neutrophils (Figure 3D).

Finally, we examined if similarities in the topology of each TME predicted overall survival.

Consistent with the original study findings, we observed mixed, segregated, and cold TMEs cor-

responded to distinct survival outcomes (p = 0.011). Note that the spatial methods considered

in Section 2.2 (SPOT, SPF, and FunSpace) could not consistently recapitulate these results. For

these approaches, we considered a range of radii between 0 and 512. We did not find significant

associations between the spatial arrangement of immune cells and survival using these approaches.

Only SPOT and FunSpace were able to detect pairwise differences in immune cell structure between

mixed and cold TMEs (both methods) and compartmentalized and cold TMEs (FunSpace only).

In the Supplementary Materials Section 7, we describe using TopKAT to analyze an additional

study of triple negative breast cancer to examine how the TME differs between responders and

non-responders to immunotherapy treatment.
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Figure 2: Comparing the persistence diagrams for two example mixed and compartmentalized tumor
microenvironments. Examples of compartmentalized (A) and mixed (B) samples show distinct
spatial arrangements of tumor and immune cells. Persistence diagrams illustrating the scales and
lifespans of connected components and loops among immune cells are shown in (C) and (D) for
the example compartmentalized TME and example mixed TME. In the compartmentalized TME,
connected components and loops among immune cells tend to persist longer than the mixed TME.
Loops also tend to be larger in compartmentalized TMEs, as evidence by their longer lifespans.
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Figure 3: Exploring the connections among immune cells at a clinically relevant distance. We
obtained the distance at which mixed and compartmentalized tumor microenvironments (TMEs)
are most distinct topologically, which occurs at distance 2ϵ = 73.6. Two example compartmentalized
(A) and mixed (B) samples with this distance overlaid are shown. We then illustrate the average
number of connections between immune cell phenotypes at this distance in Figures (C) and (D)
among compartmentalized and mixed TMEs, respectively.
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3 Discussion

Imaging with cell-level resolution, including multiplexed spatial proteomics, can reveal the cellular

composition of the tumor microenvironment which is known to associate with clinical outcomes.

There is an absence of valid and robust statistical methods for testing for this association and a

lack of consistency among methods across studies. To address this gap, we combined persistent

homology and kernel association testing in TopKAT. TopKAT is a global test of whether similarities

in the quantity and scale of homologies among the single-cell images aligns with similarities in a

clinical outcome to determine if topological structure among the cells is clinically informative.

We illustrated the power and type I error rate of TopKAT on simulated data and found that

TopKAT outperforms existing methods for revealing the relationship between cell structures in the

image and clinical outcomes. This was especially apparent when the cell architecture contained

loops which persistent homology is well-suited to capture. TopKAT may be modified to up- or

down-weight the contribution of each degree-k homology to suit the hypotheses of the investigator.

In our simulations, we found that aggregating across connected components and loops offered

similar or higher power than considering one dimension alone. This may be particularly beneficial

in scenarios where the importance of each homology is unknown. However, if a priori knowledge

suggests a certain homology may be more strongly associated with sample-level outcomes, the

weighted aggregation of the kernel matrices may be modified to suit. An example scenario where

this could arise is in samples known to exhibit regions of necrosis, where immune cells may not be

able to infiltrate.

There are several limitations and directions to expand upon this work. First, TopKAT does not

distinguish between cell types in construction of the filtration. In our two triple negative breast

cancer applications, we used TopKAT to examine the spatial architecture of cells irrespective of

phenotype. After the fact, we examined which immune cell types were highly connected within the

simplicial complex formed at a clinically-relevant distance between cells. Examining these connec-

tions may reveal important structures among distinct cell phenotypes. However, the interpretation

based on the TopKAT p-value is still agnostic to cell type. TopKAT could be run on each cell type
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separately, or on any subset of the cell types, though this would not distinguish the contributions of

each cell type in constructing the homologies. We also presented TopKAT based on the construction

of a Rips filtration, the use of a total dissimilarity based the lifespans of homologies, and a Gower’s

centered kernel. These choices yielded a fast and intuitive test, but could be modified. Different

distances or dissimilarities may uncover more pronounced differences among the persistence dia-

grams. Other kernels, such as an exponential kernel, may better capture the relationship between

topological structure of the cells and patient outcomes. The impact of these choices is beyond

the scope of this article, but warrants further evaluation. Another limitation is that this method

does not accommodate multiple regions-of-interest imaged within the same biopsy. This could be

addressed by considering an aggregation of the persistence diagrams across images within a biopsy,

but this remains to be explored in future work. Finally, TopKAT is a global test of association

between the topological structure of the images and outcomes. One could consider, say, examining

if the average lifespan of a particular homology, such as the connected components, associates with

patient outcomes and estimate the effect of an increase in the average lifespan on the outcome.

4 Data Availability

The data for the application given in Section 2.3 can be found at https://www.angelolab.com/

mibi-data. The data for the NeoTRIP application given in the Supplementary Materials Section

7 can be found at https://zenodo.org/records/7990870.

5 Code Availability

Software to implement TopKAT is available in an R package available at https://sarahsamorodnitsky.

github.io/TopKAT/.
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7 Methods

7.1 Notation

Assume we have n two-dimensional multiplexed spatial proteomics images obtained from tissue

biopsies collected from n individuals. In our case, we are interested in examining the spatial

distribution of cells in the tumor microenvironment and use language pertaining this application.

However, this methodology is appropriate for any study involving the spatial arrangement of cells

in tissue. Each image is represented by a matrix of 2D (x, y) coordinates for the location of each

cell. Let y : n × 1 represent a vector of patient-level outcomes, which may be continuous, binary,

or right-censored survival endpoints. Let X : n× p represent a matrix of p clinical covariates, e.g.

sex or age, that we would like to adjust for in our kernel association test.

Our goal is to test for an association between the topological features within each image and

clinical outcomes, adjusting for covariates. To achieve this, we proceed in the following steps:

1. We first summarize the topological information contained in each image using persistence

diagrams. We obtain these diagrams using persistent homology and by constructing a Vietoris-

Rips filtration [25].

2. We then construct an n × n pairwise distance matrix quantifying the distance between each

pair of persistence diagrams. We obtain a distance matrix for each homology group (con-

nected components and loops). To facilitate the use of kernel machine regression, we convert

the distance matrices to kernel matrices which quantify the similarity between persistence

diagrams for each homology.

3. Finally, we use kernel machine regression to relate the similarity in persistence diagrams to
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clinical outcomes, adjusted for covariates.

We describe these steps in more detail below.

7.2 Computing Persistent Homology

The first step in the TopKAT pipeline is to summarize the topological information in each image

using persistent homology. Persistent homology is a topological data analysis technique that cap-

tures the size of connected components (homologies of degree-0) and loops (homologies of degree-1)

within a 2D point cloud [33]. To capture these features, persistent homology relies on constructing

an evolving graph of nodes and vertices where the nodes represent each point in the point cloud

(in our case, cells in an image). The graph, known as a simplicial complex, evolves based on a

scale parameter ϵ that is varied from 0 to ∞. As ϵ changes, connected components (homologies

of degree-0) and loops (homologies of degree-1) will appear (birth) and disappear (death) in the

resulting graph and the difference between the birth and death scales is termed the lifespan of

a feature. Geometric features with longer lifespans correspond to larger (i.e., “more persistent”)

features of the data. The most persistent connected components and loops are the ones we hope to

capture and will introduce the most information in our subsequent kernel association test.

The process of varying ϵ to generate a sequence of simplicial complexes is called constructing

a filtration. We compute a Vietoris-Rips filtration (also known as a Rips filtration) because it is

fast, efficient, and intuitive. Let S represent a 2D spatial image of cells. For ϵ ≥ 0, the simplicial

complex generated within the Rips filtration is defined as

V Rϵ(S) = {σ ⊆ S | d(x, y) ≤ 2ϵ for all x, y ∈ σ} (1)

In plain terms, the Rips complex at ϵ is a subset, σ, of S that contains the ϵ-neighborhood graph

of S [33]. As ϵ grows, we obtain a sequence of nested subsets, σϵ1 , σϵ2 , . . . which allows us to study

the evolution of connected components and loops in this space.

The values of ϵ at which each geometric feature is born and dies is recorded and summarized

using a persistence diagram [33]. Formally, a persistence diagram, Z, is a multiset of points defined
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as

Z = {(hj , bj , dj) : j = 1, . . . , |D|} ∪∆ (2)

where hj represents the homology degree of the jth point, bj represents the scale at which the

jth feature is born, and dj represents the scale at which the jth feature dies. |D| counts the

total number of connected components and loops detected during filtration and ∆ refers to the

all the points along the diagonal y = x line [38]. We will use the persistence diagram as our

summary statistic to capture the geometric information about the spatial distribution of cells in

each multiplexed image. Computation of persistent homology is efficiently implemented in the

TDAstats R package [39].

7.3 Distance and Kernel Matrix Construction

Given a sequence of persistence diagrams, Z = (Z1, . . . , Zn), we would like to use these as covariates

in a test of association between topological structure in our images and clinical outcomes. To

do this, we use a kernel machine learning framework which relies on first constructing a kernel

matrix, K. To obtain K, which describes the similarity between persistence diagrams, we first

construct a pairwise distance matrix between the samples and convert this to a kernel matrix.

Since persistent homology emphasizes uncovering “persistent” degree-0 and degree-1 homologies,

we use the following dissimilarity measure which we term total dissimilarity :

Dk(Zi, Zj) =

nk∑
p=1

∣∣∣ℓ(zki(p))− ℓ
(
zkj(p)

)∣∣∣ (3)

where nk = max(nk
i , n

k
j ) is the maximum number of homologies of degree-k between Zi and Zk and

ℓ
(
zk·(p)

)
is the lifespan of the pth longest-living homology of degree k in persistence diagram Z·.

To compute this distance, the features of degree-k are first ordered from highest to lowest lifespan.

Any difference in the number of features is filled in with zeros. The sum of deviations between

ordered lifespan statistics is computed as given in Equation 3. Dk(Zi, Zj) emphasizes a similarity

in (1) quantity and (2) lifespan of degree-k homologies found in persistence diagrams Zi and Zj .
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Intuitively, Zi and Zj with a similar number of degree-k features with similar lifespans will have

a comparatively small Dk(Zi, Zj). This yields K distance matrices corresponding to each of the

degree-k homologies, k = 1, . . . ,K. These distance matrices, denoted Dk, are converted to kernel

matrices using a Gower’s centered kernel:

Kk = −1

2

(
I− 11T

n

)(
Dk

)2 (
I− 11T

n

)
(4)

where I : n× n is the identity matrix and 1 is a n× 1 column vector of 1s. We convert the Dk to

kernel matrices to leverage kernel machine regression, which we discuss in the next section.

7.4 Kernel Machine Regression

We now would like to relate the persistence diagrams, Z, to a clinical outcome, y, via a kernel

machine regression model. Here we focus on a survival outcome, but this framework extends to

continuous and binary outcomes which are discussed in the Supplementary Materials. For a survival

outcome, suppose we observe {Yi,∆i}ni=1 where Yi = min(Ti, Ci) is the recorded event time (either

the time of the survival event Ti or the censoring time Ci) and ∆i = I(Ti ≤ Ci) is an event indicator.

To test if Z is associated with survival time, we use a kernel machine Cox proportional hazards

model:

λ(t;X,Z) = λ0(t) exp (Xβ + f(Z)) (5)

where β represents the effect of known confounders on the log-hazard for survival and f(·) is a

smooth, unknown, and centered vector-valued function that is assumed to belong to a space spanned

by a positive-definite kernel K(·, ·) [34]. The kernel function, K(·, ·), quantifies the similarities

between samples Zi and Zj , i ̸= j which, in our case, are persistence diagrams. We are interested

in testing if f(Z) has an effect on the log-hazard for survival. Intuitively, if similarities between

persistence diagrams aligns with similarities in outcomes, we should expect to see a non-zero effect

of f(Z) on y [31].

Within this kernel machine Cox regression model, the null and alternative hypotheses we wish
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to test are:

H0 : f(Z) = 0 vs. H1 : f(Z) ̸= 0 (6)

To test H0, we leverage the relationship between kernel machine Cox regression and linear mixed

modeling [40]. We can rewrite the model given in Equation 5 as:

λ(t;X,Z) = λ0(t) exp
(
Xβ +Kkα

)
(7)

where (β,α) are unknown parameters to be estimated. Our null hypothesis then becomes H0 :

Kkα = 0. Maximizing the penalized partial likelihood corresponding to Equation 7 is equivalent

to estimating a Cox survival model with a random intercept for each sample:

λ(t;X,Z) = λ0(t) exp (Xβ + h) (8)

where hT = (h1, . . . , hn)
T ∼ Normal(0, τKk) is a vector of random effects with covariance propor-

tional to the kernel matrix for homology degree-k, Kk. Therefore, testing H0 : Kkα = 0 is the same

as testing H0 : τ = 0. We can test this null hypothesis using the variance-component score test

which requires only fitting the null model under τ = 0, λ(t;X,Z) = λ0(t) exp (Xβ). This implies

that the test is a valid statistical test even if an undesirable kernel is chosen. However, the choice of

kernel will impact power [31, 41]. An exploration of the properties of a desirable kernel are beyond

the scope of this work.

This variance-component score test statistic for the kernel machine Cox model based on degree-k

is:

Qk = m̂TKkm̂ (9)

where m̂ = (m̂1, . . . , m̂n) represents a vector of Martingale residuals under H0 where m̂i = ∆i −∫∞
0

yi(t) exp(β̂
T
Xi)dΛ̂0(t) and Λ̂0(t) =

∑n
i=1 ∆iI(Ti ≤ t)/Ŝ0(Ti) is Breslow’s estimator of the

baseline hazard function under the null and Ŝ0(t) is the estimator of the baseline survival function.

To handle tied survival times, we use Efron’s approximation [42]. More information is given in [41]
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Under H0, Q
k has an asymptotic distribution of a mixture of χ2

1 distributions. The p-value can

then be computed analytically using Davies method [43].

In the Supplementary Materials Sections 1 and 2, we discuss a small sample correction and

accommodating kernel matrices from both connected components and loops. Both approaches were

used in the TNBC application described in Section 2.3. We also discuss adaptations of TopKAT

for continuous and binary outcomes in Supplementary Materials Sections 3 and 4.

7.5 Interpretation

Persistent homology examines the longevity of topological features in each image throughout the

filtration. We consider a stepwise approach to determining the distance between cells, 2ϵ, within

the Rips filtration where we observe the strongest association between persistence diagrams and

outcomes.

We first select the maximum distance at which a death of a topological feature was observed

across all n persistence diagrams. We call this distance 2ϵmax. We then consider a sequence of

length T of distances between 0 and 2ϵmax. For each ϵt for t = 0, . . . , T (ϵ0 = 0), we threshold the

persistence diagrams to only features which were born and had died during filtration by distance

2ϵt. We perform the kernel machine regression test described in Section 7.4 and store the resulting

omnibus p-value. At the end, we identify which distance yielded the smallest p-value. Denote

the selected distance 2ϵbest. 2ϵbest is then interpreted as the maximum distance between cells

at which the lifespans and number of topological features was most strongly associated with the

outcome. Note that in this case, we are treating the p-value as a statistic and would not recommend

interpreting these as p-values in the traditional sense.

Once the “best” distance is obtained, we can conduct further post-hoc analyses. For example,

we can consider which cell types are highly connected within the resulting simplicial complex

constructed at the identified radius.
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