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Abstract  
Background: People hospitalized with COVID-19 often exhibit hematological alterations, 

such as lower lymphocyte and platelet counts, which have been reported to associate with 

disease prognosis. It is unclear whether inter-individual variability in baseline 

hematological parameters prior to acute infection influences risk of SARS-CoV-2 infection 

and progression to severe COVID-19.  

Methods: We assessed the association of blood cell counts and indices with incident SARS-

CoV-2 infection and severe COVID-19 in UK Biobank and the Vanderbilt University Medical 

Center Synthetic Derivative (VUMC SD). Since genetically determined blood cell measures 

better represent cell abundance across the lifecourse, we used summary statistics from 

genome-wide association studies to assess the shared genetic architecture of baseline 

blood cell counts and indices on COVID-19 outcomes. 

Results: We observed inconsistent associations between measured blood cell indices and 

both SARS-CoV-2 infection and COVID-19 hospitalization in UK Biobank and VUMC SD. In 

Mendelian randomization analyses using genetic summary statistics, no putative causal 

relationships were identified between COVID-19 related outcomes and hematological 

indices after adjusting for multiple testing. We observed overlapping genetic association 

signals between hematological parameters and COVID-19 traits. For example, we observed 

overlap between infection susceptibility-associated variants at PPP1R15A and red blood 

cell parameters, and between disease severity-associated variants at TYK2 and lymphocyte 

and platelet phenotypes.   

Conclusions: We did not find convincing evidence of a relationship between baseline 

hematological parameters and susceptibility to SARS-CoV-2 infection or COVID-19 severity, 

though this relationship should be re-examined as larger and better-powered genetic 

analyses of SARS-CoV-2 infection and severe COVID-19 become available.  

 

Keywords: COVID-19, hematological traits, genetic correlation, Mendelian randomization 

 

 

Background 
  

The COVID-19 pandemic caused by the SARS-CoV-2 virus has been responsible for 

>352 million cases and >5.6 million deaths worldwide as of January 26, 2022 [1]. The 

clinical course and severity of SARS-CoV-2 infection and illness are heterogeneous. While 

SARS-CoV-2 infection is characterized by respiratory manifestations and pulmonary 

complications, infection can elicit a complex immune-inflammatory and thrombotic host 

response with multi-organ system involvement [2]. Thus, hematologic abnormalities, 

including T cell lymphopenia, expanded peripheral immature neutrophils, activated 

monocytes, thrombocytopenia, and lower hemoglobin levels are often observed in 

hospitalized COVID-19 patients and can fluctuate with disease progression and severity [3-

7]. Some of these clinical hematologic laboratory parameters measured at the time of 

hospital admission have been associated with more severe COVID-19, as well as response 

to treatment [4, 5]. Further, hematologic, immune, and hemostatic abnormalities may 

contribute directly to organ damage and dysfunction associated with severe COVID-19 

given the central role of blood cells in tissue oxygenation (red cells), innate and adaptive 
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immune response (monocytes and lymphocytes) and thrombosis (platelets, neutrophil 

extracellular trap or NET formation) [8-14]. Therefore, establishing causal pathways 

between blood cells and COVID-19 could lead to the discovery of effective treatments for 

COVID-19 through repurposing existing drugs currently used to treat blood or immune-

related disorders [15].  

 The effect of an individual’s underlying or “baseline” (i.e. before acute infection) 

hematologic profile on SARS-CoV-2 infection susceptibility and COVID-19 severity is 

currently not well understood. Previously studies have reported associations between 

blood cell traits and COVID-19 severity using blood cell indices measured after time of 

infection or hospitalization, and there have been some inconsistencies across studies [4-7, 

16-19]. When blood cell indices are measured after SARS-CoV-2 infection, associations 

between COVID-19 susceptibility or prognosis with blood cell abundance may reflect acute 

alterations due to infection or a variety of co-morbidities related to the course of COVID-19 

illness (i.e., reverse causality). In order to characterize the relationship between baseline 

blood cell measurements and risk of SARS-CoV-2 infection or COVID-19 hospitalization, we 

tested for association between hematological values measured prior to SARS-CoV-2 

infection and incident COVID-19 outcomes in two large, longitudinal biobank datasets (UK 

Biobank and the Vanderbilt University Medical Center Synthetic Derivative (VUMC SD)).  

Genetic factors that contribute to hematologic conditions or to inter-individual 

phenotypic variation in hematologic or immune response parameters may influence host 

susceptibility or resistance to COVID-19 outcomes [20]. Baseline blood cell measurements 

are influenced by genetic factors, as well as by long-term environmental, medical, 

sociodemographic and lifestyle/behavioral factors [21, 22]. Compared to observational 

studies that assess measured blood cell parameters (either pre-infection or during acute 

illness), studies of blood cell traits and COVID-19 that leverage genetic variants, which have 

been constant for a given individual since birth, may be useful in assessing shared genetic 

architecture and disentangling putative causal relationships. Therefore, we conducted 

genetic correlation and two-sample Mendelian randomization analyses of blood cell 

phenotypes with SARS-CoV-2 infection and COVID-19 severity using available summary 

statistics from the COVID-19 Host Genetics Initiative (HGI) together with a recent GWAS of 

hematologic traits [23]. Further, we evaluated individual coincident loci from these two 

analyses. These analyses allowed us to investigate whether genetically determined blood 

cell parameters measured prior to disease initiation are causally related to COVID-19 

susceptibility. 

 

Results 

 

Measured Blood Cell Analysis 

 

We tested for associations between baseline-measured levels of 15 hematologic traits and 

COVID-19 hospitalization and SARS-CoV-2 infection in our discovery data set of 423,358 

UK Biobank (UKB) participants (see Methods, Supplementary Table 1). Basophil 

percentage (beta =-0.73, p =3.56e-4) demonstrated association with SARS-CoV-2 infection 

at the Bonferroni-adjusted threshold (α = 0.05/15=0.003) (Table 1). Mean cell hemoglobin 

(beta = -0.38, p = 2.88e-3), and mean cell volume (β= -0.19, p = 3.49e-4) demonstrated 
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evidence of association with COVID-19 hospitalization at the same Bonferroni-adjusted 

threshold (Table 2). We then attempted to replicate these associations in an independent 

dataset of up to 1,037,358 participants in the VUMC SD (Supplementary Table 1). 

However, none of these three significant hematology trait-COVID outcome associations 

observed in UKB were replicated in VUMC SD (Supplementary Table 2).  

 

Blood Cell 

Trait (Units) 

UKB Est. 

(s.e.) UKB p 

VUMC SD Est. 

(s.e.) VUMC SD p 

Meta-

Analysis Est. 

(s.e.) 

Meta-

Analysis p 

Meta-

Analysis 

Direction 

Basophil (%) -0.73 (0.2) 3.56E-04 0 (0.17) 0.996 -0.31 (0.13) 2.05E-02 -- 

Hematocrit 

(%) -0.11 (0.04) 4.47E-03 -0.04 (0.02) 0.01 -0.05 (0.02) 7.07E-04 -- 

White Blood 

Cell (x109/L) 0 (0.08) 0.96 -0.12 (0.02) 4.78E-09 -0.11 (0.02) 1.65E-08 +- 

Table 1. Measured Blood Cells associated with reported SARS-Cov-2 infection. UKB, UK Biobank; Est., β 

estimate; s.e., standard error; VUMC SD, Vanderbilt University Medical Center Synthetic Derivative. 
 

 

Blood Cell 

Trait (Units) 

UKB Est. 

(s.e.) UKB p 

VUMC SD Est. 

(s.e.) VUMC SD p 

Meta-

Analysis Est. 

(s.e.) 

Meta-

Analysis p 

Meta-

Analysis 

Direction 

Mean 

Corpuscular 

Hemoglobin 

(pg) -0.38 (0.13) 2.88E-03 -0.02 (0.03) 0.59 -0.04 (0.03) 0.21 -- 

Mean 

Corpuscular 

Volume (fL) -0.19 (0.05) 3.49E-04 0.01 (0.01) 0.29 0 (0.01) 0.82 -+ 

RBC 

Distribution 

Width (%) 0.35 (0.22) 0.12 0.25 (0.04) 8.85E-10 0.25 (0.04) 2.79E-10 ++ 

White Blood 

Cell (x109/L) 0.13 (0.12) 0.31 -0.15 (0.04) 1.03E-04 -0.12 (0.04) 6.16E-04 +- 

Table 2. Measured Blood Cells associated with COVID-19 hospitalization. UKB, UK Biobank; Est., β 

estimate; s.e., standard error; VUMC SD, Vanderbilt University Medical Center Synthetic Derivative. 
 

 As a follow-up analysis, we meta-analyzed the measured blood cell – COVID 

outcome results from UKB and VUMC SD (Tables 1 and 2). Total white blood cell count 

demonstrated evidence of association with both SARS-CoV-2 infection (β = -0.11, p = 1.65 

e-8) and COVID-19 hospitalization (β = -0.12, p = 6.16 e-4); however, these associations 

were primarily driven by the VUMC SD cohort. Additionally, red blood cell distribution 

width was associated with COVID-19 hospitalization (β = 0.25, p = 2.79 e-10) and 

hematocrit was associated with SARS-CoV-2 infection (β = -0.05, p = 7.07e-4) (Tables 1 

and 2)., Given the inconsistencies in results between the VUMC SD and UKB analyses, the 

remainder of our analyses focus on genetic summary statistic-based analyses, which enable 

the assessment of invariant factors impacting blood cell abundance across the lifecourse 

(with similar sample size available for all blood cell phenotypes in well-powered published 

analyses in UKB [23]).  

 

Analysis of Coincident Loci for SARS-CoV-2/COVID-19 and Blood Cell Traits 
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Next, for individual variants previously found to be associated with SARS-CoV-2 infection 

and COVID-19 severity in recent large meta-analyses from HGI [24], we assessed whether 

these signals were coincident with a statistically distinct blood cell trait associated variant. 

If two loci are coincident, this suggests blood cell abundance could be a putative mediator 

of the SARS-CoV-2/COVID-19 association. We note that such locus level analyses are 

important even when there is no genome-wide genetic correlation, where differing 

directions of effect in different regions of the genome, for example, could lead to a null 

genome-wide result [25]. We obtained summary statistics for conditionally independent 

GWAS significant variants, i.e. distinct variants, for 29 hematological traits from a recent 

large GWAS in UKB participants of European ancestry [23]. For each sentinel variant for 

SARS-CoV-2 infection, COVID-19 severe illness, and hospitalization from the HGI full meta-

analysis results, we considered the corresponding lead variant from the meta-analyses 

excluding UKB (column 1 and 2 of Supplementary Table 3). We then assessed coincidence 

between distinct GWAS variants for blood cell traits from a GWAS in UKB and lead/sentinel 

variants for both SARS-CoV-2 infection and COVID-19 severe illness and hospitalization 

from the HGI meta-analysis results [24], based on linkage disequilibrium (LD) (see 

Methods).  

 

Overall, five HGI COVID-19 related sentinel variants were in moderate linkage 

disequilibrium (r2 > 0.4) with at least one distinct blood cell trait variant. Of the five COVID-

19 sentinel variants, two are located within highly differentiated regions of the genome 

with complex patterns of polymorphism, pleiotropy, LD and evolutionary selection (ABO 

[26, 27] and HLA [28]), which would make analysis of coincident signals difficult to 

interpret and outside the scope of this manuscript. Therefore, we report results on the 

three remaining COVID-19 sentinel variants based on their associations in: (1) rs4801778 

(chr19:49,370,609) which was associated with reported infection and overlaps several red 

cell-associated GWAS loci; (2) rs74956615 (chr19:10,427,721) which was associated with 

severe illness and hospitalization and overlaps several GWAS signals for lymphocyte and 

platelet phenotypes; and (3) rs35081325 (chr3:45,889,921), the sentinel variant for severe 

illness and COVID-19 hospitalization, which overlaps a nearby locus associated with 

monocyte count and percentage (Supplementary Table 3).  

 

Relationship of chromosome 19 (49Mb-50Mb) locus to red blood cell phenotypes 

rs4801778, (hg19 position: chr19:49,370,609) is both associated with reported infection in 

the full HGI meta-analysis and a distinct GWAS variant for reticulocyte count and 

reticulocyte proportion in UKB. rs4801778 remains the corresponding lead variant at this 

region after excluding UKB. rs4801778 is in strong LD (r2 = 0.935) with rs11541192 (hg19 

position: 49,377,424), a missense variant of PPP1R15A (as also noted in [29]). rs11541192 

was reported as a distinct GWAS variant for high light scatter reticulocyte proportion in 

UKB (Figure 1). Additionally, rs4801778 is in moderate LD (r2 = 0.408) with a second 

missense variant of PPP1R15A, rs556052 (hg19 position: 49,377,436), a distinct GWAS 

variant for RBC distribution width (RDW). rs4801778 is in moderate LD (r2=0.427) with 

another RDW signal, a 3 prime UTR variant, rs594597. Additionally, our results 

demonstrate that rs4801778 is in high LD (r2 =0.998) with a mean corpuscular hemoglobin 

variant (MCH), rs3830423 and in strong LD (r2 = 0.864) with an immature reticulocyte 
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fraction (IRF) variant, rs73061632 (hg19 position: 49,361,663). Additionally, the frequency

of rs4801778 is variable across populations (allele frequency of 16% in African, 19% in 

European, 14% in South Asian, and 2% in East Asian ancestry populations in 1000 

Genomes Phase 3 v5 (1000G)). Our results suggest that the association between SARS-CoV-

2 infection and rs4801778 co-localizes with association signals for several red blood cell 

phenotypes.   

 

 
Figure 1. Coincident loci analysis results for rs4801778 and high light scatter reticulocyte proportion 

in UKB GWAS. rs4801778 (diamond), a lead variant in the HGI COVID-19 GWAS for SARS-CoV-2 infection , 

was found to be a coincident signal with rs11541192, a distinct variant for high light scatter reticulocyte 

proportion (HLSR%). rs11541192 is a missense variant for PPP1R15A. Triangles are conditionally 

independent GWAS variants for blood cell traits as determined by conditional analysis in Vuckovic et al. 2020 

[23]. Legend: r2 = r2.  

 

Relationship of chromosome 19 (10Mb-11Mb) locus to lymphocyte and platelet phenotypes 

rs74956615 (chr19:10,427,721) was a sentinel variant in the HGI meta-analysis associated 

with increased risk for severe illness and hospitalization due to COVID-19. After excluding 

UKB, rs74956615 remained the sentinel variant for severe illness but rs11085727 

(chr19:10,466,123) was the sentinel variant for hospitalization. As previously reported 

[24], rs74956615 is in high LD (r2 = 0.75) with rs34536443 (chr19:10,463,118), a missense

variant in TYK2. However, rs11085727 is not in LD with rs34536443. rs34536443 was 

reported as a distinct GWAS variant for lymphocyte count, lymphocyte proportion, platelet 

count and plateletcrit. Our results suggest that the association between rs74956615 and 

severe illness and hospitalization due to COVID-19 coincides with lymphocyte and platelet 

phenotypic associations near TYK2 (Figure 2), suggesting links with immunity and 

thrombosis related cell types.  
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Figure 2. Coincident loci analysis results for rs74956615 and lymphocyte and platelet count in UKB 

GWAS. rs74956615 (diamond), a lead variant in the HGI COVID-19 GWAS for COVID-19 severe illness and 

hospitalization, was found to be a coincident signal with rs34536443, a distinct variant for platelet and 

lymphocyte traits. rs34536443 is a missense variant for TYK2. Triangles are conditionally independent GWAS

variants for blood cell traits as determined by conditional analysis in Vuckovic et al. 2020. Legend: r2 = r2. 
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Relationship of chromosome 3 (45Mb-46Mb) locus to monocyte and eosinophil phenotypes 

We investigated coincidence between rs10490770 (chr3:45,864,732), a sentinel variant for

infection, severe illness, and COVID-19 hospitalization, and nearby monocyte count 

associations (Figure 3). After excluding UKB from the HGI meta-analysis, rs35081325 

(chr3:45,889,921) is the lead variant for severe illness and hospitalization, and 

rs35508621 (chr3: 45,880,481) is the lead variant for SARS-CoV-2 infection. 

A previous GWAS of hematologic traits identified nine distinct monocyte count 

GWAS variants within 2Mb of the COVID sentinel variant(s). Of the nine distinct monocyte 

GWAS variants, none were in LD with rs10490770 or rs35508621 (LD r2 <= 0.05). 

However, both rs35081325 and rs35508621 are in moderate LD (r2 = 0.47 with both 

variants, respectively) with rs74586549 (chr3:45,926,043), a LZTFL1 intronic variant 

which was identified as a distinct GWAS signal for eosinophil percentage (Figure 4) [23]. 

Additionally, the frequency of both variants are highly variable across populations (minor 

allele frequency of 0.4% in African, 8% in European, 30% in South Asian and 0.5% in East 

Asian populations in 1000G). Our results do not provide evidence of coincidence with 

monocyte associations but do suggest eosinophils as a potential mediator of this COVID-19 

severe illness and hospitalization associated locus. Analyses in this region may benefit from

future fine mapping studies with larger sample sizes in diverse ancestral populations. 

 

Figure 3. Coincident loci analysis results for rs35081325 and monocyte count in UKB GWAS.   

rs35081325 (diamond), a lead variant in the HGI COVID-19 GWAS for COVID-19 severe illness and 

hospitalization was not found to be coincident with any of the nine nearby monocyte GWAS distinct variants. 

Triangles are conditionally independent GWAS variants as determined by conditional analysis in Vuckovic et 

al. 2020. Legend: r2= r2. 
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Figure 4. Coincident loci analysis results for rs35081325 and eosinophil percentage in UKB GWAS.  

rs35081325 (diamond), a lead variant in the HGI COVID-19 GWAS for COVID-19 severe illness and 

hospitalization was found to be coincident with rs74586549, a distinct GWAS variant for eosinophil 

proportion. Legend: r2 = r2. 

 

Genetic Correlation Analyses 

In order to assess the shared genetic architecture of blood cell traits with COVID-19 

severity and SARS-CoV-2 reported infection, we performed LD Score Regression to 

estimate genetic correlation. Genetic correlation provides an estimate of the overlap in 

terms of evidence of associations for a pair of complex traits with existing genome-wide 

summary statistics [30]. Overall, we estimated genetic correlations for 29 blood cell trait 

phenotypes with reported SARS-CoV-2 infection, severe COVID-19 illness, and 

hospitalization.  

 

There were no significant genetic correlations at the Bonferroni-corrected threshold (α = 

0.05/87) (Supplementary Table 4). We did identify two nominally significant (p < 0.05) 

genetic correlations: mean sphered cell volume with hospitalization, and immature 

reticulocyte fraction with COVID-19 severe illness (Table 3).  There were no nominally 

significant genetic correlations between blood cell traits and reported infection 

(Supplementary Table 4). Of all the blood cell traits tested, lymphocyte percent had the 

smallest p-value with reported infection (rg = 0.138, p = 0.1051).  
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COVID-19 

phenotypes Blood Cell Trait 

Genetic Correlation 

Estimate 

Genetic Correlation 

se p-value 

Hospitalization  
Mean Sphered Cell 

Volume 0.09 0.04 0.04 

Critical illness 

Immature 

Reticulocyte 

Fraction 0.10 0.05 0.05 

Table 3. Significant LD score regression genetic correlation estimates, standard errors and p-values. 

 

 

Mendelian Randomization Analyses 

In order to further assess shared genetic architecture as well as potential directional causal 

associations between blood cell traits measured pre-infection and the three COVID-19 

outcomes, we performed Mendelian randomization (MR) analysis with blood cell traits as 

exposures and COVID-19 phenotypes as outcomes. In contrast to genetic correlation and 

analysis of coincident loci, MR analyses attempt to assess the causal effect of one trait on 

another, not simple local or genome-wide sharing of genetic association signal [25]. Our 

instrumental variables were the distinct variants identified from previous GWAS signals for 

blood cell traits in individuals of European ancestry, as used above for analysis of 

coincident loci (see Methods; [23]). Compared to the instrumental variables used in the 

MR analysis in the HGI flagship paper (all GWAS sentinels for an exposure trait), our 

reduced set of distinct variants is less likely to contain weak instruments that would bias 

the MR causal estimate [31, 32]. Additionally, samples were excluded from the 

hematological trait GWAS in UKB European ancestry participants based on relevant 

exclusions to blood cell variation (such as excluding individuals with positive pregnancy 

status, certain drug treatments, etc, Supplementary Table 6), rather than including all 

UKB European ancestry participants. For our analysis, we used the HGI COVID-19 summary 

statistics excluding UKB participants[33] to prevent potential confounding. When there is 

no significant evidence of directional pleiotropy (MR-Egger Intercept p-value > 0.05) we 

report the causal effect estimate as the inverse-variance weighted (IVW) estimator of the 

causal effect on the log odds ratio scale. Otherwise, we report the MR-Egger causal effect 

estimate. As a measure of robustness, we provide the weighted median estimates of the 

causal effects as well. The full MR results are shown in Supplementary Table 5. 

 

There was only one significant MR test at a stringent Bonferroni-adjusted threshold (α = 

0.05/87). We found that variants affecting basophil proportion also affect COVID-19 

hospitalization (MR-Egger causal estimate 7.84, p = 7.8e-8), with significant directional 

pleiotropy effects (MR-Egger Intercept p = 6e-7). In addition, we identified one hematologic 

trait with a nominally significant MR test (p < 0.05) with COVID-19 hospitalization, and one 

trait with reported infection (Table 4). Specifically, variants associated with increased 

mean platelet volume are associated with increased risk of COVID-19 hospitalization (OR = 

2.067, p = 8.7e-3) (Figure 5), and variants affecting red blood cell count have a negative 

effect on reported infection (OR = 0.412, p = 0.017).  
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COVID-19 Traits Blood Cell Trait 

IVW causal 

estimate 

IVW p-

value 

MR Egger 
intercept 

estimate 

MR Egger 
intercept p-

value 

MR Egger 
causal 

estimate 

MR Egger 
causal p-

value 

Hospitalization 
Basophil (%) 0.99 0.37 -0.19 5.98E-07 7.84 7.84E-08 

Mean Platelet Volume 0.73 8.70E-03 0.03 0.14 0.20 0.65 

Reported 

infection Red Blood Cell Count -0.16 0.41 0.03 0.02 -0.89 0.01 

 

Table 4. Significant Mendelian randomization causal estimates.  
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Figure 5. Selected Mendelian randomization results. Each subfigure shows the estimates (denoted by 

dots) and their 95% confidence intervals (denoted by the range of each bar) for four different estimands. Blue 

color represents significant associations. 
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Discussion 

  

Given the extensive and variable reports that altered blood cell phenotypes are 

found in the setting of COVID-19 illness following SARS-CoV-2 infection, we studied both 

associations between baseline blood cell traits and COVID-19 outcomes as well as potential 

causal relationships with blood cell traits as exposures for COVID-19 outcomes via MR. Our 

results do not support a clear role of baseline blood cell traits (prior to SARS-CoV-2 

infection) in risk of SARS-Cov-2 infection or COVID-19 hospitalization, though we argue our 

genetic analyses in particular should be repeated in the future as sample sizes accumulate 

for COVID-19 related GWAS analyses.  

The mostly modest hematologic trait associations with COVID-19 outcomes we 

observed in the UKB (ex., basophil percentage and reported SARS-CoV-2 infection) could 

not be replicated in the VUMC SD cohort, and had little support from the existing literature 

on blood cell indices measured at time of infection/hospital admission. We hypothesize the 

inconsistencies between the UKB and VUMC SD cohorts may be due to multiple factors. 

Notably, UKB and VUMC SD used differing methods of selecting individuals for blood cell 

measurement (with UKB measuring blood cell indices at a single timepoint in all 

participants with a baseline blood sample, and VUMC SD using median values across 

multiple blood cell measurements, and blood cells only measured in a subset of 

participants, with this subsetting based on a clinical need to run hematological assays). 

There are also different cohort characteristics across these two biobanks (Supplementary 

Table 1), with differing sample sizes for different blood cell traits also potentially 

contributing in VUMC SD (Supplementary Table 2). The somewhat more compelling 

associations in VUMC SD alone of lower white blood cell counts with higher odds of 

reported SARS-CoV-2 infection (perhaps reflecting immune suppression) and of higher 

RDW with higher odds of COVID-19 hospitalization (concordant with previous associations 

of RDW at time of COVID-19 hospitalization with mortality [34], as well as prior RDW 

associations with clonal hematopoiesis [35], inflammation[36], and mortality in other 

contexts [37, 38]) were not replicated in UKB. Lack of replication may in part be due to 

systematic differences in biobank recruitment (notably clinical ascertainment for VUMC SD, 

with nonrandom reasons for which blood cell assays are ordered in this clinical setting, 

versus population-based sampling in UKB across a narrow age range, with a recruitment 

bias towards healthier participants than the UK population as a whole [39]). By contrast, 

blood cells might be measured more frequently in VUMC SD in participants impacted by 

certain diseases or using certain medications. Such differences between populations can 

lead to variability in measured phenotypes and highlights the value of examining genetic 

variation underlying such traits, though of course genetic findings can also be susceptible 

to gene x gene and gene x environment impacts that may vary by population.  

Given the extensive data we have on genetic variants impacting blood cell traits [23, 

40, 41], we next attempted to examine both coincidence of specific loci associated with 

blood cell traits and COVID-19 susceptibility/severity and genome-wide summary-based 

measures, including overall genetic correlation and MR analyses. Our analyses demonstrate 

a lack of concordance between MR and genetic correlation results and the strongest 
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individual coincident associations with measured blood cells (ex., the PPP1R15A locus on 

chr19p13 and red blood cell parameters). The measured blood cell traits that are most 

strongly associated with COVID-19 related hospitalization in the combined VUMC SD and 

UKB analysis, including RDW, may be tagging more general inflammatory pathways as 

opposed to playing a causal role in disease pathogenesis, based on the nonsignificant MR 

results. We do note that these analyses should be repeated with future iterations of the 

SARS-CoV-2/COVID-19 genetic analyses, and nominal overall relationships such as MR for 

red blood cell counts and infection (supported by coincident individual locus on chr19p13) 

should be further examined in future releases of COVID-19 focused genetic association 

summary statistics. We note that the heritability estimates of severe illness and 

hospitalization for COVID-19 were small (h2 = 2.8e-3, se = 7e-4 and h2 = 1.9e-3, se = 5e-4, 

respectively), as was the estimated heritability of reported infection (h2 = 9e-4, se = 3e-4), 

consistent with estimates reported in the HGI flagship manuscript [29]. By contrast, we 

found that the 29 assessed blood cell traits had estimated heritabilities of up to 0.31 in our 

genetic correlation analyses (ranging from 0.04 to 0.31). Our analyses are thus likely 

underpowered due to low heritability explained by existing COVID-19 related GWAS.  

Analysis of significance trajectories suggests many more COVID-19 related genetic loci 

remain to be identified, including potentially immune related loci which may be relevant to 

blood cell traits [42].  

Based on analysis of coincident genetic loci, a genomic region on chromosome 

19p13 harboring one of the index variants for SARS-CoV-2 infection overlaps an 

association signal for several RBC traits including reticulocyte count and proportion (and 

partially overlaps association signals for RDW). The red cell – SARS-CoV-2 infection 

association signal in this region overlaps two genes, PLEKHA4 (encoding pleckstrin 

homology domain containing A4) and PPP1R15A (protein phosphatase 1 regulatory 

subunit 15A). As described under Results, this association signals includes several 

missense variants of PPP1R15A. The protein encoded by PPP1R15A is also known as 

GADD34 (Growth arrest and DNA damage-inducible protein 34) and is highly expressed in 

bone marrow. In mice, knockout of Gadd34-is associated with decreased erythrocyte 

volume, increased numbers of circulating erythrocytes, and decreased hemoglobin content, 

resembling human thalassemia syndromes, due to the reduced initiation of the globin 

translation machinery [43]. PPP1R15A/GADD34 activity is also induced following cellular 

stress and has been implicated in response to viral infections (including coronavirus) and 

type 1 interferon production in humans and other species [44-48]. Finally, as noted above, 

there are strong differential allele frequencies of the sentinel PPP1R15A variant across 

global ancestral populations, a pattern that has been reported for other COVID-19 host 

susceptibility variants [49, 50]. Infection-related variants have been found for multiple 

viruses in regions under selective pressure or with allele frequency differences across 

populations [51]. As sample sizes increase for COVID-19 related genetic analysis, it will also 

be interesting to examine the associations of red blood cell related variants with COVID-19 

severity, given potential links with oxygenation/clotting during disease progression.  

As noted previously[29], the COVID-19 associated sentinel variant rs7495661 and 

its LD surrogate, the TYK2 missense variant rs34536443 (p.Pro1104Ala), have been 

previously associated with risk of various autoimmune diseases [52], higher lymphocyte 

count, and lower platelet count. TYK2 is involved in immune response in humans and TYK2 

deficiency results in impairment of cytokine response in mouse models [53, 54]. Given the 
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role of TYK2 in host autoimmunity, it is possible that the association with lower platelet 

count may represent an autoimmune phenomenon due to autoantibodies that inhibit 

platelet production. 

Recently Sun et al. reported an MR analysis of WBC phenotypes [55] using the set of 

distinct genetic variants from Vuckovic et al. [23] and Chen et al. [40] Our variant sets differ 

slightly from those in Sun et al. due to their incorporation of distinct signals from the multi-

population analysis of blood cell traits and the analysis of the multi-population HGI 

summary statistics with larger sample size. Inclusion of multi-population summary 

statistics may lead to issues with the validity of genetic correlation and MR methods, due to 

differences in linkage disequilibrium patterns across global populations and across 

different multi-population summary statistic sets. Nonetheless, those results are consistent 

with ours with respect to direction and effect size for basophils and WBCs. Similarly, Wang 

et al. also performed a MR analysis for hematological parameters and severe COVID-19, but 

using an earlier freeze of the HGI summary statistics and without consideration of multiple 

testing or of the distinct signal list derived in Vuckovic et al. by direct conditional analysis 

(SNP selection was instead based on LD clumping using the 1000G Phase 3 reference 

panel). [56] 

 

We would highlight several key limitations in this work. First, the time between 

SARS-CoV-2 infection/COVID-19 hospitalizations and blood cell measurements were 

variable among individuals and different in UKB. We have attempted to account for this, 

but also emphasize that external factors (diseases, diet changes, etc) may alter 

hematopoiesis and measured blood cell counts, in contrast to genetic factors associated 

with these traits, where alleles are assigned at birth . Second, the measures we examined 

here are those from readily obtained peripheral blood cell counts, but there are other 

interesting hematological measures which are less frequently assessed in large 

populations. For example, specific lymphocyte subsets (such as naïve or memory cells) may 

be relevant to COVID-19 but could not be assessed here. Third, the power of MR analysis is 

still limited for COVID-19 genetics, even with the coordinating efforts of the HGI meta-

analysis. We conducted a MR power analysis at (α = 0.05/87) using the case and control 

counts from the HGI meta-analysis and the minimum and maximum estimated heritability 

from the LD Score Regression analysis for our blood cell traits (h2 range: 0.04 -0.3, 

Supplementary Figure 1). The limited heritability explained by the variants identified in 

the HGI meta-analyses causes challenges in using both genetic correlation and MR analysis 

methods. There is a more up to date version of the HGI meta-analysis which includes more 

samples (Release 6 [57]), but European-ancestry-only summary statistics and summary 

statistics excluding UKB are not yet available. Fourth, COVID-19 case/control definitions in 

available GWAS summary statistics are limited by lack of specificity (ex., the use of 

population controls and lack of more specific information about disease course), though 

such specificity trade-offs are common to maximize power for case/control phenotypes.  

Finally, we note that while several blood cell trait-associated loci coincide with signals for 

COVID-19 severity and SARS-Cov-2 infection, it is difficult to formally evaluate enrichment, 

given the high polygenicity and large number of genome-wide significant signals known for 

highly heritable blood cell phenotypes.   
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Conclusion 

 

Despite the strong epidemiological links with blood cell indices and COVID-19 related 

phenotypes in individuals with existing SARS-CoV-2 infection, as well as the reasonable 

putative biological relevance through roles in immunity, oxygenation, and thrombosis, we 

see little conclusive evidence of association between pre-infection blood cell indices and 

incident SARS-CoV-2 infection and COVID-19 severity, using either epidemiological or 

genetic analysis methods. We do observe evidence of coincidence at some individual 

genetic loci (such as PPP1R15A, TYK2) between SARS-CoV-2 infection and COVID-19 

severity related variants and blood cell related variants. We are hopeful that as more 

balanced case-control studies with increased sample sizes become available for COVID-19 

related phenotypes more definitive conclusions regarding the similarity of blood cell count 

and COVID-19 genetic architecture can be raised.  

 

Methods 

 

We first examined the relationship between measured blood cell indices and COVID-19 

related outcomes in two biobank cohorts. Next, we performed analyses assessing 

coincidence between GWAS identified loci associated with SARS-CoV-2 infection or COVID-

19 severity and loci identified for blood cell traits. Finally, in order to examine the shared 

genetic architecture of COVID-19 and hematological traits, we performed a genetic 

correlation analysis with LD Score Regression [30] and a MR analysis with the Inverse 

Variant Weighted estimator [58] , with MR-Egger [59] and the weighted median estimator 

also performed as sensitivity analyses. We analyzed publicly available summary statistics 

for three COVID-19 phenotypes from the HGI: COVID-19 severity as measured by severe 

respiratory infection (phenotype A2), COVID-19 severity as measured by hospitalization 

(phenotype B2), and SARS-CoV-2 infection (phenotype C2) [29]. For hematological traits, 

we utilized summary statistics from the largest GWAS to date of 408,112 European 

ancestry participants in the UKB cohort [23]. We note that all genomic positions 

throughout this manuscript are from build 37, and all LD calculations, in text and figures, 

are from TOP-LD [60] unless otherwise noted.  

  

Data 

UK Biobank (UKB) Samples from Measured Blood Trait analyses 

UKB (http://www.ukbiobank.ac.uk/resources/) recruited 500,000 people aged between 

40-69 years in 2006-2010, establishing a prospective biobank study to understand risk 

factors for common diseases such as cancer, heart disease, stroke, diabetes, and dementia). 

Participants are being followed-up through health records from the UK National Health 

Service. UKB has genotype data on all enrolled participants, as well as extensive baseline 

questionnaires and physical measures and stored blood and urine samples. Hematological 

traits were assayed as previously described [21]. Genotyping on custom Axiom arrays and 

subsequent quality control has been previously described [61]. Samples were also excluded 

based on factors likely to cause major perturbations in hematological indices. For example, 

we dropped samples based on positive pregnancy status, certain drug treatments, cancer 

self-report, ICD9 and ICD10 disease codes, and surgical procedures (Supplementary 
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Table 6), as well as individuals who have withdrawn consent. Samples were included only 

if they had complete data for all covariates and phenotypes (n= 423,358).  

 

UKB Summary Statistics. Summary statistics were obtained from a recent GWAS of 

hematological traits in UKB participants of European ancestry [23]. As a brief overview of 

the analysis, a GWAS was conducted on 29 hematological traits in European ancestry 

participants in the UKB. Raw phenotypes were regressed on age, age-squared, sex, 

principal components and cohort specific covariates (e.g., study center, cohort, etc), and 

WBC-related traits were log10 transformed before regression modeling. Residuals from the 

modeling were obtained and then inverse normalized for cohort level association analysis 

or GWAS.  

  

Vanderbilt University Medical Center, clinical cohort samples  

Vanderbilt University Medical Center is a major comprehensive and tertiary care center in 

Nashville, Tennessee. The Synthetic Derivative (SD), a completely de-identified copy of the 

electronic health record (EHR), contains longitudinal clinical information for over 3.3 

million individuals [62]. The database incorporates information from multiple sources and 

includes diagnostic and procedure codes (International Classifiers of Disesase [ICD] and 

Current Procedural Terminology [CPT], respectively), demographics (age, gender, EHR-

reported race and ethnicity), text from clinical care (i.e. discharge summaries, nursing 

notes, progress notes, history and physical, problem lists), medications, and laboratory 

values. The QualityLab pipeline was used to extract and clean laboratory values for over 

275 million observations across 1.5 million patients as previously described [63].  

 

HGI COVID-19 

We downloaded the round 5 (January 18, 2021) COVID-19 summary statistics for three 

phenotypes for European ancestry participants from https://www.covid19hg.org. The 

critically ill phenotype was defined included patients who were hospitalized due to 

symptoms associated with laboratory-confirmed SARS-CoV-2 infection and who required 

respiratory support or whose cause of death was associated with COVID-19 (5,101 cases 

and 138,3241 controls). The hospitalization phenotype is a binary indicator of patients 

who were hospitalized for symptoms associated with laboratory-confirmed SARS-CoV-2 

infection (9,986 cases and 1,877,672 controls). Population controls were used in both 

cases, including individuals whose exposure status to SARS-CoV-2 was unknown. Both 

phenotypes were defined using diagnostic criteria following the Diagnosis and Treatment 

Protocol for Novel Coronavirus Protocol [64]. Individuals with positive reported infection 

status were compared against population controls (38,984 cases and 1,644,784 controls).  

 

We note that there is a more recent COVID-19 meta-analysis release (Round 6, June 15, 

2021) but this release did not include versions of the summary statistics limited to 

European populations or excluding UKB, which were necessary for some of the analyses 

contained here to avoid bias due to sample overlap (particularly for MR-Egger[59]). 

 

Measured Blood Cell Analysis 

Blood cell indices were directly measured using blood draws from the UKB in-person visits, 

as described above.  We assessed the association of each measured blood cell trait with 
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SARS-CoV-2 infection status (positive test versus population) and with COVID-19 

hospitalization (any hospitalized case versus population).  Logistic regression analyses for 

case/control analyses were adjusted for age, sex, assessment center, self-reported ethnicity 

(indicator variables for “White”, “Mixed”, “Asian or Asian British”, “Black or Black British”, 

or “Chinese”, based on Data-Field 21000) time elapsed between blood cell trait 

measurement and either SARS-CoV-2 test date or date of data download, and a blood cell 

trait and time elapsed interaction term. All data was downloaded on March 12, 2021, for 

the analyses presented here. SARS-CoV-2 test results were available through February 24, 

2021, including location of test, and hospitalization related data were available through 

March 7, 2021. Cause of death data was available through February 16, 2021. For 

consistency with data available in VUMC SD, we included as a hospitalized case anyone 

with a positive SARS-CoV-2 test originating when they were an inpatient at a hospital, or 

with a positive test up to 14 days before hospital admission, during hospital episode, or 

within 7 days after hospital discharge. This definition would not exclude cases identified 

incidentally in individuals hospitalized for other reasons. Controls are defined as the rest of 

the population, for consistency with other genetic analyses [24].  

 

VUMC SD Replication 

We also assessed association of measured blood cell traits with SARS-CoV-2 positive test 

status and COVID-19 hospitalization in the VUMC SD [65]. Lab values were extracted from 

de-identified medical records and cleaned as previously described, using the QualityLab 

pipeline [63]. At least 50 cases were required for a model to be tested. Due to low case 

counts for COVID-19 outcomes, analyses were performed in a multiracial background with 

EHR-reported race and ethnicity used as covariates in the models. Case and control 

populations were extracted from the SD by experienced programmers with data current to 

October 2020. A SARS-CoV-2 positive test was determined by either a positive SARS-CoV-2 

test or related diagnostic code, U07.1. Controls included all individuals with data for a given 

blood cell trait and absence of any SARS-CoV-2 positive test. Cases for the COVID-19 

hospitalization analysis are individuals with a SARS-CoV-2 positive test and a 

hospitalization code (for any indication) in the seven days before or 30 days after a positive 

SARS-CoV-2 test. Controls for the COVID-19 hospitalization analysis are similarly defined as 

all individuals with blood cell trait data that do not meet the case definition; however, we 

note that we also performed a sensitivity analysis using as controls individuals with a 

positive SARS-CoV-2 test and no hospitalization code within a similar time window (with 

similar results, not shown).  

Similar to UKB analysis, replication analyses included logistic regressions adjusted 

for age, sex, EHR-reported race and ethnicity, time elapsed between blood cell trait 

measurement and either SARS-CoV-2 test date or end of follow-up, and a blood cell trait 

and time elapsed interaction term. As is commonly done in biobank data, median blood cell 

trait values were used across all available timepoints, with time of follow-up calculated in 

reference to the median age at which a given blood cell measurement was obtained. VUMC 

SD and UK Biobank results were combined using fixed effects meta-analysis. 

 

Analysis of Coincident Genetic Association Signals 

We assessed evidence for coincident genetic association signals at COVID-19 loci which had 

been reported as associated with blood cell traits in a previous GWAS [23, 29]. We used the 
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European TOP-LD [60]reference panel to establish COVID-19 loci in LD (r2 > 0.4) with 

distinct blood cell trait variants. To ensure that our results were not contaminated by 

sample overlap, at each COVID-19 locus from the full HGI meta-analysis results, we used 

the lead variant in the results excluding UKB as a proxy for analysis of coincident signals.  

 

Genetic Correlation 

LD Score Regression is a statistical technique to estimate genetic correlation between 

complex traits using only GWAS summary statistics [30]. We obtained LD scores from the 

publicly available HapMap3 weights, and restricted our analysis to only consider 1,217,090 

HapMap3 SNPs [30]. We estimated genetic correlation for each combination of blood cell 

trait and COVID-19 phenotype. Statistical significance was evaluated as nominally 

significant at a p-value less than 0.05, and Bonferroni significant using 0.05/87. Pairs of 

traits which demonstrated at least nominal statistical significance of non-zero genetic 

correlation were prioritized in the MR analysis.  

  

Mendelian Randomization (MR)  

MR was performed in order to estimate the causal effect of hematological traits on the 

three COVID-19 phenotypes. 16,900 conditionally independent associations previously 

identified in UKB participants of European ancestry were used as instruments for the 

hematological traits[23]. Briefly, these distinct variants were determined as conditionally 

independent signals via stepwise multiple regression. The IVW estimator served as our 

primary estimator of the causal effect. As a sensitivity analysis, we fit the MR-Egger model 

in order to assess the evidence of directional pleiotropy via the MR-Egger intercept test. If 

the MR-Egger test demonstrated moderate statistical evidence away from the null 

hypothesis that it is zero (p < 0.2), we report the MR-Egger estimate of the causal effect 

rather than the IVW estimator. We further estimated the weighted median causal effect for 

robustness. 

 

Abbreviations 

GWAS: Genome-wide association study 

HGI: COVID-19 Host Genetics Initiative 

UKB: UK Biobank 

LD: linkage disequilibrium 

RBC: red blood cell  

RDW: red blood cell distribution width 

MCH: mean corpuscular hemoglobin 

IRF: immature reticulocyte fraction 

1000G: 1000 Genomes Project Phase 3 v5 

MR: Mendelian randomization 

IVW: inverse-variance weighted 

VUMC: Vanderbilt University Medical Center  

SD: Synthetic Derivative 

 

Declarations 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.28.22271562doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.28.22271562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20

Ethics Approval  

UK Biobank has approval from the North West Multi-centre Research Ethics Committee 

(MREC) as a Research Tissue Bank (RTB) approval. VUMC SD has been approved by the 

Vanderbilt University IRB and the Operations Oversight Board (OOB). 

 

Availability of data and materials 

For the measured blood cell analyses, due to participant privacy individual level data 

cannot be shared but is available upon request from UK Biobank. Genetic summary 

statistics are available for download at 

ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/UKBB_blood_cell_traits/ 

(for blood cell traits) and https://www.covid19hg.org/results/r5/ (for COVID-19 related 

phenotypes).  

 

Conflict of Interest Statement 

The authors declare that they have no competing interests.  

 

Funding 

This research was funded by R01HL146500 and U01HG011720. The project described was 

also supported by the National Center for Advancing Translational Sciences, National 

Institutes of Health, through Grant KL2TR002490 (LMR). 

The SD projects at Vanderbilt University Medical Center are supported by numerous 

sources: institutional funding, private agencies, and federal grants. These include the NIH 

funded Shared Instrumentation Grant S10OD017985 and S10RR025141; CTSA grants 

UL1TR002243, UL1TR000445, and UL1RR024975 from the National Center for Advancing 

Translational Sciences. Its contents are solely the responsibility of the authors and do not 

necessarily represent official views of the National Center for Advancing Translational 

Sciences or the National Institutes of Health. Genomic data are also supported by 

investigator-led projects that include U01HG004798, R01NS032830, RC2GM092618, 

P50GM115305, U01HG006378, U19HL065962, R01HD074711; and additional funding 

sources listed at https://victr.vumc.org/biovu-funding/. 

Acknowledgements 

Support for title page creation and format was provided by AuthorArranger, a tool 

developed at the National Cancer Institute. 

This research has been conducted using the UK Biobank Resource under Application 

Number 25953. We would like to thank the Covid-19 Host Genetics Initiative for sharing 

the results of their analyses. 

Authors’ contributions 

 

BR performed the analysis and drafted the manuscript. QS, WW, TMF, MMS, AF, MG, and 

LMR also performed analyses or derived critical phenotypes. NC, EEB, and PA helped 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.28.22271562doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.28.22271562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21

conceptualize the project and contribute to manuscript drafting. YL, VGS, APR and LMR 

supervised the work, conceptualized the project, and contributed to manuscript drafting.  

 

All authors read and approved the final manuscript. 

 

Supplementary Figure 

 
 

Figure S1. Power curves for Mendelian Randomization analysis, based on round 5 HGI meta-analysis 

sample sizes [24]. Legend: h2 = h2. 
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