
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Transcriptomic response to differentiation induction
GW Patton*†1, R Stephens†2, IA Sidorov†3, X Xiao3, RA Lempicki4, 
DS Dimitrov3, RH Shoemaker1 and G Tudor4

Address: 1Screening Technologies Branch, Developmental Therapeutics Program, NCI-Frederick, Frederick, MD 21702, USA, 2Advanced 
Biomedical Computing Center, NCI-Frederick, Frederick, MD 21702, USA, 3Center for Cancer Research Nanobiology Program (CCRNP), Center 
for Cancer Research, NCI-Frederick, Frederick, MD 21702, USA and 4SAIC-Frederick, Frederick, MD 21702, USA

Email: GW Patton* - gpatton@ncifcrf.gov; R Stephens - bobs@ncifcrf.gov; IA Sidorov - sidorovi@ncifcrf.gov; X Xiao - xiaox@ncifcrf.gov; 
RA Lempicki - rlempicki@niaid.nih.gov; DS Dimitrov - dimitrov@ncifcrf.gov; RH Shoemaker - shoemaker@dtpax2.ncifcrf.gov; 
G Tudor - tudor_58@msn.com

* Corresponding author    †Equal contributors

Abstract
Background: Microarrays used for gene expression studies yield large amounts of data. The
processing of such data typically leads to lists of differentially-regulated genes. A common terminal
data analysis step is to map pathways of potentially interrelated genes.

Methods: We applied a transcriptomics analysis tool to elucidate the underlying pathways of
leukocyte maturation at the genomic level in an established cellular model of leukemia by examining
time-course data in two subclones of U-937 cells. Leukemias such as Acute Promyelocytic
Leukemia (APL) are characterized by a block in the hematopoietic stem cell maturation program
at a point when expansion of clones which should be destined to mature into terminally-
differentiated effector cells get locked into endless proliferation with few cells reaching maturation.
Treatment with retinoic acid, depending on the precise genomic abnormality, often releases the
responsible promyelocytes from this blockade but clinically can yield adverse sequellae in terms of
potentially lethal side effects, referred to as retinoic acid syndrome.

Results: Briefly, the list of genes for temporal patterns of expression was pasted into the ABCC
GRID Promoter TFSite Comparison Page website tool and the outputs for each pattern were
examined for possible coordinated regulation by shared regelems (regulatory elements). We found
it informative to use this novel web tool for identifying, on a genomic scale, genes regulated by drug
treatment.

Conclusion: Improvement is needed in understanding the nature of the mutations responsible for
controlling the maturation process and how these genes regulate downstream effects if there is to
be better targeting of chemical interventions. Expanded implementation of the techniques and
results reported here may better direct future efforts to improve treatment for diseases not
restricted to APL.
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Background
Microarray technology has shown great promise for
unraveling the many genomic responses of cells to both
developmental signals and chemical stressors[1] despite
earlier justified concerns for their reliability[2]. In diseases
such as cancer, the confluence of dysregulated develop-
mental programs and the need for treatments to either
repair or eliminate dysfunctional cells suggests a valuable
role for microarray measurement of gene expression.
Knowing which genes are active in a cancer can allow tar-
geting of biochemical pathways to either trigger cell death
or to promote restorative gene responses[3] such as termi-
nal differentiation.

Manifold pathway analysis tools are being provided by
leaders in microarray data analysis. However, the mere
provision of a pathway map selected from genes differen-
tially expressed in an experiment may not provide sub-
stantive understanding of their regulation in such a way
that provides much guidance in terms of transcriptional
control of the genes. What is lacking is the means to iden-
tify potentially-approachable targets for subsequent
experimentation. Transcriptomics is gene expression pro-
filing for RNAs expressed by a genome at a given time[4].
Recent studies have shown complex involvement of tran-
scriptional regulators in cells' genomic response to stress,
growth factors, and even metabolic adaptation[5,6]. Con-
siderable work has been devoted to working out straight-
line pathways of signal transduction. As the work has pro-
gressed, it is abundantly clear that many genes have mul-
tiple regulatory elements (regelems) under the control of
sequence-specific activators and repressors of the core
RNA polymerase II (Pol II) complex[7], including CBP
and the related p300 protein as essential co-activators of
the retinoic acid receptor[8]. Indeed, a recent update to a
database of known regelems in mammals added about
500 to the previous list of 4900[9,10]. We undertook to
examine coordinated gene expression at the transcrip-
tional level using a cell culture-based model of leukemia.

Mature white blood cells are differentiated cells with lim-
ited proliferative potential and short life spans compared
with other cells. In the case of leukemia, it is a precursor
of one of the types of white blood cells which is responsi-
ble for the cancer. Myeloblasts, for example, are an early
population of committed progenitors with limited mech-
anisms that might be described as invariant, in which a
stem cell gives rise, through an asymmetric cell division,
to one stem daughter and one daughter that undergoes
differentiation with limitations to the number of rounds
of division within the transit amplifying population[11].
In APL, all-trans retinoic acid is used both experimentally
and clinically to push cells beyond the differentiation
blockade to re-enter the maturation process, becoming
neutrophils within days.

Previous work[12] compared expression profiles between
two promonocytic leukemia U-937 cell lines and in the
current study extended this research on neutrophilic dif-
ferentiation by performing time-course microarray analy-
sis on all-trans retinoic acid (ATRA)-treated subclones. The
subclones had previously been characterized as either sup-
portive (referred to as "Plus"; subclone 10) or non-sup-
portive ("Minus"; subclone 17) of HIV infection[12], the
Minus cells having been found to be at a more differenti-
ated stage with lower telomerase activity. Both subclones,
as with U-937 cells in general, respond to treatment with
ATRA by resuming differentiation, with concomitant
nuclear condensation, development of heterochromatin,
production of neutrophilic granules, and expression of
cell surface markers CD11b and, chronologically, CD11c.
We sought to examine more in-depth the microarray anal-
ysis of the transcriptional changes taking place during this
process of differentiation.

The output from microarray studies generally is in the
form of a spreadsheet listing gene identifiers, their relative
levels of expression and additional tracking data. For
chronosequential time-course studies, groups of genes
exhibiting contemporary modulation of expression by >2-
fold at any given time point are placed into groups
depending on their pattern, such as up-up-up (indicated
as U-U-U), down-down-down (D-D-D), etc, over time.
Transcription factors in such groups of genes may be
responsible for regulation of the genes in that group[13].
When there is likelihood that treatments may modulate
expression of co-regulated genes, it can be desirable to
examine the upstream regulatory sequences for the occur-
rence of matching regulatory elements. To perform regu-
latory element analysis, grouping of the genes based on
the patterns of expression is reasonable[14]. By employ-
ing transcriptomic regelem analysis[15], we sought to
map potentially important regulatory sites common in
genes coordinately modulated. The resultant information
steers the experimenter toward the goal of gaining control
over the differentiation process in leukemia and other dis-
eases of developmental dysregulation.

Methods
Chemicals, reagents, etc
Except as noted, all chemicals and other reagents were
purchased from Sigma Chemical Company (St. Louis,
MO). All-trans-retinoic acid (ATRA) was provided by the
drug repository of NCI's Developmental Therapeutics
Program (Rockville, MD). The compound was prepared in
aliquots, and kept frozen at -70°C until required.

Cell culture (time-course study)
By convention[16], expanding cultures of U-937 were
grown in 75 cm2 tissue culture flasks (Costar #430641
flasks, Corning-Costar, Corning, NY) for 3 days, harvested
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and plated in 15 ml of complete RPMI-1640 (cRPMI; 10%
FBS [Hyclone, Logan, UT], 2 mM L-glutamine, and 10 U/
ml\10 µg/ml Penicillin\Streptomycin [others GibcoBRL,
Grand Island, NY] at a seeding density of 2E5/ml. After 24
hrs, these freshly-passaged cells were counted and
replated in 24-well plates (Costar #3527, Corning-Costar)
at 1 ml/well at the same density. After another 24 hrs, the
wells were dosed with 10 µM ATRA at a final volume of 50
µl in cRPMI added to the 1 ml culture and allowed to
incubate for up to 2 days.

Microarray analysis
The human monoblastoid cell line U-937 subclones Plus
and Minus were stimulated to differentiate with 10 µM
ATRA and were studied in duplicate samples using the 12
k Affymetrix HG-U95Av2 microarrays (Affymetrix, Santa
Clara, CA). The RNA was isolated, purified, and labeled
according to the protocol for the chip (Eukaryotic Sample
and Array Processing, Tech. Man. 701024 Rev. 2., Affyme-
trix). Each subclone was represented by 4 microarrays,
with duplicate subsamples taken at 0, 6, 24 and 48 hours,
for comparison within and between the subclones. The
human genome U95A array from Affymetrix (Santa Clara,
CA) which contains probes interrogating approximately
12,000 full-length genes was employed for the microar-
rays. Samples from different preparations of the same
clone were independently prepared and analyzed follow-
ing the manufacturer protocols.

Data analysis
The chronosequential nature of the microarray data [see
Additional files 1] permitted clustering of the results by
the temporal patterns of gene expression for genes modu-
lated by >2-fold differences [see Additional files 2 and 3].
Genes with similar patterns of expression can naturally be
organized together[14]. Groups of genes that fit patterns
such as up-up-up, up-up-down, etc. ordered in the Plus
subclone did not match precisely with the Minus sub-
clone. Hence, the 8 possible groupings (U-U-U, U-U-D,
etc.) had to be treated separately for each subclone. These
groups were then submitted for regelem analysis. Briefly,
the groups of genes are loaded into DAVID[17] (Database
for Annotation, Visualization and Integrated Discovery)
using "Upload New List", with "Annotation Tools"
selected, and "RefSeq" chosen as the output. The resultant
RefSeq identifiers are then copied and pasted into the
Advanced Biomedical Computing Center (ABCC) site
[18](following the Quick Reference instructions at that
site). The output consists of the positions of regulatory
elements for each of the genes, in a format conducive to
copying and pasting into a spreadsheet where they are
examined for shared promoters. This process provides a
means to examine groups of genes for expression changes
which may be co-regulated by shared regelems.

Databases
For each input gene or accession number, the ABCC GRID
Promoter Comparison Page accesses a pre-computed
database of consensus TFSite matches within upstream
regions (bases from -1500 to +200) as extracted relative to
the coordinates of that gene in the selected genomic
sequence. The coordinates of each gene/accession number
were derived from the UCSC database files for RefGene
entries and the TFSite consensus sequences were taken
from the TFSites.dat database file from IFTI[19] (Institute
for Transcriptional Informatics). In cases where gene
names are supplied rather than accession numbers, the
first matching accession number corresponding to that
gene name is taken. This procedure is repeated for each of
the gene names or accessions in the users' list and a matrix
is derived for each transcription factor consensus binding
site and each gene. This matrix is then filtered to return
only those sites matching at least the selected number of
genes in the list. The probabilities of the consensus site
matches were approximated from the base composition
of all of the promoter regions and the actual sequence and
the reciprocal of this number represents the approximate
number of bases that would be expected to contain a
match to the consensus sequence. A regular expression
method was used to identify these sites and thus the
degenerate nucleotides present in the consensus
sequences are also matched. A more sophisticated method
that uses probabilistic methods and profiles is under
development, but there are far fewer of these profiles
available than the consensus sequences. Also, although
this method only identifies pre-defined sequences, a sep-
arate utility in the Promoter analysis portion of the GRID
web site allows the user to either search all promoter
sequences for a user-defined consensus sequence, or to
identify short words conserved in a set of promoter
sequences (or other user-input sequences).

Results
A model of leukemia was examined using microarray
results organized as clusters of coordinately-regulated
genes which changed expression level in response to a
drug treatment, i.e., groupings of genes up- or down-regu-
lated in coordinate temporal patterns (Figure 1). Previ-
ously, it had been reported[12] that complex
interrelationships exist between numerous regulators for
two subclones of U-937 monoblastoid cells which did or
did not support HIV infection (referred to as Plus cells and
Minus cells, respectively). Further studies by the same
team went on to study differentiation in U-937 cells by
performing microarray analysis on 10 µM ATRA-treated
cells with isolation of RNA at 4 time points (0, 6, 24, 48
hrs). The Minus cells exhibited shorter telomeres, less tel-
omerase, and altered gene expression and this was related
to the relative maturation state of the cells, with the Minus
cells being further differentiated than the Plus cells. Lower
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c-MYC expression was associated with the reduced telom-
erase activity in the Minus cells, suggesting involvement of
c-MYC in the regulation of telomerase, leading to a predic-
tive model for telomerase therapy[20]. Down-regulation
of c-MYC is a hallmark of granulocyte differentiation and
is seen in HL-60 cells treated with ATRA[21,22].

It was found that 684 genes have both a significant t-test
(p < 0.05) and a Positive call in the detection analysis for

both replicates with 156 and 238 genes more than two-
fold up-regulated or down-regulated, with the regulated
genes involved in a variety of cell functions, including
proliferation, differentiation and apoptosis, cytoskeletal
organization, enzymatic activities and signaling through
receptors [see Additional file 1]. The results compared
favorably with 14 ATRA-treated U-937 genes reported as
up-regulated at 16 hrs in another study[23] also being
called as up-regulated in our results at both 6 and 24 hrs.
The data, when clustered as patterns of gene expression
over time, yielded groups of genes with patterns described
as up-up-up (from time point 0 hours to 6 hours to 24
hours to 48 hours and abbreviated UUU), up-up-down
(UUD), et cetera for the eight possible combinations. The
numbers of genes in each group varied, as did clustering
for Minus versus the Plus cells. The identical genes when
sorted for the opposite subclone showed irregular, unclas-
sifiable patterns (Columns 1 and 4 in Figure 1).

"Hourglass" analysis
The patterns of gene expression for the two U-937 sub-
clones, Minus and Plus, were compared graphically (Fig-
ure 2). Three types of gene categories were selected based
on their described involvement in maturation of eukaryo-
tic cells in general (HOX family and nuclear receptors) or
in neutrophils in particular (specific-function genes).
Broadly, the genes shown for each expression pattern

"Up-Up-Up" Temporal Pattern of Microarray Gene Expression in U-937 CellsFigure 1
"Up-Up-Up" Temporal Pattern of Microarray Gene Expression in U-937 Cells. The figure demonstrates the cluster-
ing of genes sharing the pattern of steadily increasing expression level for RNA following treatment with ATRA as measured by 
microarray. Two subclones of U937 cells are shown, "Minus" and "Plus", over the time course of 0, 6, 24, and 48 hrs. [For all 
eight clusters for both subclones see Additional File 2.]

Genes Ordered Relative to Plus Cells              Genes Ordered Relative to Minus Cells

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 6 24 48
Hours

In
d

u
c
ti

o
n

 (
lo

g
2
)

U16997              Y08639              

L07592              L76571              

X58431              

0

0.5

1

1.5

2

2.5

3

0 6 24 48
Hours

In
d

u
c

ti
o

n
 (

lo
g

2
)

X07495              AF005220            
U80982              AC004079            
Y00093              U95626              
U41813              J03925              
X85030              M74297              
X59372              X52560              
M55153              U37431              
X61755              M55153              
M74297              X58431              

Table 1: Similarities and differences in gene expression between 
U-937 Minus and Plus subclones. Eight chronosequential patterns 
of gene expression in Minus and Plus subclones shared relatively 
few genes within clusters of coordinately-expressed genes, even 
when accounting for the varied numbers of genes expressed for 
each pattern-subclone combination. Differences quantitatively 
were greater than similarities.

Genes in Subclone Similarities Differences

Minus Plus Minus Plus

UUU 14 5 1 13 4
UDU 10 16 3 7 13
DUU 15 7 2 13 5
DDU 2 7 0 2 7
DDD 4 2 0 4 2
DUD 6 7 0 6 7
UDD 7 12 0 7 12
UUD 8 9 3 5 6
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exhibit a few similarities but there are far more differences
(Table 1).

Specifically, note for Figure 2 that there are 38 HOX genes,
72 nuclear receptor genes and we had an original list of 32
neutrophil-related genes of interest. Of these numbers,
the Affymetrix GeneChip HumanGenome-U95Av2 only
probed 19, 16, and 23, respectively. Of these 58 genes, 7
(CSF3R, HOXC13, HOXD10, NR1H4, RXRG, ESR2, and
NR6A1) did not fall into one of the 8 expression pattern
cluster categories (UUU, UDU, etc.) by not being induced
or repressed by >2-fold. Thus, there are 51 genes plotted
in Figure 2.

The eight empirical categories revealed some interesting
distinctions between the putatively more mature Minus
versus Plus cells for the 50 genes of interest. The Plus cells
exhibited no UUU gene expression for any of the neu-
trophil-specific genes in the top portion of the left hour-
glass figure. On the other hand, the Minus cells showed
induction of genes for the transcription factors C/EBP-
beta and C/EBP-epsilon, the intracellular protease calpain
3, the integrins CD11b and CD11c, and transglutaminase
2, involved in apoptosis and known to be induced by
retinoic acid. For the UUU category relative to HOX genes,
only HOXB6 was induced in the Plus cells, whereas 8
HOX genes were activated in the Minus cells, including

"Hourglass" DiagramFigure 2
"Hourglass" Diagram. Differences in gene expression microarray patterns between Plus and Minus subclones (right and left 
of both spines, respectively) of the U-937 monoblastoid cell line treated with all-trans retinoic acid over time. Eight expression 
patterns (four on the left panel and four on the right panel) were defined (up-up-up [UUU], up-down-up [UDU], etc.) for genes 
of interest related to differentiation: HOX genes, nuclear receptor genes, and genes associated with differentiation in neu-
trophils. Visualization of the connection differences on either side of the "spine" gene list suggests differential regulation of gene 
expression in the two subclones for each of the gene clusters.
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HOXB6. On the other hand, none of the nuclear receptors
were induced in the Minus cell genes which have an UUU
pattern. Orphan retinoic acid receptors RORB and RORC,
transcriptional enhancers which bind hormone response
elements, along with NR0B2, a transcriptional repressor,
and PPAR-delta, another repressor, were in the UUU clus-
ter for Plus cells. These differences support the researchers'
previous conclusion that the Minus cells represent a latter
stage of differentiation[12].

The UDU category was bimodal in this time series and,
therefore, more difficult to interpret but the Minus cells
showed only a single neutrophil-specific gene in this cate-
gory, chloroacetate esterase, with 4 HOX genes and 5
nuclear receptors. The Plus cells had GADD45, the proto-
typical DNA-damage response gene, along with PCNA
(proliferating cell nuclear antigen) and several genes spe-
cifically related to the function of normal neutrophils,
lactoferrin, gelatinase B, and chloroacetate esterase. The
Plus cells further had 4 HOX genes following the UDU
pattern, along with 4 nuclear receptors.

The DUU category was characterized, for the Minus cells,
with a pattern more similar to the Plus cells' UDU in that
GADD45, gelatinase B, and a chloroacetate esterase fol-
lowed the DUU pattern, along with FOS, part of the AP-1
transcription factor, and Colony Stimulating Factor 3
Receptor (CSF3R), mutations in which are associated with
severe congenital neutropenia. Only a single HOX gene
was represented in the Minus column but 8 different
nuclear receptors fell into this category. For the Plus cells,
C/EBP-epsilon and CSF3R were the only genes from the
functional part of the gene list, and just one HOX mem-
ber, HOX9D, the precise function for which is currently
unknown but is at least partially involved in distal devel-
opment as 5' mutations or complete deletion leads to
limb and genital abnormalities. Four nuclear receptors
were in the category for the Plus cells.

The DDU category, genes whose expression presumably is
repressed and then released, for the Minus cells was repre-
sented by only two neutrophil enzymes, neutrophil
elastase, and gelatinase A. For the Plus cells, however, cal-
pain 3, casein, and CD11b were in this group, along with
HOXB3 and 3 nuclear receptor genes.

In the right hand hourglass figure, again there was the case
of a dramatic difference between the gene expression pat-
terns of the two U-937 subclones. For the DDD category
for the Minus subclone, there were 4 genes, all in our list
of genes of special interest to the study of neutrophil dif-
ferentiation in response to drug treatments for APL: C/
EBP-gamma, which may cooperate with FOS to bind PRE-
I enhancer elements; c-Myc, known to be down-regulated
by retinoic acid; PCNA, and PPARBP (PPAR binding pro-

tein), which, along with TFIID, can activate the SP1 tran-
scription factor, interact with thyroid hormone receptor,
or function with p53 in apoptosis. The Plus cells, on the
other hand, only included in this category a chloroacetate
esterase and two HOX genes.

The bimodal DUD category also showed absolute differ-
ences between the subclones in that the Minus cells
include two neutrophil function genes, CSF2RA and mye-
loperoxidase along with three nuclear receptors while the
Plus cells had the more transcriptionally-involved C/EBP-
beta and PPARBP along with 4 HOX genes and one
nuclear receptor gene, NR1I3, associated with both tran-
scriptional regulation and androgen receptor function.

The UDD pattern for the Minus cells indicates that casein
was induced and then repressed with two HOX genes
associated with late developmental expression and 4
nuclear receptors while the Plus cells showed a complex
picture of initial up-regulation followed by down-regula-
tion of genes for transcriptional regulators such as FOS
and c-MYC and functional genes including CSF2RA,
CD11c, and gelatinase A. Four HOX genes and 2 nuclear
receptors also fell into this category.

The last category to be reported, UUD, included no neu-
trophil function genes for the Minus subclone, unlike the
UUU category. There were two HOX genes included and 6
nuclear receptors, three of which were shared with the
Plus subclone. C/EBP-gamma was included in the UUD
category for Plus cells, along with transglutaminase 2. This
is curious as C/EBP-gamma was in the Minus DDD cate-
gory while transglutaminase 2 was in the Minus UUU.
Such results suggest that the Plus cells are not simply
developmentally delayed compared to the Minus sub-
clone but may have a differentiation program altered in
substance as well as in chronology.

Regulatory element analysis
The differences between the two subclones of U-937
seemed a fair opportunity to compare in closely parallel
systems the potential for identifying in silico the regelems
likely involved in the differential regulation during the
process of differentiation. Hence, we applied the strategy
of searching for the regelems common to the genes within
each of the 8 expression pattern categories. Briefly, the list
of genes for each pattern was pasted into the website
tool[18] and the outputs for each pattern were examined
for possible coordinated regulation by shared regelems.
An example of a typical output list of shared regelems is
shown in Table 2 for illustration purposes.

Each inputted gene in the cluster was found within the
database. The resultant output table shows all regulatory
elements (regelems) in the search range near the transcrip-
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tional start site that are shared by all of the genes in the
cluster, along with the positions [see Additional file 4 for
the details for cluster UUD]. Some genes in this example
have multiple sites for a given regelem. The co-occurrence
of regelems suggests that one or more may have a role in
the regulation of transcription triggered by the drug expo-
sure. Particularly in the case of ATRA or other compounds
which may have direct interaction with DNA, the possible
involvement of regelems with such drugs may indicate
DNA or nucleotide binding activity or, alternatively, inter-
action with the cognate transcription factor for a given
site.

Additional file 5 shows the regelems shared by the genes
for each of the 8 pattern clusters for the Minus and Plus
subclones, simplified by the removal of the site locations.
This allows comparison between subclones or between
patterns to visualize regelems possibly giving rise to that
pattern. Occham's Razor would suggest that constant
induction (U-U-U) or repression (D-D-D) might be con-
trolled simply by constant binding levels (on-off) of tran-
scription factors to their cognate binding sites, with the
other patterns modulated by the dynamic binding (rheo-
stat) of one or more TFs. Certainly, more complicated sce-
narios can be conceived. Nevertheless, these results
provide the researcher with the opportunity and direction
to take the information back to the lab bench to deter-
mine whether interdiction, either through DNA binding
or TF interference, might be key in gaining control over
the regulation of specific patterns of gene expression and
differentiation.

Discussion
Proliferation and differentiation are opposing ends of a
phenotypic spectrum determined by gene expression,
largely regulated by transcription factors. To better under-
stand how these patterns of gene expression might be
transcriptionally regulated, we developed a means to

search a large database of regulatory elements using all of
the similarly induced or repressed genes for a given group.
The goal was to look for common regulatory elements
which might have a role in the gene expression altered by
the treatment. Experimentally-derived gene expression
clusterings seem especially suitable for such analysis as
the genes are more likely to be responding to specific sig-
naling pathways as apposed to broader situations such as
homeostatic expression seen in normal development or in
developed cancers. The transcription factor search capa-
bility examines the 1500 bases immediately upstream and
200 bases downstream of the reported transcriptional
start site for the RNA in question. A batch analysis sorts
output, making it easy to visualize any regulatory sites
shared across the group of genes.

We have tried to see whether commonalities in the exist-
ence of regulatory elements upstream of transcriptional
start sites with genes clustered by various techniques may
be useful to guide drug development, mechanistic studies,
and structure/function relationships in microarray gene
expression results. While only limited wet chemistry has
been applied to validate such an approach to date, pat-
terns of gene expression must have some rational basis
and our analyses seem to point toward a useful role for
promoter analysis in extending gene expression analysis
beyond simple categorization of groups of genes into the
realm of defining the new experiments needed to take
control of gene expression in the clinic. Several caveats are
clearly warranted, however. One is that the number of
genes entered into the current system inversely controls
the likelihood of regelems being common to all of the
genes (Figure 3A). As a corollary, the more genes entered
into the analysis, the more different transcription factors
will be represented at some level of frequency (Figure 3B).
Deviations from the prediction plots might point to
unique characteristics of certain clusters, perhaps involv-

Table 2: Comparison of shared transcriptional regulatory elements for 8 gene expression patterns for U-937 Minus and Plus subclones. 
The top 5% of the resultant output table of regulatory elements are shown below. The entire table can be viewed enlarged in the 
Supplemental Material. The second row shows the number of elements in the cluster identified by pattern in the top row with the 
names of potential transcription factor binding sites in the first column. The entire output table represents a resource for 
interrogating possible involvement of regulatory pathways controlling expression of genes within and between each cluster.

Cluster UUU- UUD- UDU- UDD- DUU- DUD- DDU- DDD- UUU+ UUD+ UDU+ UDD+ DUU+ DUD+ DUD+ DDD+

Factors 14 26 23 42 9 20 133 58 85 32 16 6 44 20 26 74
A-MuLV_US1 x x x x x x
A-MuLV_US1! x x

AP-2_CS3! x
AP-2_CS4 x
AP-2_CS4! x x x
AP-2_CS5 x x x
AP-2_CS5! x x
AP-2_CS6 x x x x x x
AP-2_CS6! x x x x x x x x x x x
Page 7 of 10
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:81 http://www.biomedcentral.com/1471-2105/7/81
ing histone deacetylases or other epigenetic involvement
or major control by small interfering RNAs.

With redundancy or near-redundancy more of a rule than
an exception in biology, the likelihood exists that regula-
tion of gene expression is provided by the ability of
closely-related transcription factors to substitute for oth-
ers. These complexities may make regulatory element
analysis more complex but certainly not unapproachable,
thanks to sophisticated statistical techniques such as hier-
archical clustering and Self-Organizing Maps. It will be
especially worthwhile to collect the experiences of those
pursuing such analytical techniques to compile further
examples of where the approach is applicable and situa-
tions in which it might not be useful. Currently, we hold
that short-term, specific-stimulus gene expression studies
may benefit most, whereas simple compilations of gene
lists thought to be regulated in particular pathways may
have less coordinate regulation.

Our method is similar to a large number of efforts to ben-
efit from the mechanistic link between regelems and tran-
scription. In addition to alternative transcription factor
databases such as TESS[24] and others[10], there are other
outstanding regelem analytical tools. One set of tools in
particular, CARRIE and ROVER[13,25], seems particularly
competitive with our approach and a web-based version is
anticipated. Rover is helpful for determining if one or
more of a group of transcription factors is likely to regu-
late a group of genes based on their over-representation in
a group of sequences. CARRIE uses two-condition micro-

array data and applies promoter analysis to infer the stim-
ulated/repressed transcriptional regulatory network. As of
this writing, however, CARRIE has only been validated on
yeast and ROVER requires UNIX/Linux-based computa-
tional environments and expertise, less "user-friendly"
than the facility provided by the ABCC.

The fact that all genes within any given group do not share
a single or combination of regelems is not necessarily con-
trary to our concept of regelem analysis. Related transcrip-
tion factors may substitute, incrementally modulate, or
confer cell-type specificity, allowing more than one rege-
lem to help regulate transcription[7]. For example, stem
cells find various means to advance development[11].
This especially might be true for leukemic cells which, if
pressed, can hurdle developmental blockades to continue
with the maturation program. The probabilities accompa-
nying the regelem outputs help guide confidence in the
likelihood of shared regelems potentially having a role in
the expression for a group of genes and may help bring to
full fruition the field of transcriptomics.

Availability and requirements
The ABCC GRID Promoter TFSite Comparison Page web-
site is available without restriction and functions with all
web browsers tested.

Added note
Following the preparation of this report, important micro-
array studies of AML have come to the attention of the
authors that merit mention (included in References), one

Plots of the relationship between the number of genes in the clusters for this study with the concordance of regelemsFigure 3
Plots of the relationship between the number of genes in the clusters for this study with the concordance of 
regelems. Regression analyses demonstrate the correlation between the number of genes and the total number of regulatory 
sequences detected and that the greater the number of genes, the fewer sequences are shared. In other words, the more 
genes clustered for regelem analysis, the more total number of regulatory elements are involved and the fewer regulatory ele-
ments are likely shared in common with increasing numbers of genes. The points represent the 14 gene clusters of the differ-
entiation data set described in the Results.
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by Zheng et al[26] and one by Meani et al[27]. Also, the
raw data have been made available online[28].
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The content of this publication does not necessarily reflect
the views or policies of the Department of Health and
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whole or in part with Federal funds of the Intramural
Research Program of the National Cancer Institute,
National Institutes of Health, including Contract No.
NO1-CO-56000.

Additional material

Acknowledgements
Dr. Audrey Player was extraordinarily helpful with encouragement, exper-
tise and personal guidance in the conduct of the actual microarray process-
ing and analyses, as well as intellectual critique of the overall direction of 
the investigations. The NCI Fellows Editorial Board graciously provided 
helpful critique on the manuscript.

References
1. Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitor-

ing of gene expression patterns with a complementary DNA
microarray.  Science 1995, 270(5235):467-470.

2. Kothapalli R, Yoder SJ, Mane S, Loughran TPJ: Microarray results:
how accurate are they?  BMC Bioinformatics 2002, 3(1):22.

3. Gunther EC, Stone DJ, Gerwien RW, Bento P, Heyes MP: Predic-
tion of clinical drug efficacy by classification of drug-induced
genomic expression profiles in vitro.  Proc Natl Acad Sci U S A
2003, 100(16):9608-9613.

4. Anon.: Proteomics, transcriptomics: what's in a name?  Nature
1999, 402(6763):715.

5. Shi YH, Fang WG: Hypoxia-inducible factor-1 in tumour angio-
genesis.  World J Gastroenterol 2004, 10(8):1082-1087.

6. Davis CD, Milner J: Frontiers in nutrigenomics, proteomics,
metabolomics and cancer prevention.  Mutat Res 2004, 551(1-
2):51-64.

7. Mannervik M, Nibu Y, Zhang H, Levine M: Transcriptional coreg-
ulators in development.  Science 1999, 284(5414):606-609.

8. Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence
JB, Livingston DM: Molecular cloning and functional analysis of
the adenovirus E1A-associated 300-kD protein (p300)
reveals a protein with properties of a transcriptional adap-
tor.  Genes Dev 1994, 8(8):869-884.

9. Ghosh D: Object-oriented transcription factors database
(ooTFD).  Nucleic Acids Res 2000, 28(1):308-310.

10. Galperin MY: The Molecular Biology Database Collection:
2004 update.  Nucleic Acids Res 2004, 32 Database issue:D3-22.

11. Watt FM, Hogan BL: Out of Eden: stem cells and their niches.
Science 2000, 287(5457):1427-1430.

12. Xiao X, Phogat SK, Sidorov IA, Yang J, Horikawa I, Prieto D, Adeles-
berger J, Lempicki R, Barrett JC, Dimitrov DS: Identification and
characterization of rapidly dividing U937 clones with differ-
ential telomerase activity and gene expression profiles: role
of c-Myc/Mad1 and Id/Ets proteins.  Leukemia 2002,
16(9):1877-1880.

13. Haverty PM, Frith MC, Weng Z: CARRIE web service: auto-
mated transcriptional regulatory network inference and
interactive analysis.  Nucleic Acids Res 2004, 32(Web Server
issue):W213-6.

14. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis
and display of genome-wide expression patterns.  Proc Natl
Acad Sci U S A 1998, 95(25):14863-14868.

15. Patton GW, Sidorov IA, Dimitrov DS, Xiao X, Shoemaker RH, Tudor
G, Covell D, Stephens R: The ABCC GRID Promoter TFSite
Comparison Page to find shared regulatory elements for co-
regulated genes.  Submitted 2005.

16. Sundstrom C, Nilsson K: Establishment and characterization of
a human histiocytic lymphoma cell line (U-937).  Int J Cancer
1976, 17(5):565-577.

17. DAVID (Database for Annotation VID: DAVID (Database for
Annotation, Visualization and Integrated Discovery).   [http:/
/david.niaid.nih.gov/david/ease.htm].

18. ABCC GRID Promoter TFSite Comparison Page: ABCC GRID
Promoter Comparison Page.   [http://grid.abcc.ncifcrf.gov/pro
moters/comparePromoters.php].

19. IFTI (Institute for Transcriptional Informatics)   [http://
www.ifti.org/]

20. Sidorov IA, Hirsch KS, Harley CB, Dimitrov DS: Cancer treatment
by telomerase inhibitors: predictions by a kinetic model.
Math Biosci 2003, 181(2):209-221.

21. Cowen DS, Berger M, Nuttle L, Dubyak GR: Chronic treatment
with P2-purinergic receptor agonists induces phenotypic
modulation of the HL-60 and U937 human myelogenous
leukemia cell lines.  J Leukoc Biol 1991, 50(2):109-122.

22. Xu D, Popov N, Hou M, Wang Q, Bjorkholm M, Gruber A, Menkel
AR, Henriksson M: Switch from Myc/Max to Mad1/Max binding

Additional File 1
Microarray data for genes with greater than 2-fold differences in expres-
sion (up or down) compared to sham-treated controls.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-81-S1.xls]

Additional File 2
Temporal Patterns of Microarray Gene Expression in U-937 Cells.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-81-S2.ppt]

Additional File 3
Temporal Patterns of Microarray Gene Expression in U-937 Cells (Con-
tinued).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-81-S3.ppt]

Additional File 4
Example of regulatory element analysis output for gene cluster Up-Up-
Down of Plus subclone of U-937 cells exposed to ATRA with 4 time 
point samples over 48 hrs. On left are transcription factor binding sites. 
The sequences are in the second from right-most column, next to the Baye-
sian probability for that number of nucleotides. Each intervening column 
shows the positions relative to the transcriptional start site of each regula-
tory element under the gene name and RefSeq ID of the mRNA.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-81-S4.ppt]

Additional File 5
Comparison of shared transcriptional regulatory elements for 8 gene 
expression patterns for U-937 Minus and Plus subclones. The top row 
shows the number of elements in the cluster identified by pattern in the 
second row. Because the number of elements is inversely proportional to 
the number of genes in the cluster, the fact that only 2 genes occur in the 
Minus cluster DDU-results in 133 elements in the output, which is not 
particularly informative for this cluster.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-81-S5.ppt]
Page 9 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-7-81-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-7-81-S2.ppt
http://www.biomedcentral.com/content/supplementary/1471-2105-7-81-S3.ppt
http://www.biomedcentral.com/content/supplementary/1471-2105-7-81-S4.ppt
http://www.biomedcentral.com/content/supplementary/1471-2105-7-81-S5.ppt
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7569999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7569999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7569999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12194703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12194703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12869696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12869696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12869696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15069703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15069703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15225581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15225581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10213677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10213677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7523245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7523245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7523245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12200713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12200713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12200713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=178611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=178611
http://david.niaid.nih.gov/david/ease.htm
http://david.niaid.nih.gov/david/ease.htm
http://grid.abcc.ncifcrf.gov/promoters/comparePromoters.php
http://grid.abcc.ncifcrf.gov/promoters/comparePromoters.php
http://www.ifti.org/
http://www.ifti.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12445762
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12445762
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1649238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1649238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1649238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11274400


BMC Bioinformatics 2006, 7:81 http://www.biomedcentral.com/1471-2105/7/81
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

and decrease in histone acetylation at the telomerase
reverse transcriptase promoter during differentiation of
HL60 cells.  Proc Natl Acad Sci U S A 2001, 98(7):3826-3831.

23. Park DJ, Vuong PT, de Vos S, Douer D, Koeffler HP: Comparative
analysis of genes regulated by PML/RAR alpha and PLZF/
RAR alpha in response to retinoic acid using oligonucleotide
arrays.  Blood 2003, 102(10):3727-3736.

24. Baxevanis AD: Current protocols in bioinformatics.  New York
, Wiley; 2003:v. (loose-leaf). 

25. ROVER CARRIE: CARRIE and ROVER.   [http://sullivan.bu.edu/
~phaverty/#tools].

26. Zheng PZ, Wang KK, Zhang QY, Huang QH, Du YZ, Zhang QH, Xiao
DK, Shen SH, Imbeaud S, Eveno E, Zhao CJ, Chen YL, Fan HY, Wax-
man S, Auffray C, Jin G, Chen SJ, Chen Z, Zhang J: Systems analysis
of transcriptome and proteome in retinoic acid/arsenic tri-
oxide-induced cell differentiation/apoptosis of promyelo-
cytic leukemia.  Proc Natl Acad Sci U S A 2005, 102(21):7653-7658.

27. Meani N, Minardi S, Licciulli S, Gelmetti V, Coco FL, Nervi C, Pelicci
PG, Muller H, Alcalay M: Molecular signature of retinoic acid
treatment in acute promyelocytic leukemia.  Oncogene 2005,
24(20):3358-3368.

28. Patton2005U937.XLS: Patton2005U937.XLS.   [http://
home.ncifcrf.gov/research/bja/Patton2005U937.XLS].
Page 10 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11274400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11274400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12893766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12893766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12893766
http://sullivan.bu.edu/~phaverty/#tools
http://sullivan.bu.edu/~phaverty/#tools
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15894607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15894607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15894607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15735696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15735696
http://home.ncifcrf.gov/research/bja/Patton2005U937.XLS
http://home.ncifcrf.gov/research/bja/Patton2005U937.XLS
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Chemicals, reagents, etc
	Cell culture (time-course study)
	Microarray analysis
	Data analysis
	Databases

	Results
	"Hourglass" analysis
	Regulatory element analysis

	Discussion
	Availability and requirements
	Added note
	Disclaimer
	Additional material
	Acknowledgements
	References

