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Abstract: Gene silencing is the epigenetic regulation of any gene in order to prevent gene expression
at the transcription or translation levels. Among various gene silencing techniques, RNA silencing
(RNAi) is notable gene regulation technique that involves sequence-specific targeting and RNA degra-
dation. However, the effectiveness of transgene-induced RNAi in F1 generation of chrysanthemum
has not been studied yet. In the current study, we used RNAi-constructed CmTFL1 (white-flowered)
and CmSVP overexpressed (yellow flowered) transgenic plants of previously conducted two studies
for our experiment. Cross hybridization was performed between these intergeneric transgenic and
non-transgenic plants of the winter-growing chrysanthemum selection “37” (light pink flowered).
The transgene CmSVP was confirmed in F1 hybrids by RT-PCR analysis, whereas hybrids of CmTFL1
parental plants were non-transgenic. Besides this, quantitative real-time PCR (qPCR) was used to
explain the molecular mechanism of flower development using reference genes. Intergeneric and
interspecific hybrids produced different colored flowers unlike their respective parents. These results
suggest that generic traits of CmSVP overexpressed plants can be transferred into F1 generations
when crossed with mutant plants. This study will aid in understanding the breeding phenomenon
among intergeneric hybrids of chrysanthemum plants at an in vivo level, and such transgenics will
also be more suitable for sustainable flower yield under a low-light production system.

Keywords: RNA silencing; cross breeding; hybrid identification; quantitative real time PCR

1. Introduction

Chrysanthemum (Chrysanthemum × grandiflorum Tzvelve.) is a well-known flower
originating from China and other Asian countries (Korea, Japan). Chrysanthemum is the
second most important floriculture crop in the worldwide floriculture trade [1,2], sharing
30% of the total cut flower production in the world. This flower is an important ornamental
crop worldwide with the highest agronomic value, and it also plays an important role in
landscaping. After its distribution to all parts of the world, chrysanthemum is being widely
planted and cultivated, hence, becoming one of the most famous cut flowers with the most
variety among ornamental plants. For flower gardening, the abundance of phenotypic
variation in chrysanthemums is the highest among the world’s ornamental crops [3,4].
Its diversity with respect to flower type and color and plant architecture gives it high
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production value and a large economic market, particularly in the Asian and European
flower industries [5].

Chrysanthemum (Chrysanthemum × grandiflorum Tzvelv.) is one of the perennials
belonging to the temperate climatic zone with an optimum temperature range between
18–21◦ for growth and development [6]. Vegetative development, bud differentiation, and
flowering of chrysanthemum could be inhibited at temperatures above 32 ◦C [7]. Chrysan-
themum has approximately 20,000 cultivars in the world, and China has the majority of
its cultivars, i.e., about 7000 on record. There is an estimate that more than 90% of their
production is through conventional breeding. Additionally, several new chrysanthemum
species are being produced through this method annually [8,9]. Despite the fact that various
chrysanthemum cultivars are being produced by conventional hybridization techniques,
the species is an allohexaploid and self-incompatible (with 3 S alleles) [10–14].

The origin of novel potted and ornamental chrysanthemum plants is from interspe-
cific crosses between wild natives of China, which is considered as the epicenter of the
genus Chrysanthemum [15]. Crossing and doubling between Chrysanthemum zawadskii
var. latilobum (Maxim.) Kitamura (2n = 2x = 18) and C. indicum var. procumbense (Lour.)
Kitamura (2n = 4x = 36) resulted from florist chrysanthemum (2n = 6x = 54) [16]. Nev-
ertheless, some limitations are still associated with conventional breeding for florist’s
Chrysanthemum, which includes: unstable and variable chromosome numbers that form a
hexaploid complex with aneuploidy (2n = 54 ± 7∼10), even within a genotype; formation
of fragmented chromosomes during mitosis; substantial genome size (25 pg DNA/cell);
sporophytic self-incompatibility barrier, inbreeding depression, and genetic load [17,18]
although fertile seed derived from the screening of progeny derived from intra- or interspe-
cific crosses of compatible combinations have resulted in many new cultivars having been
developed [19–22]. Contemporary cultivars are hexaploids with a loss or gain of several
chromosomes that display a self-incompatible trait. Approximately 40% (ca. 18/50) of
Chrysanthemum species are originated in Japan [23].

The continuous development and innovation of plant molecular biology provide a
new way to improve the characteristics of ornamental plants. Novel genetic, biological,
and molecular techniques are required to fulfill consumer demands. For this purpose,
interspecific hybridization could be a great source in which the plants that belong to
two unlike non-compatible species are crossed. Useful or favorable traits are transferred
from wild relatives to cultivated ones or between two different species. Interspecific
hybridization has been widely used in the Brassicaceae family to transfer favorable genetic
traits to a wide germplasm [24,25]. Many wide hybrids are associated with the expression
of negative traits transferred from the donor parent along with the target trait, but these
can be eliminated by performing one or more backcrosses with the recipient parent [26].
Commercialization of genetically modified chrysanthemums is associated with the risk of
crossing that must be addressed. However, research work on the cross-ability of transgenic
plants and the heritability of transgenes in F1 hybrids of chrysanthemums is rare [27–29]. In
this study, the cross-ability of RNAi-induced CmTFL1 transgenic Chrysanthemum morifolium
var ‘Fenditan’ and CmSVP transgenic overexpressed plants of ‘Ganjue’ cultivar taken from
our previously conducted study [30] with one non-mutant selection “37” was examined.
The heritability of the transgene (h2 = 0.82) and modified physical parameters along with
flower color were demonstrated.

2. Results
2.1. Evaluation of Phenotypic Parameters of Chrysanthemum F1 Hybrids

After exposing hybrids to light at various intensities, the growth and development,
photosynthetic and fluorescence parameters of the hybrid plants of all cross combinations
were monitored. The hybrids of G× R crosses were relatively very short in height compared
to those of other crosses with a maximum height of 42.81 cm at 40% light intensity, whereas
hybrids of the cross 37 × G had the maximum height of 51.95 cm at the same light intensity.
By decreasing phase-to-light intensity from 100% to 60%, the plant height decreased
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initially in all F1 hybrids, followed by a gradual increase at 40% light strength. Interestingly,
transgenic hybrids of the cross 37 × G and G × R were significantly shorter at 60% light
irradiance (37.72 cm and 38.82 cm, respectively) than at 40% (51.95 cm and 42.81 cm,
respectively), thus, representing a much more important difference within the hybrid set
(Figure 1a; Table S1). Similarly, the diameter of the main stem decreased at 20% light
strength, with the least diameter of 0.35 cm for G × R hybrids (Figure 1b; Table S1). The
treatment was significantly different from the control. Leaf length and leaf width were
increased from 100% to 40% of light intensity, which started reducing at 20% for all hybrids.
The difference between control and treatments D and E was significant in all combinations.
The results show that with the decrease in light intensity, the shape of chrysanthemum
plants changed, which led towards an increased light use efficiency of the plants with
better adaption to the lower light environment.

Figure 1. Analysis of growth parameters of F1 transgenic and non-transgenic. Chrysanthemum plants exposed to 100%,
80%, 60%, 40%, and 20% irradiance; (A). Plant Height; (B). Diameter of the main stem; (C). Leaf Length; (D). Leaf Width.
G = CmSVP overexpressed plants, R = CmTFL1 RNAi plants, and 37 = Non-mutant selection of Chrysanthemum. Three
biological replicates were used. Error bars represent ± SE. Values marked by a different letter differ significantly from one
another (p < 0.05).
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Photosynthetic parameters were investigated at various light phase intensities for
F1 hybrids. Among the photosynthetic parameters, the hybrids of 37 × G cross showed
the maximum value of light compensation point (LCP) as 60.01 µmol·m−2s−1 at 100%
light intensity. Besides, it was found that with the decrease in light intensity from 100%
to 20%, the light compensation point (LCP) of chrysanthemum hybrid plants was also
reduced to the minimum value of 31.43 µmol·m−2s−1 by G × R hybrids, and the difference
between treatments and control was significant (Figure 2a; Table S2). On the other hand, the
surface quantum efficiency (AQY), net photosynthetic rate (Pn), stomatal conductivity (Gs),
intercellular CO2 concentration (Ci), and transpiration rate (Tr) were increased initially
from treatment A to C, followed by a gradual decrease in E in all hybrids, indicating
that the photosynthetic function in leaf was enhanced with a sudden decline afterwards
(Figure 2b–f; Table S2). Conversely, the stomatal limit value (Ls) was increased rapidly
from treatment A to D in all F1 hybrids (Figure 2g; Table S2).

In general, the effect of light intensity on the fluorescence parameters of chrysanthe-
mum hybrid leaves decreased significantly with the relative decrease in light intensity.
Fv/Fm ratio for the hybrids of 37 × G gradually increased up to the maximum value of
0.869 at 80% light intensity, which was significantly different from the control, whereas the
minimum value was exhibited by the hybrids of G × R parental plants was 0.804 at 100%
light strength (Figure 3a; Table S3). Besides, ΦPSII, Fv’/Fm’, and ETR were compared for
treatments B and C, which showed a gradual increasing trend in F1 hybrids Figure 3b–d;
Table S3). In addition to the significant difference between ETR and control, the difference
between the rest of the parameters was not significant (Figure 3d; Table S3). When the light
intensity was reduced to 40%–20% in treatments D and E, the values of some parameters
decreased speedily. Specifically, ΦPSII and ETR were decreased to the minimum value of
0.549 and 87.31 in G × R hybrids, respectively, which were significantly different from the
control. It is stated that the weak light strength can stimulate the light energy utilization
potential of leaves of hybrid plants, but when the low light reaches a certain degree, it
may have a certain effect on the normal function of PSII. In addition, with the decrease in
light intensity, an increasing trend was observed in qP, which reduced rapidly afterwards
to 0.712 at 20% of light intensity (Figure 3e; Table S3). Conversely, the value of NPQ
decreased, followed by a gradual rise to 2.437, indicating that at a relative light intensity of
80% and 60%, the light energy used for photosynthetic electron transmission increases in
PSII, while the light energy consumed in the form of heat dissipation decreases (Figure 3f;
Table S3). However, at a relative light strength of 40% and 20%, PSII consumes more light
energy in the form of thermal dissipation, while the light energy used for photo electronic
transmission decreases. Due to intra-hybrid comparison, it was found that F1 hybrids of
37 × G cross perform better in all morphological parameters than those of G × R and
37 × R.

With respect to all traits, some hybrids resembled one or the other of two parents. All
parameters, including plant height, leaf length, leaf width, inflorescence diameter, and time
of flowering of all hybrids, were distinguishable from each other and from their respective
parents. Besides, the most significant parameter that made them highly distinguishable
from each other and parents was flower color. 37 × R hybrids produced purple flowers,
while the flower color of R was white and that of 37 light purple; the flowers of G × R
hybrids were yellow-colored (R: white and G: yellow); 37 × G produced indigo flowers (G:
yellow and 37: light purple) (Figure 4a–c).
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Figure 2. Analysis of leaf gaseous exchange parameters of F1 transgenic and non-transgenic Chrysanthemum plants exposed
to 100%, 80%, 60%, 40%, and 20% irradiance; (A). Leaf Compensation Point (LCP); (B). Apparent Quantum Yield (AQY);
(C). Net Photosynthetic Rate (Pn); (D). Stomatal Conductance (Gs); (E). Intra cellular CO2 Rate (Ci); (F). Transpiration Rate;
(G). Stomatal Limit Value (Ls). G = CmSVP overexpressed plants, R = CmTFL1 RNAi plants, and 37 = Non-mutant selection
of Chrysanthemum. Three biological replicates were used. Error bars represent ± SE. Values marked by a different letter
differ significantly from one another (p < 0.05).
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Figure 3. Analysis of chlorophyll fluorescence parameters of F1 transgenic and non-transgenic Chrysanthemum plants
exposed to 100%, 80%, 60%, 40%, and 20% irradiance; (A). The Potential Quantum Efficiency of Photosystem II (Fv/Fm);
(B). Effective Quantum Yield (ΦPSII); (C). The Quantum Efficiency of open PSII system (Fv’/Fm’); (D). Electron Transport
Rate (ETR); (E). The Coefficient of Photochemical Quenching (qP); (F). Non-Photochemical Quenching (NPQ). G = CmSVP
overexpressed plants, R = CmTFL1 RNAi plants, and 37 = Non-mutant selection of Chrysanthemum. Three biological
replicates were used. Error bars represent ± SE. Values marked by a different letter differ significantly from one another
(p < 0.05).
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Figure 4. Flower color and inflorescence variegation in RNAi CmTFL1 (R), CmSVP overexpressed (G) and Non-mutant
37 parents and their F1 progenies. (a) Inflorescence of Non-mutant 37 x RNAi CmTFL1 (R) parents and their F1 progenies;
(b) inflorescence of CmSVP overexpressed (G) x RNAi CmTFL1 (R) parents and their F1 progenies; (c) inflorescence of
Non-mutant selection37 x CmSVP overexpressed parents and their F1 progenies. (Photo credit: Saba Haider).

2.2. Identification of the Transgene CmSVP in F1 Hybrids

PCR analysis was performed to amplify a segment of the CmSVP gene with the 700 bp
target sequence. Among the progeny of G × R transformants, the transgene was detected
in five of six strains that were obtained by crossing CmSVP overexpressed plants (G) as a
seed parent, while among the progeny of 37 × G, the transgene was detected in four of five
strains that were obtained by crossing CmSVP overexpressed plants (G) as pollen parent as
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shown in Figure 5. As CmTFL1 gene expression was interfered in RNAi mediated plants,
so F1 hybrids of 37 × R were non-transgenic. To check DNA quality, the endogenous
chrysanthemum actin gene was amplified and confirmed for every CmSVP gene-negative
plant. These results verified the presence of a transgene in some of the progeny and further
demonstrated that the PCR-positive strains were F1 hybrids when one of the parents
was transgenic.

Figure 5. The detection of CmSVP in transgenic F1 hybrids of chrysanthemum; (A). PCR detection of CmSVP × RNAi
F1 hybrids, M: DL2000 Marker; 1–5 indicated transgenic resistant F1 seedlings, 6 was plasmid control; (B). 37 × CmSVP
F1 hybrids, M: DL1000 Marker; 1–4 indicated transgenic resistant F1 seedlings, 5 was plasmid control (Photo credit:
Saba Haider).

3. Discussion

Shading profoundly affects plant development, particularly, characters such as height,
internode length, shoot diameter, leaf length and width, color, and shape [31–35]. Leaf area
varies as a consequence of differences in cell mass and cell wall thickness during a plant’s
ontogeny, and its habitat promotes the development of these characteristics in the later
stages of its life cycle and its growth environment [36]. The core interest of the study was
to explore plant behavior growing under different shading regimes. Observations revealed
that shading with 40% and 20% irradiance increased the leaf area of chrysanthemum, and
the leaf area of the plants under shade was higher than plants under full sun. Significant
evidence has been reported in previous studies that low irradiance induces a shift in
plant biomass distribution resulting in enlarged leaf area [32]. Shading various levels of
irradiance increased leaf area in jasmine [37] and Tetrastigma hemsleyanum [33]. Species
such as Dieffenbachia longispatha, well adapted to shade, display a modest capacity for
photosynthetic acclimation to increase leaf area [38].

Leaves are the main organs of plants for the production of photosynthetic assimilates.
Impacts of environmental factors on plants or plants’ adaptability to the environment are
reflected by the structural attributes of leaves [39]. The interception of Photosynthetically
active radiation (PAR) by the plant largely depends on leaf area, which tends to alter during
plant growth and development. This relationship is quite significant, being correlated to
the photosynthetic efficiency and biomass production in plants [40–42]. It is an established
fact that an increased leaf area enhances photosynthetic efficiency of plants as reported in
Chrysanthemum [43–45], Rose [42], Tulip [46], Gladiolus [47], and Eustoma [48].

The biological significance of photosynthesis is to fix carbon and water to synthesize
carbohydrates and produce oxygen. Energy derived from photo-assimilates is used for
cell division and cell enlargement. It is a well-established fact that reduced photosynthetic
activity due to low light intensity hinders plant growth [49,50].

The light compensation point of chrysanthemum hybrids decreased in moderate
shade conditions. This indicates that the lower limit of the intensity requirement of light
intensity is reduced, and by increasing the surface quantum efficiency to adapt to the
reduction of external light intensity, the weak light has certain adaptability [41]. When
the light strength drops below 40% of natural light, the surface quantum efficiency begins
to decrease, indicating that the photolyase function of the photolysis mechanism is no
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longer able to adapt to the low-light environment. Many studies have shown that shade
usually reduces the net photosynthetic rate of a single leaf [49,51,52]. The Pn value in F1
hybrids was found the highest plants exposed to 80% irradiance (Figure 2c; Table S2). The
net photosynthetic rate of chrysanthemum F1 hybrids also showed a gradual downward
trend under different shade treatments, and the pore conductivity and intercellular CO2
concentration were also reduced. The markedly reduced CO2-assimilation rate that was
recorded for the plants exposed to both full sunlight and 20% irradiance, which occurred
due to nonstomatal limitations as the intercellular CO2 concentration in the leaves was
not lower than that of 80% irradiance-treated plants. At the same time, the value of gs
increased significantly in the plants grown under full sunlight (Figure 2e; Table S1). gs
and E values reduced under full irradiance because light saturation implied the plants to
close down the stomata to decrease water loss [33], which was not in conformity with the
results of the present study. According to Farqhar and Sharkey, the decrease in blade Pn is
accompanied by a decrease in Ci and an increase in Ls. The main limiting factor for the
photosynthesis mechanism is the pore factor. This is not the same [53] as the results of
research by Joe Xinrong and others.

The results of this experiment show that with the decrease in light intensity, the partial
closure of the pores of all chrysanthemum hybrid leaves may be the main reason for the
decrease in the photosynthetic rate of leaves, while the decrease in non-porous factors
(the photosynthetic activity of leaf cells) is a secondary factor [54]. At the same time, the
influence of light strength on plant growth is very complex, and shade not only affects
light but also affects the concentration of carbon dioxide, temperature, humidity, and
other microenvironments, thus affecting the opening and opening of pores; therefore, the
decrease in the photosynthetic rate is the result of the combined use of the above factors.

The plants subjected to high irradiance stress typically show lower Fv/Fm values
than those of non-stressed plants [55]. Fv/Fm of leaves in the plants grown under full
sunlight fell below 0.8, a sign that photoinhibition occurred [47,48]. In this experiment,
the plants grown under full sunlight exhibited lower Fv/Fm than those shaded ones
(Figure 3a; Table S3). The Fv/Fm value changed slightly under 55%, 25%, and 15% irra-
diance, probably because that the photosynthetic reaction center works well in a certain
range of light intensity.

It was reported that the Fv/Fm value of high-irradiance stressed plants is compar-
atively less than non-stressed plants [36]. Photo-inhibition was observed in the plants
grown under full sunlight with fewer values of Fv/Fm below 0.8 [56,57], which were in
conformity with the results of this experiment. The efficacy of the photosynthetic reaction
center is largely dependent on the range of light intensity that critically affects the value of
Fv/Fm. The results of these experiments were confirmed in Jasmine [37]. The absorption
of light energy in chlorophyll molecules can be used in photosynthesis, dissipation as heat
or re-emission as chlorophyll fluorescence [55–58]. The fluorescence parameter fv/Fm
of medicinal white chrysanthemum leaves increases with the decline in light intensity,
while ΦPSII, Fv’/Fm, ETR, and qP rise under varying light intensities of 100% to 60%.
Conversely, NPQ decreases in turn, indicating that the photochemical capacity of PSII
tends to rise in a certain low light range and that the absorbed light energy can be more
evenly distributed to photochemical pathways. However, when the light strength is less
than 40%, ΦPSII parameters such as NPQ begin to decrease, and NPQ rises. Figure 3b
shows that the photolytic activity of PSII. The secondary factor that causes the decrease in
photochromatic rate, is not unaffected, which is similar to the results [59] of the study of
strawberries by Chi Wei and so on and may also be related to the decrease in photochrome
(phytochrome) pigment content. In addition, the PSII reaction center consumes excess light
energy absorbed by antenna pigments in the form of heat dissipation to avoid inactive or
destructive to the photolyzing mechanism. Therefore, the increase in NPQ is a kind of self-
protection mechanism of plants, which has a certain protective effect on the photolyzing
mechanism [60].
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Heavy shading is useful in the reduction of qP [33], which shows the significant
difference in the electron transport rate in PSII. These results were confirmed in the current
experiment. On the other hand, the NPQ energy is dissipated as heat energy and is not used
in the transport of photosynthetic electrons [61,62]. The difference in energy absorption
required for photochemical utilization is due to higher NPQ values in the full sunlight-
treated plants that might result from photoinhibition. ΦPSII is downregulated as thermal
dissipation of excitation energy and functions in PSII centers’ closure [63]. In the current
study, the leaves under full sunlight, with 20% and 40% irradiance, showed lower values
of ΦPSII than those under 60% and 80% irradiance (Figure 3b; Table S3). Therefore, it is
observed that the former pathway was involved in the reduction of ΦPSII in full sunlight
exposure, whereas the latter pathway influenced the reduction of shading.

4. Materials and Methods
4.1. Plant Materials

The RNAi-mediated CmTFL1 plants of ‘Fenditan’, CmSVP-overexpressed plants of
‘Ganjue’, and non-mutant plants of ‘37′ were grown in the greenhouse of Beijing Forestry
University (Beijing, China). The optimal conditions for the photoperiod were maintained
along with temperatures ranging between 18 ◦C and 25 ◦C.

4.2. Hybridization and Seed Setting

Breeding program was organized in accordance with the following 3 crosses:

• CmSVP overexpressed plants (G-♀) × RNAi-mediated CmTFL1 plants (R♂);
• Non-mutant Chrysanthemum Selection (37♀) × RNAi-mediated CmTFL1 parent (R♂);
• Non-mutant Chrysanthemum Selection (37♀) × CmSVP overexpressed parent (G♂).

C. morifolium RNAi-mediated CmTFL1 parent “R” and C. grandiflorum CmSVP-overexpressed
parent “G” were subjected to a hybridization experiment with one non-transgenic Chrysan-
themum selection (“37”). The tubular florets of G were detached before emasculation,
and ligulate flower petals were cut to expose the stigma. To ensure safe crossing, the
emasculated inflorescences were enclosed in a paper bag for two days, after which a greater
number of pollens from freshly opened flowers of R were transferred to the opened stigma
of seed parent G with a brush. After pollination, the flowers were recovered to avoid
uncontrolled pollination [64]. The process was performed for all crosses between trans-
genic and non-transgenic plants. Three crosses were made between the parental plants
that were subjected to the seed setting. When the pedicels were subjected to withering
(after 60 days of pollination), a total of 60 hybrid seeds were collected from the pollinated
inflorescences. Seeds were sown into plastic trays containing a 2:1 (v/v) mixture of garden
soil (1:1:2 mixture of silt: sand: loam) and vermiculite. Trays were kept under artificial
growth chambers with controlled light, temperature, and humidity conditions for seeds
germination. At the 5-to-6 leaf stage, seedlings were transplanted into medium-sized cups
and placed in a greenhouse, followed by transplantation in large pots after one month.

4.3. Field Planting of Hybrid Plants

In order to measure the phenotypic characters of hybrid plants more appropriately,
a total of 45 hybrid plants were shifted into the open area in Sanqingyuan near Bajia
field (Figure 6). The plants were subjected to shade conditions by covering them with a
green net for one week to avoid exposure to direct sunlight. Different layers of net sheets
were removed slowly to make the plants adapted to sunlight and other environmental
conditions more appropriately. Exposure to light intensity was given at 5 treatments of
relative light strength, (A) 100%, (B) 80%, (C) 60%, (D) 40%, and (E) 20%, each treatment
with 3 replications. Diurnal variations of light strength quanta were measured using a photo
quantum probe of the LI-6400XT portable photosynthetic system (LI-COR® Biosciences,
6400XT, Lincoln, NE, USA) (Figure 7). A total of three plants were taken measured for each
treatment, while parameters were measured by taking the fourth functional leaf from top
to bottom after one month of transplantation.
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Figure 6. The cultivation of F1 transgenic and non-transgenic seedlings of Chrysanthemum from greenhouse to an open field;
(a). Transplanting of F1 non-transgenic seedlings of the cross 37 (♀) × R (♂); (b). Transplanting of F1 transgenic seedlings of
the cross 37 (♀) × G (♂); (c). Transplanting of F1 transgenic seedlings of the cross G (♀) × R (♂). G = CmSVP overexpressed
plants, R = CmTFL1 RNAi plants, and 37 = Non-mutant selection of Chrysanthemum. (Photo credit: Saba Haider).
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Figure 7. Diurnal variation of light strength quanta under 100%, 80%, 60%, and 20% irradiance
(wavelength range 400–700 nm).

4.4. Phenotypic Characterization of Hybrid Plants
4.4.1. Measurement of Plant Growth and Development Parameters

Plant growth parameters, including plant height, the diameter of the main stem,
leaf length and width of the fourth functional leaf, and leaf length-to-width ratio, were
determined for all plants of each treatment in three cross combinations G × R, 37 × R, and
37 × G.

4.4.2. Measurement of Gas Exchange Parameters

The net photosynthetic rate (Pn), intracellular CO2 rate (Ci), transpiration rate (Tr),
and stomatal conductance (Gs) were measured using an LI-6400XT portable photosynthetic
system (LI-COR® Biosciences 6400XT, Lincoln, NE, USA). All gas exchange measurements
were recorded at the third fully expanded leaves of chrysanthemum’s F1 hybrids were taken
from the apex to measure all gas exchange parameters under the conditions of CO2 level,
PPFD, and air temperature at 400 µmol mol−1, 1000 µmol m−2 s−1, and 25 ◦C, respectively.

The instrument was used for the measurement of photosynthesis is not a single
instrument in itself. It is an assembly of instruments for the measurement of CO2, H2 O, the
temperature of air and leaf, flow rate, PAR, etc. Such parameters were used for calculating
transpiration rate, photosynthesis rate, and stomatal conductance. For each treatment of
light intensity in all crosses, 5 plants were selected, and 2 leaves were measured per plant
on average. The data were analyzed statistically by using SPSS12.0.

4.4.3. Measurement of Chlorophyll Fluorescence

A chlorophyll fluorometer (PAM–2500, Walz, Effeltrich, Germany) was used to de-
termine chlorophyll fluorescence by taking a second fully expanded leaf from the plant
apex at 25 ◦C. The minimal fluorescence of leaves (F0) was measured at a weak light pulse
(< 0.1 µmol m−2 s−1,600 kHz) for 30 min, whereas and the maximal fluorescence (Fm)
induction was performed at saturated light (8000 µmol m−2 s−1, 20 kHz) for more than
0.8 s. The maximal quantum efficiency of PSII was measured using Fv/Fm, where Fv is the
difference between F0 and Fm Fs (steady-state fluorescence yield) and Fm’ (light-adapted
maximum fluorescence) were obtained at a light source of 600 µmol m−2 s−1 for 0.7 s
(Fm’ ± Fs)/Fm’ and Fv’/Fm’ were used to calculate the quantum efficiency of PSII
(Φ PSII) and the efficiency of the excitation capture by open PSII centers, respectively [65].
Photochemical quenching (qP) was calculated using (Fm’ ± Fs)/(Fm’ ± Fo’) [66]. Non-
photochemical quenching (NPQ) was calculated using (Fm—Fm’)/Fm’ [67]. For each
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treatment of light intensity in all crosses, 5 plants were selected, and 2 leaves were mea-
sured per plant on average. The data was analyzed statistically by using SPSS12.0.

4.4.4. Polymerase Chain Reaction (PCR) Analysis

The total DNA was isolated from the leaves of rooted seedlings from three cross combi-
nations by following the protocol of [68]. Two primers of CmSVP gene 5′-ATGATGGTTAGG
GAGAAAGTGC-3′ (CmSVP-F) and 5′-TCAACCTGAGTATGGTAATCCTAAC-3′ (CmSVP-
R) were used to amplify a 700 bp fragment of SVP gene. A 549 bp fragment of the
chrysanthemum actin gene was used to evaluate the quality of DNA using two primers
5′- TCCTCTTAACCCAAAGGCCAACAGA-3′ (CmActin-F) and 5′-TGAGACACACCATCA
CCAGAATCCA-3′ (CmActin-R). DNA was amplified by using the protocol as mentioned
by [69].

4.4.5. Classification of Hybrid Plants

A comparison of the size and shape of leaves and flowers was performed to differenti-
ate F1 hybrids from their respective parental plants. Leaf size was measured in terms of
length and width. Leaf length was measure from the top to the intersectional point of the
leaf and its petiole, whereas width was measured from both ends between the widest part
of the leaf perpendicular to the mid-rib by a measuring ruler.

5. Conclusions

The above results show that the progenies of the crossed CmSVP × RNAi F1 hybrids
and 37 × CmSVP F1 hybrids are transgenic chrysanthemum plants and can adapt to mild
low-light environments, and when light is less than 40% of natural light, low light affects
their normal photosynthesis. Full sunlight is not optimal for various physiological and
gaseous parameters of chrysanthemums. Therefore, cultivation and production should
adjust the planting density and interproduction density so that the relative light strength
control in natural light 80% to 60% is appropriate. Moreover, with the changing patterns
and increasing intensity of extreme weather events, sophisticated growing systems are
inevitably being well adapted to low light conditions. Therefore, these transgenics can be
more successful for low light intensity production systems with enhanced photosynthetic
activity and high yield. In our study, we observed a significant increase in leaf area that
could be correlated to photosynthetic efficiency and biomass production in chrysanthemum
plants. In addition, our current transgenic approach may lay a valuable foundation for
breeding strategies such as marker-assisted breeding, gene insertion, and ultimately more
sustainable flower production of chrysanthemum.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10081681/s1, Table S1: Analysis of growth parameters of F1 transgenic and non-
transgenic Chrysanthemum plants exposed to 100%, 80%, 60%, 40%, and 20% irradiance. Table S2:
Analysis of leaf gaseous exchange parameters of F1 transgenic and non-transgenic Chrysanthemum
plants exposed to 100%, 80%, 60%, 40%, and 20% irradiance. Table S3: Analysis of chlorophyll
fluorescence parameters of F1 transgenic and non-transgenic Chrysanthemum plants exposed to
100%, 80%, 60%, 40%, and 20% irradiance.
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