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Abstract: Skin aging is accompanied by a gradual loss of function, physiological integrity and
the ability to cope with internal and external stressors. This is secondary to a combination of
complex biological processes influenced by constitutive and environmental factors or by local and
systemic pathologies. Skin aging and its phenotypic presentation are dependent on constitutive
(genetic) and systemic factors. It can be accelerated by environmental stressors, such as ultraviolet
radiation, pollutants and microbial insults. The skin’s functions and its abilities to cope with
external stressors are regulated by the cutaneous neuroendocrine systems encompassing the regulated
and coordinated production of neuropeptides, neurohormones, neurotransmitters and hormones,
including steroids and secosteroids. These will induce/stimulate downstream signaling through
activation of corresponding receptors. These pathways and corresponding coordinated responses
to the stressors decay with age or undergo pathological malfunctions. This affects the overall skin
phenotype and epidermal, dermal, hypodermal and adnexal functions. We propose that skin aging
can be attenuated or its phenotypic presentation reversed by the topical use of selected factors with
local neurohormonal activities targeting specific receptors or enzymes. Some of our favorite factors
include melatonin and its metabolites, noncalcemic secosteroids and lumisterol derivatives, because
of their low toxicity and their desirable local phenotypic effects.

Keywords: skin aging; photoaging; premature aged skin; UV irradiation; oxidative stress;
vitamins B3 and D; melatonin

1. Introduction

The skin is a complex multifunctional self-regulating organ in the human body. Its functions are
critical to survival. The skin is not only a barrier that protects the organism from the deleterious insults of
the external environment, but it is also crucial for thermoregulation, as well as its maintenance of electrolyte
and fluid balance. Moreover, the skin also responds to environmental changes, such as biological, chemical,
and physical factors, in order to regulate cutaneous and global body homeostasis [1–3].

It is well established that in the skin there is an important sophisticated network connecting
cutaneous nerves and the local neuroendocrine and immune systems. The brain directly (via efferent
nerves) or indirectly (via the adrenal glands or immune cells) regulates skin function. The neurocutaneous
communication comprises of afferent and efferent nerves that release mediators acting on corresponding
receptors expressed on skin cells [1,4]. Furthermore, as a sensory organ with neuroendocrine activities,
the skin can also transmit humoral or neuronal signals to the central nervous, endocrine and immune
systems. In addition, environmental factors or pathological processes induce skin changes that can
imprint circulating immune cells acting as cellular messengers of skin responses to the changes in local
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homeostasis [1,2]. The skin also operates as a biofactory for the synthesis, processing and metabolism
of the wide range of structural proteins, glycans, lipids and signaling molecules [5], as well as a fully
functional neuroendocrine organ [6,7]. The human skin produces a variety of hormones, neuropeptides
and neurotransmitters [1–3,8] in addition to the formation of vitamin D3 [9–11]. The skin responds to stress
(such as UV light) by local synthesis of all hormones of the classical hypothalamic-pituitary-adrenal (HPA)
axis [12]. Specifically, skin cells are capable of producing corticotropin-releasing hormone (CRH) [13–21],
CRH-related peptides including urocortin 1 and 2 [3,22], proopiomelanocortin (POMC)-derived ACTH,
α-MSH and β-endorphin [3,13,23–28], and glucocorticoids [29,30]. They also express the corresponding
receptors. There are also many other hormones synthetized or activated/inactivated in the skin, including
thyroid releasing hormone (TRH), thyroid stimulating hormone (TSH) and thyroid hormones, [31–34]; sex
hormones and their precursors, as well as ∆7 steroids and different secosteroidal products [7,29,35–38].
The skin expresses the enzyme cytochrome P450scc (CYP11A1), which initiates steroid synthesis by
converting cholesterol to pregnenolone in a similar manner as in other steroidogenic tissues [36,38–45].
In addition, skin cells can produce catecholamines [46,47], serotonin [48–51], and melatonin [48,50,52–55].
Indeed, melatonin and its biologically active metabolites are essential for physiological skin functions and
protection against environmental stress [48,54–58].

2. Skin Aging

Aging is a natural process leading to the accumulation of damage and progressive deterioration
in the biochemical, physiological and morphological functions on the systemic or organ levels [59,60].
Chronobiological aging mainly results from imbalanced endocrine circadian rhythmicity, which is
linked to numerous health complications and pathologies in aging populations. Many factors can
cause or aggravate hormone deficiencies (like nutritional, dietary, lifestyle, behavioral, environmental
deficiencies, etc.) [61,62]. These hormonal changes induce morphological and functional alterations of all
organs and systems, including the central nervous system (CNS )and skin. Moreover, the physiological
aging process results in most of the phenotypic changes observed in the skin. There are age-related
changes affecting all endocrine glands, which sometimes are so intertwined that the reduced function
in one gland affects the other one [2,7,63]. Aging affects the expression of POMC and production of
POMC-derived peptides, especially of melanocortin receptor 1 (MC1R) and MC2R agonists, which are
of crucial importance for skin biological systems [2,64]. The regulation of the skin steroidogenic
system cannot be underestimated, since it can regulate epidermal functions and skin immunity [7,38].
The breakdown of this steroidogenic activity can lead to pathological skin changes and diseases.
The abnormal synthesis of skin cholesterol, involving a drastic reduction in steroids, is associated with
down-regulation of epidermal differentiation [7,38,65]. Furthermore, the levels of steroidogenic acute
regulatory protein (StAR) mRNA were found to gradually decrease in the skin tissues of elderly people,
in contrast to younger ones [66]. With increasing age, the capacity of the skin to produce vitamin
D3 declines, thus its protective effects are reduced [67,68]. Several factors contribute to this vitamin
D deficiency state, such as behavior factors (limited sun exposure, malnutrition, etc.) and reduced
synthetic capacity [69].

3. Factors Affecting Skin Aging

The skin, like all organs, follows the pathway of aging accompanied by a gradual loss of cellular
functions and physiological integrity, and is a mirror of the first signs of aging [70]. Skin aging is
a complex biological process influenced by internal (constitutive) and external (environmental) factors,
leading to cumulative changes of skin structure, function and appearance [71]. Skin aging can be
classified as physiological (chronological) aging and environmentally-induced, including photoaging.

The internal factors influencing chronological aging affect all skin areas and include genetic
(changes in gene expression), changes in the neuroendocrine system (e.g. physiologic decline
of hormones), development of skin disorders disrupting the cutaneous barrier functions or skin
involvement in connective tissue disorders. The rate of aging can vary among different populations
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determined by differences in anatomy and physiology, as well as among different anatomical areas even
within the same individual [72]. High levels of pigmentation form a natural protective shield against
UV radiation. The pigmentation level of the skin is genetically determined by the type, distribution
and density of melanin pigment, which can transform the absorbed UV radiation into heat, thereby
reducing UV-induced cell damage and subsequent skin aging [73]. Interestingly, there is evidence that
the pigmentation-related MC1R gene encoding the corresponding MC1R receptor is a key regulator
of eumelanogenesis. Diminished MC1R activity due to loss-of-function leads to the production of
pheomelanin, which has a weaker UV shielding capacity than that of eumelanin [74]. The DNA
variants in MC1R are significantly associated with perceived facial age, providing a new molecular
base for youthful looks [75].

In addition, several environmental factors accelerate the onset of aging in the skin, leading to
premature skin aging (Figure 1).
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The external factors affect areas of the body especially exposed to the environment, such as the
face, head, neck, and hands. The main external factors are ultraviolet radiation (UVR) [71,76], tobacco
smoking [77,78], and other environmental pollutants and toxins [79,80].

UVR can regulate global homeostasis after absorption and transduction of its electromagnetic
energy into chemical, hormonal, and neuronal signals [81]. This homeostatic activity includes activation
of the central neuroendocrine pathways [81]. Sun exposure not only has benefits, but also risks as well.
Chronic exposure to UVR is the most harmful environmental factor affecting skin biology according
to the anatomic location and skin type. It leads to premature skin aging, a process also known as
photoaging [82]. Solar UVR that reaches the earth’s surface has wavelengths ranging from 280 to
400 nm, divided into UVA (320–400 nm) and UVB (280–320 nm). Exposure to UVB has a larger
biological impact on the skin than that of UVA at similar radiation doses. UVB does not penetrate
deeply into the skin and is largely responsible for the development of sunburn. UVA has better
penetration and reaches the reticular dermis, but is 1000 times less efficient in induction of biological
effects (e.g. minimal erythema dose) compared to UVB [83]. Several studies have shown that long-term
exposure to UVA can damage the dermis more significantly than UVB, leading to photoaging and free
radical production. The UVA/UVB ratio is approximately 10/1 with the sun in the overhead position.
The radiation intensity of both UVA and UVB depends on many parameters, including latitude, season,
time of the day, meteorological conditions and ozone layer [84]. The dose of radiation presented in
J/m2 represents the radiation intensity multiplied by the exposure time. It determines the magnitude of



Int. J. Mol. Sci. 2019, 20, 2798 4 of 19

UVR-induced skin damage. In comparison to indoor-workers, outdoor-workers accumulate a higher
total UV dose, being therefore at higher risks of development of premature skin aging and skin cancers
such as basal and squamous cell carcinomas [85,86], but they are at lower risk of developing melanomas.
Melanomas are seen mainly in indoor-workers and are associated with intense intermittent exposure
and developing of sunburns [86]. Most biologically relevant chromophores absorb UVB and UVC
(from artificial UVC-sources). In contrast, UVA is weakly absorbed by DNA and by limited cellular
chromophores, but induces oxidative damages [81].

Although UVR causes photoaging, environmental pollutants can also damage the skin.
Air pollutants such as noxious gases, together with UVA, can act synergistically in initiation of
skin cancers. In addition, particulate matter (PM) pollutants induce skin aging through penetration
of the epidermal layer of the skin and through adnexal structures [80,87]. In addition, new evidence
suggests that environmental pollution, particularly persistent organic pollutants (POPs), can interfere
with the endocrine system by behaving like endocrine-disrupting chemicals (EDCs). EDCs can
affect the biosynthestic pathways of steroid and thyroid hormones and their systemic levels [88,89].
Air pollutants, especially ozone and PM can directly affect the cutaneous production of vitamin D.
Furthermore, EDCs may inhibit the activity and expression of Cytochrome P450 (CYP) and indirectly
can cause vitamin D deficiency through weight gain and dysregulation of the thyroid hormone,
parathyroid hormone, and calcium homeostasis. In addition, smoking can lead to a decrease in serum
levels of 25(OH)D3 and 1,25(OH)2D3 [79]. Miscellaneous lifestyle components such as diet, sleeping
position and overall health also affect the appearance of the skin [72].

4. Skin Structure and Morphological Changes in Advanced Age

As a multi-layered organ, human skin comprises of external, stratified, non-vascularized
epidermis, underlying connective tissue (dermis), subcutaneous adipose tissue defined as hypodermis,
and adnexal structures [90]. The epidermis is predominantly composed of self-renewing keratinocytes,
which generate solid lipid-rich cornified layers during differentiation [91]. Stem cells (SCs), located
in the basal layer, and transient-amplifying (TA) cells are important for epidermal regeneration.
Dysregulation of keratinocyte SCs may result in skin aging [92,93]. Epidermal melanocytes produce
and transfer melanin pigment to keratinocytes as an important element of skin protection against UVR
damage [94]. Basement membrane separates the epidermis from the dermis, restricting communication
between these components.

The dermis consists principally of fibroblasts/fibrocytes, which are mesenchymal cell types
producing fibrous and elastic components responsible for cutaneous strength and elasticity, as well
as proteoglycans (PGs), glycoproteins, water and hyaluronic acid (HA), and other biologically active
molecules, together called the extracellular matrix (ECM) [90]. HA as one of the glycosaminoglycans
(GAGs) forms proteoglycan aggregates which crosslink to other matrix proteins such as the collagen
network, leading to an increase in tissue stiffness [95]. In contrast to keratinocytes, the resident cells and
the fibers of the dermis have lower regenerative ability. Moreover, in vitro studies show that human
fibroblasts are more susceptible to UV exposure than the epidermal keratinocytes [96]. This may have
implications in vivo only for sun radiation with wavelengths able to cross the epidermis and reach
fibroblasts, that is, >310 nm for phototype I or >340 nm for phototype V [97,98].

Additional skin components are the immune cells, including lymphocytes, macrophages, mast
and dendritic cells. They predominantly reside in the dermis but sometimes they are present in the
hypodermis as well. The hypodermis is important for energy storage. The adnexa are located in both
the dermis and the hypodermis depending on their activities and functions. Human adnexal structures
include hair follicles, sebaceous glands, eccrine glands, and apocrine glands. All structures in the skin
are supplied by a network of somatosensory and autonomic nerve fibers, as well as by vascular and
lymphatic networks [1].

With accelerating age, skin functions deteriorate due to structural and morphological changes.
Also, the cutaneous regenerative potential declines with age. Keratinocyte SCs and fibroblasts undergo
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senescence and the accumulation of such senescent cells over time reduces skin regeneration capabilities,
contributing to skin aging [93,99].

Endogenous aging of the skin is mainly influenced by genetic and metabolic factors acting in
an age-dependent fashion. Skin at advanced ages is characterized by 10–50% of epidermal thinning,
fragility, fine wrinkle formation, and loss of elasticity [71]. The thinning of the epidermis depends on
progressive dysfunction of keratinocytes with SC-like properties and lower epidermal turnover, which
are associated with a decline of skin barrier functions and capability of wound healing [70,71]. It is
assumed that the chronologically aged skin is intrinsically less hydrated, less elastic, more permeable
and susceptible to irritation. The chronological dermal remodeling is mainly due to dysfunction
of long-lasting resident fibrocytes that constantly undergo damage accumulation [100]. Senescent
fibroblasts lose the ability to organize the ECM by reduction of collagens and elastins synthesis.

The histological features of aged skin are epidermal atrophy (atrophy of stratum spinosum),
flattening of dermoepidermal junction, reduction of dermal thickness and atrophy of ECM, reduction
of adnexal structures and decrease of their functions, thinning of subcutaneous fat, and reduction in
the number of nerve endings and cutaneous microvessels. There is also increased heterogeneity in
the size of basal cells, which often show decreased mitotic activity. There is a decrease in number of
melanocytes and Langerhans cells, and in number of dermal fibroblasts. Collagen and elastic fibers are
thin, loose, and disintegrated [70].

5. Morphological Changes in Prematurely Aged Skin

Skin damage due to chronic sunlight exposure accounts for up to 90% of visible skin aging,
in particular on the face of people with a light complexion (skin types I and II) [72]. Photoaging is
the superposition of the solar damage on the normal aging process resulting in premature skin aging.
The clinical signs of photoaging include deep wrinkles, skin laxity, early appearance of lentigines and
dyschromia, sallow yellow color, loss of normal translucency and gradual appearance of telangiectasia
(Figure 2). While the primary effects of photodamage include epidermal thickening, additional
photodamage can lead to significant thinning of the skin [72,101]. Atrophy and chronic skin fragility,
senile purpura, and pseudoscars are morphological signs of dermatoporosis [102] seen mainly around
70 years of age [103,104].
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Another important external factor leading to premature skin aging is smoking. Smoking increases
keratinocytic dysplasia and roughness of the skin and a dose-dependent relationship between wrinkling
and smoking was found [72,78]. According to some authors, smoking is considered to be a greater
contributor to facial wrinkling than the sun exposure [105].

Histological features characterizing prematurely aged skin include epidermal thickness
heterogeneity (thickening in the beginning, then thinning), pleomorphic corneocytes in sun-exposed
areas, flattening of the dermoepidermal junction, increased number of mast cells and neutrophils,
stellate phenotype of fibroblasts, and extensive damage of dermal connective tissue (solar elastosis),
which is a hallmark of photoaged skin. Major alterations occur primarily in the dermis, resulting in
degeneration of collagen, deposition of abnormal elastic material, increased level of dysfunctional
GAGs and PGs, and dilated vessels with thickened walls [70].

The synergic effects of environmental and internal aging factors over the human lifespan impair the
cutaneous barrier function with significant morbidity [101]. Aged skin is susceptible to pervasive dryness and
itching, cutaneous infectious diseases, autoimmune skin disorders, vascular complications (telangiectasia,
senile purpura, etc.), senile lentigines and other pigmentory changes, and so on. Other age-associated skin
diseases include benign skin changes, such as seborrheic keratosis, premalignant lesions of solar keratosis
and lentigo maligna, as well as melanoma and non-melanoma skin cancer [70,72].

6. Molecular Mechanisms of Skin Aging

Understanding the molecular mechanisms of skin aging is of great importance to create
a preventative anti-aging strategy, to delay the onset of aging, and to reduce the age-associated
skin damages and diseases. Changes in gene expression, generation of reactive oxygen species (ROS)
by oxidative metabolism, decreased antioxidant defense, telomere attrition, and defects in cellular DNA
repair form the basis for chronological aging. The replicative abilities of keratinocytes, fibroblasts and
melanocytes decrease with time, leading to senescent, non-dividing cells. p16INK4a and p63 (p53-related
protein) are mediators of keratinocyte senescence. Specifically, p16INK4a expression correlates with
chronological aging of human skin in vivo. Moreover, the number of p16INK4a-positive cells in both
epidermis and dermis increase with age [106]. In contrast, aged keratinocytes show reduced expression
of p63 [107]. In particular, p63 deficiency in adult mice causes a cell growth arrest and induces
appearance of aging features [108].

In addition, in human dermal fibroblasts, sirtuin (SIRT)-1 expression is significantly reduced in
advanced age [100]. SIRT 1–7 belong to a family of nicotinamide adenine dinucleotide (NAD)-dependent
histone deacetylases. SIRT1, SIRT3, and SIRT5 can protect the cell from ROS, while SIRT2, SIRT6,
and SIRT7 can modulate crucial oxidative stress response mechanisms [109–112]. SIRT1-up-regulation
or down-regulation results in delayed or accelerated fibroblast senescence, respectively [113]. Similar to
SIRT1, SIRT6 is implicated in aging, but it modulates the accessibility of DNA repair proteins to
chromatin [114]. Epigenetic mechanisms also mark cell senescence and epigenome modifications
contribute to the aging process [93].

Accumulating evidence supports a strong link between mitochondrial dysfunction and aging [115,116].
Many reports suggest a decrease in mtDNA content and mitochondrial number with advancing age [117,118].

In the skin, approximately 1.5–5% of the oxygen consumed is converted into ROS by intrinsic
processes [119]. These ROS can trigger a degradation of dermal ECM. The photoaging is primary due to
chronic exposure to UVR, which, by damaging multiple cellular structures, accelerates the aging process.
UVA exposure increases the expression of proteolytic enzymes (such as matrix metalloproteinases)
resulting in disorganization and progressive degeneration of the ECM [120]. Chronic UVA irradiation
inhibits hyaluronan synthesis via down-regulation of the hyaluronic acid synthases (HAS)-1, -2,
-3, thus altering the composition of PGs [100]. In addition, photo-aged fibroblasts with senescent
phenotype increase melanogenic gene transcription, causing hyperpigmentation and appearance of
“senile lentigines” [121].
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UVB radiation, absorbed mainly by epidermal DNA and RNA, can lead to various mutations,
including so called “solar UV signature” and production of dysfunctional proteins. The first UVB
chromophore encountered by UVB radiation penetrating the skin is trans-urocanic acid (UCA), which is
an endogenous sunscreen with low level protection against DNA damage and apoptosis [122]. However,
trans-UCA undergoes a cis-trans isomerization to cis-UCA, which is believed to mediate, at least in part,
UVB-induced immunosuppression [123]. An accumulation of unrepaired mutations can cause cycle
arrest or apoptosis, or lead to carcinogenesis [76]. Although some aging mechanisms share several
similarities or overlaps, photoaged skin and chronically aged skin show different changes in the ECM.
Photoaged skin is characterized by damaged collagen and accumulated aberrant elastin fibers and
GAGs, whereas endogenous aged skin shows atrophy of the dermal structures [124].

Generally, skin aging is mainly initiated by oxidative events. In particular, extensive ROS
production due to insufficient scavenging activity or an altered mitochondrial function is crucial
in oxidative stress-induced skin aging [125]. As a consequence of the oxidative stress, high levels
of ROS lead to oxidative damage of lipids, proteins, genomic DNA, mitochondrial DNA (mtDNA),
and also can deplete and damage non-enzymatic and enzymatic antioxidant defense systems of the
skin. An important target for ROS is mtDNA and its damage and decline in function lead to vicious
cycle-like effects, resulting in enhanced ROS production (see Figure 3) [125]. Accumulation of ROS
dysregulates cell signaling pathways alters cytokine release and leads to inflammatory responses [126].
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stress-induced skin aging.

The aging process includes the activation of nuclear factor-κβ (NF-κβ) and activator protein-1
(AP-1), which are redox sensitive transcription factors involved in inflammation and wrinkle
formation. [127]. Both transcription factor complexes are elevated within hours of low-dose UVB
irradiation of the skin. Increased levels of ROS induce activation of mitogen-activated protein kinases
(MAPKs) such as extracellular signal-regulated kinases (ERK), MAPK p38, and transcription factor
c-Jun-N-terminal kinase (JNK) in the AP-1 pathway. In addition, upstream signaling enzymes (inhibitor
of κBα, AKT-Protein kinase B, etc.) in the NF-κβ pathway are upregulated. Normally, ERK mediates
cellular responses to growth factors, whereas JNK and p38 mediate cellular responses related to
cytokines and physical stress [127–129]. Activation of ERK and p38 results in the degradation of ECM
and down-regulation of neocollagenesis [129].
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NF-κβ signaling is a well-known regulator of tissue homeostasis. Recently, its central role in
skin aging was underlined [130]. Thus, NF-κβ had increased expression in mtDNA-depleter mice,
and after restoration of mtDNA, the NF-κβ expression was reduced. These data confirm that NF-κβ
signaling is a critical mechanism contributing to skin and hair follicle pathologies [131]. Activated
NF-κβ in dermal fibroblasts further stimulate infiltration of inflammatory cells, such as neutrophils,
by stimulation of proinflammatory IL-1, IL-6, VEGF and TNF-α production. These cytokines stimulate
neutrophils to release neutrophil collagenase (MMP 8), leading to matrix degradation and accelerated
skin aging in the irradiated zones [132].

ROS may further damage the skin by stimulating the synthesis of proteolytic matrix metalloproteinases
(MMPs) via MAPKs induction. Together, MMPs can fully degrade collagen [133], thus decreasing the skin
elasticity. To maintain the collagen fiber content in the skin, the tissue-specific inhibitor (TIMP1) is essential
to inhibit MMPs [134], especially MMP-1 (collagenase). Loss of balance between TIMP1 and MMPs can
contribute to wrinkle development [131,134]. In addition, granzyme B-knockout mice showed decreased
wrinkle formation after chronic UV exposure [135], which has suggested that inhibitory regulation of MMP-1,
granzyme B and other PG-degrading proteases may serve as one of the anti-aging target mechanisms.

ROS may exert harmful effects by interfering with the nuclear factor erythroid 2-like 2 (Nrf2) that
is a master regulator of the antioxidant responses. The Nrf2 is crucial to activate the antioxidant system
and prevent further generation of ROS in all cell types of the skin. Many cytoprotective proteins,
including heme oxygenase (HO-1), peroxiredoxins, NAPD(H) dehydrogenase, quinone 1 (NQO1),
and the glutathione biosynthesis enzymes are downstream of the Nrf2 [136]. Therefore, Nrf2 is a key
transcription factor regulating redox balance in skin aging.

7. Anti-Aging Strategies

While aging as a natural phenomenon is genetically determined, premature photoaging can
be prevented. Wrinkling and pigmentation are directly associated with premature skin aging and
are considered to be the most critical skin events [137]. Photoprotection achieved by physical and
chemical UV filters is the main preventive measure against skin photo-damage. Use of nutraceuticals
(the term is derived from “nutrition” and “pharmaceutical” [138]) represent a promising strategy for
preventing, delaying or minimizing the premature skin aging and age-associated diseases, including
skin cancers [139]. Among them are plant polyphenols, bioactive peptides and oligosaccharides,
carotenoids, vitamins and polyunsaturated fatty acids. Although some studies have reported that
polyphenols can exert cytotoxic effect, polyphenolic compounds (curcumin; polyphenols from green
tee, grape, soybeans, pomegranate, etc.) belong to the most frequently used ingredients in modern
cosmeceutical and dermatological products [125,140–143]. Numerous studies suggest that polyphenols
modulate the cellular inflammatory response of the NF-κβ pathway [144,145] and exert indirect
antioxidant actions via activation of the Nrf2 [146].

Topical nicotinamide (niacinamide, vitamin B3) improves skin appearance and provides beneficial
effects in prevention of the loss of dermal collagen that characterizes photoaging [147–149]. Vitamin B3,
a precursor of Nicotinamide Adenine Dinucleotide (NAD), can also prevent UV-induced depletion of
ATP in keratinocytes, leading to the acceleration of energy-dependent DNA repair processes [150].
When DNA damage cannot be repaired, an activation of poly-ADP-ribose-polymerase (PARP-1)
induces apoptosis by activation NF-κβ pathway [151]. Hence, the UV-protective effects of vitamin B3

on the skin include regulation of cellular metabolism [152,153]. The ability of nicotinamide to enhance
PARP-1 and regulate DNA repair mechanisms lead to its inclusion in regular sunscreens [154,155].

The potent antioxidant properties of vitamins C and E are well known and documented. They are
widely used for skin care and in photo-protection, either as nutraceuticals or for topical application [70].
The incorporation of ferulic acid improves chemical stability of the vitamins (C + E) and increases
photo-protection of photo-exposed skin [156–158].

Another preventive measure against premature skin aging is the usage of vitamin D3 derivatives.
It was reported that active forms of vitamin D3 protect, attenuate, or even reverse UVB-induced
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cell and DNA damage in skin cells [67,159–165]. Unfortunately, the chronic use of vitamin D3 at
therapeutic doses in its classical active forms including 1,25(OH)2D3 is severely limited due to its
calcemic (toxic) effects. However, the discovery of an alternative pathway of vitamin D activation
initiated by CYP11A1 [36–38], which produces biologically active but non-calcemic novel derivatives
detectable in vivo [166–169], offers promises for therapeutic applications against photoaging and
UVR induced skin pathology [170]. Vitamin D analogs may increase the DNA repair capacity in
keratinocytes and melanocytes by enhancement of the expression of tumor suppressor protein p53
phosphorylated at Ser-15, but not at Ser-46 [171]. Phosphorylation at Ser-15 and Ser-20 of p53 activates
p53 and promotes DNA repair, with phosphorylation of p53 at Ser-46 being responsible for regulation
of apoptosis after DNA damage [172]. In addition, novel vitamin D derivatives produced by CYP11A1
down-regulate the formation of mutagenic and genotoxic cyclobutane pyrimidine dimers (CPD)
produced after UVB exposure.

Thus, both classical 1,25(OH)2D3 [160,161] and novel CYP11A1-derived 20(OH)D3 and
20,23(OH)2D3, and other vitamin D3 derivatives, may work as protectors of the human epidermis
against UV-induced oxidative damage, not only in keratinocytes but also in melanocytes [171].

Vitamin D3, production of which in the skin is induced by solar radiation, is essentially important
as a protector of skin homeostasis [173]. It can attenuate DNA- and metabolic-damage by reducing
H2O2 and NO levels, elevating glutathione levels, and enhancing DNA repair. In advanced age,
the capacity of the skin to produce vitamin D, which could be a part of this intrinsic protective
mechanism against UV-damage, declines. Therefore, the supplementation of vitamin D is of great
importance in the elderly population.

The most promising candidate for delaying skin aging and for the treatment of several dermatoses
associated with oxidative damage is melatonin. Melatonin is the main secretory hormonal product
of the pineal gland and a regulator of chronobiological activities. Melatonin is also synthesized in
numerous extrapineal sites including skin and hair follicles [54,58,174,175] where it can act on functional
melatonin type 1 and 2 receptors (MT1 and MT2) [48,53,176–180]. Surprisingly, it was found that skin
produces a much higher amount of melatonin for its own use than can be detected in serum [54,175].
Skin melatonin exerts multifaceted functions [179,180]. In addition to receptor-mediated actions,
melatonin and its metabolites act as relevant direct antioxidants, as shown in Figure 3. Moreover,
melatonin is one of the most potent free radical scavengers [181–183], even stronger than vitamins C
and E [184]. Several in vitro studies have confirmed that melatonin and its metabolites can protect
keratinocytes and melanocytes from UVB-induced damages. The mechanism of this protection
includes activation of Nrf2 and upregulation of the Nrf2-related pathway [185,186]. Similarly,
melatonin protects dermal fibroblasts from solar irradiation by increasing HO-1 expression and
restoring the physiological expression of ECM proteins [187,188]. Melatonin reduces oxidative stress,
not only as a direct ROS/RNS scavenger, but also indirectly via stimulation of antioxidant enzymes
and inhibition of pro-oxidant enzymes [183,189]. Indeed, melatonin can upregulate expression of
antioxidant genes [55,185,186,190]. Melatonin and its metabolites could also protect DNA from
oxidative damages and reduce the levels of CPD’s or pyrimidine photoproducts (6-4PP) [185,191,192].
Melatonin, as an endogenous regulator, similarly to vitamin D3, stimulates phosphorylation of p53
at Ser-15 and enhances nucleotide excision repair (NER), thus preventing accumulation of damaged
DNA and promoting antitumor activity [177,186,193].

Apart from its anti-oxidative properties, melatonin also preserves mitochondrial function. As we
previously proposed, photoprotective functions of melatonin and its metabolites are directly or
indirectly dependent on mitochondria, which appear to be a central hub of melatonin metabolism in
skin cells [56]. Melatonin protects mitochondria not only directly, by ROS scavenging but also via
maintenance of mitochondrial membrane potential and mitochondrial homeostasis in UV-exposed
keratinocytes [56,194]. Additionally, melatonin and its metabolites ameliorate UVR-induced
mitochondrial oxidative stress in human MNT-1 melanoma cells [195]. These data support the
development of novel mitochondria-targeted antioxidants based on melatonin.
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Furthermore, the lightening effects of melatonin and some of its metabolites are due to inhibition
of proliferation and tyrosinase activity in epidermal melanocytes [175]. Since melatonin and its
metabolites over the years have proved their cytoprotective and antiaging properties, topical application
of exogenous melatonin and/or metabolites would be a useful strategy against skin aging [196,197].

To enhance the protective effects and prevent wrinkle formation during photoaging, sunscreens
and antioxidants (topical and systemic including vitamin C) often are combined with retinoids. The use
of retinoids can promote collagen production [137]. Retinoids, especially retinoic acids (RAs) enhance
the steroidogenic potential in many classical and non-classical steroidogenic tissues, which decrease due
to hormonal imbalance in aging [7,29,198]. Local regulation of steroidogenic activity in keratinocytes
of the epidermis is important for skin physiology and homeostasis. RAs improve wrinkled appearance,
post-inflammatory hyperpigmentation and inhibit differentiation of keratinocytes in both mice and
humans [30], but they often lead to irritation.
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