
RESEARCH ARTICLE Open Access

CodingMotif: exact determination of over
represented nucleotide motifs in coding sequences
Yang Ding1, William A Lorenz2 and Jeffrey H Chuang3*

Abstract

Background: It has been increasingly appreciated that coding sequences harbor regulatory sequence motifs in
addition to encoding for protein. These sequence motifs are expected to be overrepresented in nucleotide
sequences bound by a common protein or small RNA. However, detecting overrepresented motifs has been
difficult because of interference by constraints at the protein level. Sampling-based approaches to solve this
problem based on codon-shuffling have been limited to exploring only an infinitesimal fraction of the sequence
space and by their use of parametric approximations.

Results: We present a novel O(N(log N)2)-time algorithm, CodingMotif, to identify nucleotide-level motifs of
unusual copy number in protein-coding regions. Using a new dynamic programming algorithm we are able to
exhaustively calculate the distribution of the number of occurrences of a motif over all possible coding sequences
that encode the same amino acid sequence, given a background model for codon usage and dinucleotide biases.
Our method takes advantage of the sparseness of loci where a given motif can occur, greatly speeding up the
required convolution calculations. Knowledge of the distribution allows one to assess the exact non-parametric
p-value of whether a given motif is over- or under- represented. We demonstrate that our method identifies
known functional motifs more accurately than sampling and parametric-based approaches in a variety of coding
datasets of various size, including ChIP-seq data for the transcription factors NRSF and GABP.

Conclusions: CodingMotif provides a theoretically and empirically-demonstrated advance for the detection of
motifs overrepresented in coding sequences. We expect CodingMotif to be useful for identifying motifs in
functional genomic datasets such as DNA-protein binding, RNA-protein binding, or microRNA-RNA binding within
coding regions. A software implementation is available at http://bioinformatics.bc.edu/chuanglab/codingmotif.tar

Background
Coding sequences have been shown to harbor numerous
regulatory sites in their nucleotide sequences for func-
tions such as RNA localization [1], translation efficacy
[2], mRNA splicing [3], mRNA stability [4], and accessi-
bility to the translation machinery [5]. The existence of
such regulatory sites suggests that searching for cis-reg-
ulatory elements only in promoter regions or UTRs
overlooks a great deal of important biology. This regula-
tory importance within coding regions is perhaps not
surprising, as coding sequences are comparable in
length to both UTRs and promoter regions. Although
there is substantial variation in the length of UTRs and
coding sequences, on average human coding sequences

are ~ 1000 bp long, while 3’ UTRs are ~ 800 bp and 5’
UTRs are ~ 100-200 bp. In 56% of transcripts the cod-
ing region is longer than the 5’ and 3’ UTRs combined
(Ensembl v63).
High-throughput studies of both RNA and DNA have

also shown evidence of functional sites in coding
regions, indicating the need for computational methods
to identify such sites. Some of the RNA studies include
those showing binding of proteins or microRNAs to
mRNA coding regions [6,7]. At the DNA level, tran-
scription factor binding site mapping has shown that
coding regions contain extensive binding sites in bac-
teria [8], DNAse hypersensitivity measurements have
shown that the transcription factors are likely to bind
into the first several hundred bases of human coding
regions [9], and transcription factor chromatin immuno-
precipitation studies have shown similar behavior in

* Correspondence: chuangj@bc.edu
3Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
Full list of author information is available at the end of the article

Ding et al. BMC Bioinformatics 2012, 13:32
http://www.biomedcentral.com/1471-2105/13/32

© 2012 Ding et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://bioinformatics.bc.edu/chuanglab/codingmotif.tar
mailto:chuangj@bc.edu
http://creativecommons.org/licenses/by/2.0

Drosophila coding regions [10]. It has also been shown
that the sequence motifs overlapping the stop codon
may influence protein yield [11].
Identifying functional motifs in coding sequences com-

putationally has been challenging due to the lack of
appropriate algorithms to separate nucleotide-level sig-
nals from those caused by the amino acid sequences.
Here we use the term motif to refer to a short possibly
degenerate sequence element that may or may not be
functional. Sequence conservation approaches that cali-
brate for the amino acids are one promising technique
for identifying functional motifs, as it was shown that
conservation can detect exonic splicing, microRNA bind-
ing, and DNA replication-associated motifs [12-14].
However, the function of a motif identified by sequence
conservation is often non-obvious. This is in contrast to
motif identification by overrepresentation, for which
functions can be assigned based on the manner in which
the sequence set was identified. For example, sequences
captured in RNA immunoprecipitation or chromatin
immunoprecipitation are likely to contain overrepre-
sented motifs relevant to the specific proteins binding to
the RNA or DNA. Development of a motif overrepresen-
tation algorithm for coding regions would therefore be of
considerable value.
A few groups [15-17] have attempted to separate the

amino acid and nucleotide-level pressures on motif copy
number, using codon usage biases as a starting point.
However all of these methods have been based on sam-
pling sequences whose codons have been shuffled while
preserving the amino acid sequence. Such an approach is
limited by the number of shuffled sequences that can be
sampled in a feasible amount of time. Proteins are on
average more than 300 codons long [18] and almost all
codons are at least 2-fold degenerate, yielding exponen-
tially many possible codon sequences per protein. Prior
studies have sampled only an infinitesimal portion of the
sequence space, e.g. Down et al compared real sequences
to a single shuffle [15], Itzkovitz et al compared to 20
shuffles [17], and Robins et al compared to 50 shuffles
[19]. To compensate for the limited sampling depth,
parametric approximations were used for the motif count
null distribution based on the behavior of the sampled
sequences [17,19]. However, the adequacy of such para-
metric approximations is unclear, as they depend on
many factors, including the number of samples, the
length of the original sequence, the encoded amino acid
sequence, the shape of the distribution implied by the
parametric approximation, and the true prevalence of the
motif to be tested. The validity of the parametric approxi-
mation as well as the required depth of sampling are in
general unknown for a given dataset and motif.
Methods based on comparisons to empirical motif

counts in control exonic (and sometimes intronic)

sequences have also been developed [3,20], though such
approaches require additional functional knowledge of
the control sequences and, like the shuffling approaches,
are limited by size of the control set.
Algorithms that simply ignore the amino-acid sequence

have been applied to coding sequences as well. For exam-
ple Jambhekar et al [21] used MEME, which is designed
for noncoding sequences [22], to search for RNA locali-
zation zipcodes. However they concluded that MEME,
even when combined with RNA folding simulations, was
unreliable for this purpose [1].
In this work we present a novel enumerative method,

CodingMotif, to detect functional noncoding motifs in
coding sequences, solving the problems associated with
sampling approaches. The algorithm exactly calculates
the distribution of a motif’s occurrence frequency over all
coding sequences that code for the amino acid sequence,
given a null model of codon usage. This approach allows
for exact evaluation of the overrepresentation or underre-
presentation p-value for a motif in any length of
sequence N. This removes the need for sampling or for
parametric approximations, providing a key advance over
prior approaches. Our algorithm is able to efficiently cal-
culate the distribution in O(N(log N)2) time through a
novel dynamic programming algorithm. We describe
how to speed up the calculation by taking advantage of
motif sparseness as well. Importantly, the program also
takes into account dinucleotide biases, which are built
into the model through a codon-to-codon Markov pro-
cess. We show that CodingMotif assesses motifs more
accurately than sampling approaches in both eukaryotic
and prokaryotic datasets.

Results and discussion
Independent codon model
As a first approach to the problem, we developed a motif
overrepresentation algorithm based on an Independent
Codon Model (ICM), in which our null assumption was
that codons do not influence the codons at adjacent posi-
tions (see Methods). To determine the effectiveness of
this assumption, we first analyzed k-mer strings ((A,G,C,
T)k) for overrepresentation in the coding sequences of
mouse chromosome 19 (623,203 codons; 1331 coding
sequences). Prior studies have focused on analyzing over-
representation for k-mers as well [17,19].
k-mer scores exhibited a strong bimodal behavior under

the ICM null, with the vast majority of p-values close to
either 0 or 1. The distribution of p-values for these k-mers
is shown in Figure 1. and labeled as “original sequence.”
For example, 32% of 6-mers have p-value < 0.05, and 19%
of 6-mers have p-value > 0.95. The large number of motifs
with strong copy number biases suggests that the ICM
model may not be an adequate null model for detecting
motifs under selection. To clarify the reason for the

Ding et al. BMC Bioinformatics 2012, 13:32
http://www.biomedcentral.com/1471-2105/13/32

Page 2 of 16

bimodal behavior, we shuffled the codons while keeping
the amino acid sequences fixed, yielding a “codon
shuffled” sequence. When the overrepresentation algo-
rithm was run on this shuffled sequence, the bimodality of
the scores was substantially decreased (Figure 1). This sug-
gests that there are systematic dinucleotide biases at the
boundaries of neighboring codons that significantly impact
the p-values calculated for the original sequence. Such
biases may include selective pressures on motifs, which is
what we seek to identify; however the large number of
motifs with scores altered by the codon shuffling suggests
that there are neutral effects as well.
We hypothesized that the ICM null model may be

inadequate for detecting motifs under selection because
it ignores neutral dinucleotide mutation biases. To clar-
ify the effect of dinucleotide biases, we shuffled the

original coding sequences while maintaining dicodon
frequencies (and consequently dinucleotide frequencies;
see Methods) using the method of [23]. When the over-
representation program was applied to this dicodon-
shuffled sequence, the distribution of motif p-values was
very close to that for the original sequence (Figure 1).
Thus dinucleotide biases at codon boundaries are
responsible for much of the behavior of motif p-values
for the original sequence. This finding is consistent with
previous works showing that the CpG effect has a strong
influence on motif occurrence in coding regions [12], as
well as earlier studies that have analyzed dicodon corre-
lations in coding regions [24-26]. Therefore when
detecting motifs whose copy numbers are increased due
to selective pressures, it is important to include dinu-
cleotide effects in the null model; otherwise many of the

Figure 1 Distribution of motif overrepresentation p-values for mouse chr19 coding sequence with the Independent Codon Model null.
Three ICM p-value distributions are shown: the p-values for the original coding sequences; the p-values after shuffling synonymous codons
across coding sequences; and the p-values after shuffling dicodons across coding sequences.

Ding et al. BMC Bioinformatics 2012, 13:32
http://www.biomedcentral.com/1471-2105/13/32

Page 3 of 16

motifs inferred to be under selection would be false
positives.

Dinucleotide-corrected codon model
To handle this problem, we developed a method to calcu-
late the motif frequency distribution that would be gener-
ated by a null model that includes dinucleotide biases.
The algorithm uses as its null a Markov model that clo-
sely preserves the expected codon usage and dinucleotide
frequencies in the reference sequence. We refer to this as
the dinucleotide-corrected codon model (DCM). Full
details of the DCM are given in the Methods.
If each amino acid had only one possible first nucleo-

tide for the underlying codon, then the expected dinu-
cleotide and codon usage in the DCM null model would
be exactly equal to those of the reference sequence (see
Methods for proof). However, the true genetic code
deviates slightly from this behavior (Arginine, Leucine,
and Serine can have two possible first nucleotides). To
determine how well the DCM preserves dinucleotide
and codon usage, we generated a sequence using the
DCM Markov model and compared to the properties of
the reference sequence. Figure 2 shows the dinucleotide
usage of the original sequence and that generated by
both the DCM Markov model and the ICM model. The

original sequence used was the set of all mouse coding
sequences (NCBIM 37; 22,791,336 codons). The DCM
and ICM sequences were generated through Python
scripts using the Python built-in random number gen-
erator. The correlation of the original and ICM dinu-
cleotide frequencies is high (Pearson r = 0.9580), but
the correlation with the DCM value is noticeably super-
ior (Pearson r = 0.9999). The strongest discrepancy is
for CG nucleotides, which are well-known to be hyper-
mutable compared to other dinucleotides. The CG fre-
quency in the ICM is 1.60 times that in the original
data, while the DCM CG frequency is only 1.0008 times
that in the original data. None of the DCM dinucleotide
frequencies differs from its respective original sequence
dinucleotide frequency by more than 0.5% of the origi-
nal sequence value, even though such differences are
affected by both systematic biases and finite-size
fluctuations.
Preservation of dinucleotide usage inherently implies

preservation of codon usage, as shown by the following
argument. Define f̃ (α|A) to be the expected codon
usage generated by the Markov process. Then we have:

f̃ (α|A) =
∑

b

p(α|A, b)f̃ (b|A), (1)

Figure 2 Comparison of dinucleotide usage under different null models. The dinucleotide usage of sequences generated by the DCM
Markov model (black) and the dinucleotide usage of the original data (white) exhibit Pearson correlation r = 0.9999, in comparison to
correlation r = 0.9580 between ICM-generated dinucleotide usage and that of the original sequences. The largest discrepancy is for CpG
dinucleotides, for which the ICM-generated frequency is 1.60 times that in the original data. For the DCM-generated sequences, the CpG
frequency is 1.0008 times that in the original data.

Ding et al. BMC Bioinformatics 2012, 13:32
http://www.biomedcentral.com/1471-2105/13/32

Page 4 of 16

where f̃ (b|A) is the average occurrence of the base b
3’ of amino acid A in the sequences generated by the
Markov process. Consistent with this, we found that the
codon usage was extremely well preserved between the
Markov process and the original sequence. There was
no codon whose frequency under the DCM differed by
more than 0.7% of its value in the original sequence.
Because of its accurate accounting for both codon usage
and dinucleotide effects, the DCM model was used for
all further motif overrepresentation calculations. Since
the DCM analysis above indicates that dinucleotide cor-
rections are important we consider the DCM algorithm
to be the standard method, and henceforth refer to it by
the name CodingMotif.
Would it be better to use a higher order Markov model

for the null? 5th order cyclic Markov models are used
commonly in gene-finding algorithms, which would sug-
gest they might be appropriate for a null model in motif
finding. However, these models were chosen to be 5th
order because hexamers were shown to be good for dis-
criminating protein-coding and non-coding regions [27].
This is a criterion unrelated to the present work so such
a null model provides no particular advantage for disco-
vering functional motifs. Higher order models also have
the drawback of subsuming more of the true signal for
motifs into the null, in conflict with the fact that many
short motifs are known to be functional. For example,
hundreds of 6-mers have been experimentally shown to
have a significant effect on exonic splicing activity [28],
and microRNA binding sites are only 6-8 bp long [29].
The AA/dinucleotide null has the advantages of being

straightforwardly interpretable and of being the lowest
order model that accounts for both A A effects and
dinucleotide mutation biases. Our emphasis on dinu-
cleotide effects is reasonable because, in many genomes,
by far the strongest neutral cause of base-base correla-
tions is the CpG effect, which is known to act on 2
bases at a time [30]. Even in genomes without the CpG
effect, there are few 3rd or higher order processes
known to be explicitly due to mutation, aside from the
special cases of tandem repeats arising from replication
slippage or the insertion of transposable elements. Con-
sequently, higher order effects are most reasonably trea-
ted as results rather than as part of the null.

Time scaling
The CodingMotif algorithm takes as input a motif μ and
a set of independent sequences S = {S1, S2,...,SL}, corre-
sponding to the coding regions to be analyzed with total
sequence length N. The algorithm determines and out-
puts the distribution of the number of occurrences of a
motif in sequences that are compatible with the given
set of coding regions. The algorithm consists of two

parts: first the distribution of each Si is determined, and
second these distributions are combined into a single
distribution. Each of these parts is analyzed in turn.
Determination of the distribution for each Si is gov-

erned by the induction relation 4. Equation 4 calculates a
new distribution Dμ(k + 1, X, ak-Δ+3 ... ak+1) by adding
contributions from at most 6 previously calculated distri-
butions (as there are at most 6 codons compatible with a
given amino acid). This calculation is performed for all
possible values of ak-Δ+3 ... ak+1, yielding at most 6Δ cal-
culations during each stage of the induction. The number
of basic operations each induction step requires depends
directly on the size of the distribution, which is stored as
an array. The size of the distribution is determined by
the maximum number of motif occurrences, which is
very conservatively bounded by the length of the subse-
quence, i.e. length(Si). Since len(Si) induction steps are
required, an upper bound for the steps required to calcu-
late the distribution of Si is 6

Δ length(Si)
2. We need to do

this calculation for all L independent sequences, so the
total time is also proportional to L.
In practice even within a single coding sequence Si we

frequently observe sections where no copies of a given
motif can possibly occur, due to the structure of the
genetic code. These break each sequence Si into much
smaller subsequences for which we can calculate the dis-
tribution independently, while we can ignore the sections
where a motif is forbidden. To see why these subse-
quences are short, consider a 6-mer motif and its poten-
tial occurrence within a stretch of 3 codons. At most,
each of these codons has 6-fold degeneracy, so there can
be at most 63 = 216 possible DNA sequences consistent
with the given amino acids. If the 6-mer occurs within
the three codons, it may overlap in position 1-6, 2-7, 3-8,
or 4-9. At most 216 · 4 = 864 motifs may occur within
this three codon stretch, while there are 46 = 4096 possi-
ble 6-mer motifs. So at least 79% of 6-mers are forbidden
within any three codon stretch. Consequently, regions
where a motif is not forbidden will have an approxi-
mately geometrically decreasing length distribution. This
leads to a much larger number of effective independent
regions each with short lengths. We use these effective Si
for the distribution function calculations, and this signifi-
cantly improves the runtime of the algorithm (see Meth-
ods: Optimization for sparse motifs). The actual
independent regions are a function of the motif, genetic
code, and amino acid sequences, and in general there will
be O(N) of them with lengths O(1). While it is theoreti-
cally possible that some amino acid sequences would
necessitate independent regions with longer lengths, such
amino acid sequences are exponentially unlikely as long
as the amino acid sequences can be approximated as
being generated by a finite-length Markov process.

Ding et al. BMC Bioinformatics 2012, 13:32
http://www.biomedcentral.com/1471-2105/13/32

Page 5 of 16

The step of combining the distributions for all inde-
pendent regions into the overall distribution is rate-lim-
iting. Denote the maximum possible number of motif
occurrences in the complete sequence as n ~ O(N).
Then there can be at most n independent regions, and
thus at most n distributions to be combined. Suppose n
= 2k for some k (It is irrelevant whether n is actually a
power of 2 since we can introduce dummy regions with-
out affecting the runtime scaling). Then we can recur-
sively combine the distributions pairwise until only one
remains.
The distributions will be combined from smallest to

largest size. Consider the worst case scenario in which
there are 2k distributions of size 1. In the first stage we
combine these into distributions of size 2. This involves
2k-1 pairs of distributions. In the next stage we combine
2k-2 pairs of distributions of size 2 into distributions of
size 4. Continuing hierarchically, at each stage we com-
bine 2k-l pairs of distributions of size 2l-1 for l = 1, 2,...,
k (A more general procedure is to always combine the
two smallest distributions, which allows us to handle
cases when the distributions vary in size). At a given
stage each convolution takes time O(2l-1log(2l-1)) using
the FFT procedure. The total calculation time is then
given by

O(running time) =
k∑

l=1

2k−1O(2l−1 log(2l−1))

= 2k−1
k∑

l=1

(l − 1)

= 2k−1 k(k − 1)
2

=
n

2
log n(log n − 1)

2
= O(n(log n)2).

So the time requirement for the program is O(n(log n)
2) = O(N(log N)2), much shorter than the exponential
number of possible coding sequences.

Tests of CodingMotif
Bacterial motifs
There are two relevant tests for CodingMotif, the first
being its ability to more accurately detect over- and
under- represented motifs relative to prior methods, and
the second being its ability to identify biologically mean-
ingful motifs. For the first type of test, we analyzed the
coding sequences of the bacterium E. coli. We compared
our results to those of Robins et al [19], who used a
shuffling-based approach to identify motifs of unusual
copy number. Their method involves performing 20-50
shuffles of synonymous codons within each gene to

determine the expected copy number of each motif,
though their null model does not account for dinucleo-
tide effects. They then identify unusual motifs by com-
paring the real counts to the shuffled average using the
Kullback-Leibler distance, with a z-score threshold
based on the standard deviation of counts across
shuffled sequences.
Because we used an identical dataset to Robins et al, we

were able to directly compare whether our exact approach
gives results better than a finite sampling/z-score
approach. Robins et al reported a set of 100 over- or
under- represented motifs. Among their underrepresented
motifs, we found 2 with very weak underrepresentation
according to our exact method (underrepresentation
p-values CCC: 0.54, CAGAT: 0.31). Moreover, 2 other
motifs they call as underrepresented are in fact overrepre-
sented in the data (overrepresentation p-value CTCC: 6e-
4, CTGCTGG: 0.075). Among the 31 motifs they report to
have unusually high occurrence frequencies, all 31 exhib-
ited very low p-values according to CodingMotif as well
(p < 0.005), with most exhibiting extremely low p-values
(23 motifs between length 3 and 7 with p < 10-8). How-
ever, our exact method detected a total of 251 motifs of
lengths between 3 and 7 that have p < 10-8. These findings
indicate that, even with a dataset as large as the coding
regions in a bacterial genome, a sampling/z-score
approach can have significant error rates, which in this
dataset are mostly false negatives. The differences between
our exact method and that of Robins et al are somewhat
influenced by the lack of dinucleotide effects in the Robins
et al null model. When we used an ICM null, which is
more similar to the Robins et al null, we found that
CodingMotif classifies the motifs CCC, CAGAT, and
CTCC similarly as Robins et al. However, under an ICM
null, CodingMotif still finds the motif CTGCTGG to be
overrepresented (p-value 2e-5), indicating that the misclas-
sification by the Robins et al method is caused by weak-
ness in the sampling/parameterization approach.
Moreover, under the ICM null we find a total of 421
motifs of lengths 3-7 with overrepresentation p-values <
10-8, demonstrating that the high false negative rate of
Robins et al is due to the sampling/parameterization
approach rather than the lack of dinucleotide effects in the
null.
Mammalian splicing motifs
As a test of the ability of CodingMotif to identify biologi-
cally relevant motifs, we analyzed the behavior of splicing
motifs on the coding sequences in human chromosome
1. Our expectation was that motifs with known activity in
coding regions, such as exonic splicing enhancers, would
show overrepresentation. Figure 3 shows the log p-values
from CodingMotif versus experimentally measured exo-
nic splicing enhancer activity, for sequences assayed pre-
viously by [3] (activity values rounded to the nearest 5%).

Ding et al. BMC Bioinformatics 2012, 13:32
http://www.biomedcentral.com/1471-2105/13/32

Page 6 of 16

The splicing activities refer to rates of splicing rescue
when a particular hexamer was inserted into exon2 of a
pSXN reporter construct. We found that motifs with
superior p-values indeed have greater splicing activities.
For example, the motifs with the top 4 p-values all have
splicing activities of at least 40%. Overall, we observe a
correlation with R2 = 0.26 (t-test p-value = 0.02) between
- log(p) and splicing activity. However, some motifs with
strong overrepresentation do not show strong splicing
activity. This illustrates the importance of dataset size, as
it is likely that this large dataset may have a number of
other functional motifs that are overrepresented but have
functions unrelated to splicing.
Human transcription factor motifs
This issue of dataset size is important for applicability of
the method, as a common application for motif detection
algorithms is to search for functional motifs in targeted
experimental datasets such as determined by chromatin
or RNA immunoprecipitation. Because this type of data-
set is typically smaller than the genome-scale sets
described in the above examples, it can provide a more
stringent and practical test of the effectiveness of a motif
evaluation program. Neither Itzkovitz et al [17] or Robins

et al [19] analyzed such targeted functional sets, instead
focusing on whole genome data. We analyzed ChIP-seq
data for the human transcription factors GABP and
NRSF in the human Jurkat cell line, using data from [31].
For each of these transcription factors, the canonical
binding motif is known, as described in [31]. We
extracted the sequences around ChIP-seq peaks overlap-
ping coding regions for each of these transcription fac-
tors, and then applied CodingMotif to determine if the
known motif could be recovered. Since data were from
the human genome, we used the full set of coding
sequences in the human genome to calculate the null
model.
Results for GABP are shown in Figure 4A, with the

previously known canonical motif shown in weblogo
form [31]. The signal for the canonical GABP motif is
essentially 7bp long with little degeneracy (CCGGAAG).
We determined the top 4 6-mer motifs from Coding-
Motif as ranked by their overrepresentation p-values,
each of which was 1e-21 or better. We found that these
4 motifs were the 4 possible perfect 6-mer matches to
the canonical motif: CGGAAG, CCGGAA, and their
reverse complements CTTCCG and TTCCGG. To

Figure 3 DCM p-values for motifs with known splicing activity. We observe a correlation between -log(p) for CodingMotif (DCM) p-values
and experimentally measured splicing activity (as described in [3]) with r2 = 0.26 (t-test p-value 0.02).

Ding et al. BMC Bioinformatics 2012, 13:32
http://www.biomedcentral.com/1471-2105/13/32

Page 7 of 16

determine whether a parametric approximation of the
count distribution would perform equally well, we also
calculated z-scores for each 6-mer based on their
observed counts and their average counts over all possi-
ble coding sequences, which we determined directly
from the distribution function calculated by CodingMo-
tif. Note that the mean calculated according to this
method is is the ideal of what would be found with an
infinite amount of sampling. We found that the top 4
motifs produced by a z-score approach returned only 3/
4 of the canonical GABP hexamers. We also sorted
motifs according to their count ratio (observed counts/
mean counts in the control distribution), the statistic
used by Itzkovitz et al [17] to identify motifs. We found
that count ratio yielded only 1/4 of the canonical hex-
amers among the top 4. Thus CodingMotif gives super-
ior results to this idealized parametric method. Methods
which parameterize the count distribution from a finite
sample set can do no better than this parametric ideal.
We performed a similar test for the transcription fac-

tor NRSF also using data from [31], and the results are
shown in Figure 4B. NRSF has a bipartite motif, essen-
tially made up of an 8-mer (TCAGCACC) and a 6-mer
(GGACAG). The top 4 motifs returned by CodingMotif

(each with p-value 1e-13 or better) all matched to 6-
mers in these canonical sequences. Two matched to the
8-mer portion (AGCACC and CAGCAC) and two
matched to the 6-mer (GGACAG and its reverse com-
plement CTGTCC). However, the z-score measure per-
formed considerably worse. None of the top 4 motifs
ranked by z-score matched to the canonical 8-mer or 6-
mer. Similarly, none of the top 4 motifs ranked by the
count ratio matched to these canonical motifs. These
results demonstrate that CodingMotif is superior to
parametrically-based methods for protein immunopreci-
pitation-sized datasets.
We have reported results for 6-mers rather than longer

k-mers because we observed that for k > 6, a large fraction
of k-mers did not appear in the data and many k-mers
also had expected copy numbers much less than 1. These
properties led to large numbers of outliers in the motif z-
score and count ratio statistics. CodingMotif p-values did
not suffer from this problem. For example the top GABP
7-mer was the canonical 7-mer CCGGAAG, but the 7-
mers with the highest z-scores and count ratios were all
low copy number motifs not matching the canonical 7-
mer. Although z-scores in principle correct for small copy
number effects, these corrections fail when there are

Figure 4 Comparison of CodingMotif and parametric methods for known binding motifs. A) All 4 of the top 4 motifs predicted by
CodingMotif p-value are exact matches to the canonical motif for the human transcription factor GABP. For comparison, 3 of the top 4 motifs
ranked by z-score, and 1 of the top 4 motifs ranked by the ratio of counts in the real sequence to the average in the null distribution, match
the GABP canonical motif. B) All 4 of the top 4 motifs predicted by CodingMotif p-value match the canonical motif for NRSF. For motifs ranked
by z-score 0/4 of the top motifs match the canonically known motif. 0/4 of the top motifs ranked by count-ratio match the canonically known
motif.

Ding et al. BMC Bioinformatics 2012, 13:32
http://www.biomedcentral.com/1471-2105/13/32

Page 8 of 16

strong non-Gaussian deviations in the count distribution.
CodingMotif is by construction immune to this problem,
and this is likely one of the reasons for its superior results.
We also analyzed whether sampling without resorting

to parametric approximations could yield accurate motif
predictions. For the GABP dataset, we obtained 100 ran-
domized dicodon shuffles of the data using the method
of [23]. We then calculated the fraction of shuffles show-
ing at least as many copies of the motif as found in the
original sequence (the non-parametric p-value). The 4
canonical 6-mers had better than average p-values
according to this approach (CGGAAG = 0.02; CTTCCG
= 0.02; CCGGAA = 0, TTCCGG = 0.09), but in fact 1643
of the possible 4096 hexamers had p-values of 0.02 or
better. Thus the only motif which could be distinguished
in this approach was CCGGAA, and with a confidence
only proportional to the number of shuffles. The many k-
mers with low p-values are likely due to a large fraction
of the bases in the sequence being under selective pres-
sure in this dataset, a behavior which would distort the
null model associated with codon-shuffling. Similar
results were found for the NRSF data. Of the 4 motifs
found by CodingMotif, the one with the best p-value in
this shuffling approach was CTGTCC (p = 0.02). How-
ever again a very large number of the 6-mers (1908/4096)
showed p-values of 0.02 or better. These findings demon-
strate the superiority of an externally defined null model
as implemented in CodingMotif over one based on shuf-
fling, even in the absence of parameterization.
Evaluation on synthetic data
Finally, we tested CodingMotif on synthetic data to esti-
mate what types of counts may be necessary for it to suc-
cessfully identify motifs. We generated 20 random
sequences each 350 codons long (comparable to real pro-
tein lengths) according to the DCM Markov model using
human coding sequences to train the null and assuming
that the 3’-most codon was a stop codon. We then picked
from 1-15 of these sequences and inserted a copy of the
motif into each by replacing randomly chosen positions.
If replacement would create a premature stop codon,
another location was chosen. We performed this test for
each of the 4096 6-mers 10 times for each number of
inserted motifs ranging from 1 to 15. The average and
standard deviation of log p were calculated across 6-mers
and trials. CodingMotif calculations took 21 minutes on
a 2.8 GHz dual core Poweredge system without making
use of multithreading.
For 6-mers, a p-value better than 4-6 = 0.0002 is an

appropriate significance threshold taking into account
multiple testing. As can be seen in Figure 5, this level of
significance is achieved, on average, when 6-7 of the
sequences have a copy of the motif, though there is
strong variability from motif-to-motif as indicated by
the plotted standard deviations. For larger datasets, a

relatively lower motif density would be expected to be
sufficient for detection of significant overrepresentation.
For comparison, we also calculated the average z-score

for each motif across these runs, where the z-score was
calculated from the exactly enumerated distribution
returned by CodingMotif. We observed that the z-score
based p-values were systematically too weak (by about
one order of magnitude) at 9 or fewer inserted motif
copies, though as for CodingMotif there was strong varia-
tion from motif-to-motif (data not shown). While
CodingMotif tends to exhibit greater sensitivity at these
lower copy numbers, this systematic effect is probably
less important than the fact that CodingMotif p-values
are more accurate for individual motifs. For greater than
9 inserted copies, z-score based p-values are systemati-
cally lower than those of CodingMotif. However, both
CodingMotif and the z-score method have very signifi-
cant p-values (much less than 4-6) at this range of copy
numbers, so this systematic difference is again probably
less important than the differences for individual motifs.
Human synonymous constraint elements
Recently, Lin et al developed a method to detect elements
in coding regions likely to be under constraint based on
their synonymous conservation across 29 mammalian
genomes (SCEs) [32]. We analyzed whether these regions
contained overrepresented motifs. Lin et al reported that
these regions had relatively weak compositional biases
relative to other coding regions, e.g. with only a ~ 3% dif-
ference in GC content between SCE regions and control
regions, and significant but small enrichment for known
functional motifs such as exonic splicing enhancers and
miRNA seeds (< 10% enrichment in each of several data-
sets). However, we found a number of motifs with extre-
mely strong enrichment p-values in SCEs compared to
the human genome coding sequence background, includ-
ing 13 motifs with p-value 1e-30 or better and each hav-
ing more than 2 times the number of copies expected by
chance. Notably, these include several motifs with multi-
ple CpG dinucleotides. The strong enrichment of specific
motifs in these datasets indicates the importance of
further motif studies in human coding regions. Note that
this dataset (458586 bases) was considerably larger than
the synthetic datasets but calculating overrepresentation
for all 4096 6-mers was feasible on a standard laptop
computer (Macbook Pro 2.66 GHz Intel Core 2 Duo, 330
minutes).

Software usage and caveats
A software implementation of CodingMotif is available
at bioinformatics.bc.edu/chuanglab/codingmotif.tar. We
have extended the algorithms described above to allow
CodingMotif to calculate p-values for degenerate motifs
(e.g. AGACT[A/G]) defined by a set of k-mers. These
can be evaluated together, such that an occurrence of

Ding et al. BMC Bioinformatics 2012, 13:32
http://www.biomedcentral.com/1471-2105/13/32

Page 9 of 16

any of the k-mers constitutes a match to the degenerate
motif. This requires only a minor modification to the
counting procedure in the calculation of the distribution
function. Note that this k-mer set approach is more
general than using IUPAC symbols to handle degener-
acy, since IUPAC symbols cannot handle base correla-
tions within a motif. The k-mer set functionality can
also be used to handle motifs that could appear on
either the forward or reverse strand, e.g. by placing
reverse complements such as [AACCTG/CAGGTT]
together in a set. In addition, we have written a wrapper
allowing CodingMotif to evaluate multiple motifs, each

of which may be defined by a set of k-mers, in succes-
sion. CodingMotif has been written to handle arbitrary-
sized motifs, so motifs of any length can be used as
input. For a given run, CodingMotif can return the
motif count in the input, its p-value, the count distribu-
tion in the null, the mean number of counts in the null,
and the z-score for the motif. Underrepresentation
p-values can be straightforwardly calculated as 1 minus
the overrepresentation p-value. We have demonstrated
that p-values for all 4096 6-mers can be calculated for
dataset sizes on the scale of several hundred kb in a few
hours on a single workstation. Calculations for larger

Figure 5 Motif p-values on synthetic data. For a randomly generated set of 20 sequences of 350 codons, copies of a motif were overwritten
onto random positions within the sequences. CodingMotif and ideal z-score based p-values as a function of the number of inserted copies
were calculated. This procedure was performed 10 times for each of the 4096 possible 6-mers. CodingMotif plotted values indicate average and
standard deviation of log p-values. Z-score plotted values indicate the value of the erfc function when applied to the average z-score. Standard
deviations of z-score based p-values were similar to those of CodingMotif (data not shown).

Ding et al. BMC Bioinformatics 2012, 13:32
http://www.biomedcentral.com/1471-2105/13/32

Page 10 of 16

datasets can be trivially parallelized using multiple pro-
cessors by distributing motif runs across CPUs. The
code is open source in C++.
CodingMotif takes fasta files as input. Note that input

sequences which are not made up of full codons are con-
ceptually inconsistent with the amino acid-conditioned
null model, as hanging bases can match with many possi-
ble amino acids. The ends of sequences beginning/ending
out of the canonical codon frame should be repaired to
full codons before input to CodingMotif, e.g. by trunca-
tion of hanging ends. Full documentation for CodingMo-
tif can be found in the downloadable tar file.
It is worth discussing what types of motifs CodingMotif

will work best for. The results on NRSF and GABP are
based on overrepresentation of exact 6-mers, which are
appropriate because binding sites for these two transcrip-
tion factors both have a relatively strong signal for exact
6-mer sequences as evidenced in their sequence logos
(Figure 4). For motifs of greater degeneracy or motifs of
different length, the results of CodingMotif would be
improved by also testing non 6-mers or degenerate
motifs using the software features described above. How-
ever, allowing for degeneracy and different lengths also
leads to stronger p-value requirements to correct for
multiple-testing. These issues may be important for some
transcription factors, since transcription factor binding
sites may be as long as 15 binding sites [33] with varying
levels of degeneracy at internal positions. These issues
will be less important for motifs likely to have little
degeneracy, such as microRNA binding motifs. In gen-
eral, we expect CodingMotif to have the greatest advan-
tage over sampling/parametrically-based approaches if
the expected and observed number of copies of the motif
are both relatively small. This is because CodingMotif is
generally more sensitive than z-score approaches when
there are low numbers of extra motif copies (Figure 5),
and also because non-Gaussian deviations distort z-score
approaches when the expected number of copies is small.
Similar issues also affect the power of CodingMotif for

building a target classifier. For example, a simple type of
classification would be whether a sequence does or does
not have a copy of a motif determined to be overrepre-
sented by CodingMotif. For the GABP data, we observe
that 65% of the sequences have a copy of at least one of
the top 4 CodingMotif hexamers from Figure 4 (a ‘recall’
statistic). 59% of the sequences have a copy of at least
one of the top 4 hexamers by z-score. There are 163
copies of the top 4 CodingMotif k-mers in the GABP
sequences, while 17.6 are expected under the DCM null,
corresponding to a precision of 90%. For the top z-score
hexamers, there are 133 copies while 14.0 are expected,
also yielding a precision of 90%. However, we observe a
stronger difference in the power of CodingMotif and z-
scores for NRSF. 66% of the NRSF sequences contain at

least one copy of the top 4 CodingMotif hexamers, while
only 21% of the sequences contain a copy of a top 4 z-
score hexamer. This low recall for NRSF z-scores is
slightly compensated by an increase in precision (84% for
CodingMotif and 94% for z-scores). Similar behavior is
observed if we train motifs on half the sequences and
evaluate on the other half. Using this approach and clas-
sifying based on the top 4 motifs, we find that GABP has
recall and precision of 63% and 91% respectively for
CodingMotif, and 57% and 90% for z-scores. For NRSF,
we observe recall and precision of 49% and 77% for
CodingMotif, but only 4% and 25% for z-scores. This
strong difference between z-scores and CodingMotif for
NRSF but not GABP is due to the larger number of pos-
sible hexamers that can induce NRSF binding. This
causes the prevalence of each such hexamer to be lower,
increasing the importance of exact evaluation. Although
we have used a naive classification approach to illustrate
this idea, this principle should also affect more sophisti-
cated target classification approaches. In standard
approaches to building a classifier, the scores for indivi-
dual motifs are used in the process of clustering and mer-
ging motifs to form a position-specific weight matrix, e.g.
as described in [33].

Conclusions
CodingMotif provides an exact non-parametric method
for calculating overrepresentation p-values of motifs in
coding regions, a previously unsolved problem. We have
shown that CodingMotif is able to accurately detect func-
tional motifs in a variety of prokaryotic and eukaryotic
datasets, and in short times accessible on single worksta-
tions. Prior works have been based on sampling, an
approach limited by the infeasibility of sampling more
than a tiny fraction of the sequence space, and by their use
of parametric approximations for the motif count distribu-
tion. We have demonstrated that CodingMotif performs
better than such methods using representative experimen-
tal data, including human transcription factor ChIP-seq
data overlapping coding regions.
CodingMotif provides a theoretically and empirically

improved approach over prior methods to identify unu-
sually overrepresented motifs in coding regions. We
expect it to be useful for the study of a wide variety of
functional genomic problems, notably DNA-protein
binding, RNA-protein binding, and microRNA-RNA
binding.

Methods
Independent codon model
We first consider a method to identify overrepresented
motifs in a coding sequence conditional on the amino
acid sequence, under the assumption that each codon in
the sequence is independent. Specifically, we calculate

Ding et al. BMC Bioinformatics 2012, 13:32
http://www.biomedcentral.com/1471-2105/13/32

Page 11 of 16

the overrepresentation or underrepresentation of a motif
in a set of protein-coding sequences of total length N.
We are given an amino acid sequence A = A1, A2,...,

An and a motif μ. There are O(eN) different coding
nucleotide sequences that translate into the same amino
acid sequence A. Denote Ca as the set of all such
nucleotide sequences. Let X denote the random variable
that gives the number of occurrences of the motif μ for
any sequence {a} = a1, a2, ..., aN Î CA.
The ~ eN sequences in Ca will not contribute equally

to the expectation. This is because even in the absence
of selection on motifs, amino acids have preferences for
codon usage. The null model for codon usage can be set
as the codon usage in a reference set, which we typically
choose to be the set of all coding sequences genome-
wide. This provides a background probabilistic model to
weight the ~ eN coding sequences.
A direct enumeration of all ~ eN sequences is prohibi-

tive. Therefore we have devised a dynamic programming
approach to exactly calculate the distribution of X. The
distribution for X, which we refer to as D(X), is stored
as an array of values, and can be calculated by

D(X) =
∑

{α}∈CA

p({α})δ(X({α})). (2)

Here δ(X({a}) is a delta function centered at the value
X({a}). The probability of the sequence {a} is given by

p({α}) =
N∏

i=1

p(αi), (3)

where the individual p(ai) values are determined from
the reference codon usage table for the corresponding
amino acid. Since the weightings are conditional on the
amino acid sequence, the p(ai) values for the codons in
a synonymous group sum to one.
The distribution can be calculated by an inductive

approach. One calculates the D(Xk+1) distribution for
the motif occurrences in the subsequence defined by the
first k + 1 codons using the D(Xk) distribution defined
by the motif occurrences in the first k codons. By iterat-
ing through this procedure, one can efficiently calculate
D(XN), which is the desired distribution D(X) for the full
N codon sequence.
To perform the dynamic programming calculation, at

a given iteration k one will need to keep track of each
distribution function of the type D(Xk) conditioned on
the possible codon strings in the last Δ - 1 codons {ak-Δ

+2 ... ak}. Δ is the maximum number of codons that a
given instance of the motif can overlap, i.e. for motif
length l, Δ = [(l - 1)/3] + 1, where [x] indicates the
greatest integer less than or equal to x. We denote these
distributions as D(Xk, ak-Δ+2 ...ak).

We will need these distributions for all possible values
of the codons {ak-Δ+2 ... ak}. Note that since the maxi-
mum number of copies of a motif scales with N, each
corresponding distribution requires O(N) memory, and
the total memory requirement is O(eΔ-1N). These distri-
bution functions are used to calculate the number of
copies of the motif that would be added by appending
the k + 1st codon to the first k codons.
The induction step requires a convolution calculation

using all of the D(Xk, {ak-Δ+2 ... ak}) functions. In this
step, one counts the number of copies of the motif in
each possible set of Δ codons consistent with the amino
acids in positions k - Δ + 2 through k + 1, which allows
one to calculate the next set of distribution functions.
This counting step accounts for motifs in all reading
frames, in contrast to recent shuffling-based algorithms
[17]. Formally, we have the induction relation

D(Xk+1, αk−�+3 . . . αk+1) =
∑

αk−�+2

p(αk−�+2) × D(Xk − θ(αk−�+2 . . . αk+1), ak−�+2 . . . αk) (4)

where θ is a function on the Δ codons from k - Δ + 2
to k + 1 defined as θ(ak-Δ+2 ... ak+1) ≡ the number of
copies of the motif that end in the last codon of {ak-Δ+2

... ak+1}. The sum is over all values of ak-Δ+2 consistent
with the amino acid Ak-Δ+2. When the end of the
sequence is reached, the final value of D(XN) is calcu-
lated from the weighted sum of the D(XN, a) values that
cover the last Δ - 1 codons of the amino acid sequence,
i.e.

D(XN) =
∑

αN−�+2 ...αN

p({αN−�+2 . . . αN}) × D(XN , {αN−�+2 . . . αN}). (5)

The probabilities in equation 5 can be calculated
directly as

p({αN−�+2 . . . αN}) =
N∏

i=N−�+2

p(αi). (6)

Note that all of these calculations can be done in
either the 5’ to 3’ or 3’ to 5’ direction. In practice, we
use the 3’ to 5’ direction, as this is necessitated by the
way in which the Dinucleotide-corrected Codon Model
(described below) is implemented.
Optimization for sparse motifs
For most amino acid sequences, the possible locations of
the motif consistent with the genetic code are sparsely
distributed. That is, depending on the motif, there can be
large portions of the amino acid sequence where no
motif is possible for any consistent choice of codons.
Inductively calculating the motif occurrence distribution
D in these regions is clearly wasteful. To take advantage
of sparseness, we split our induction up into independent

Ding et al. BMC Bioinformatics 2012, 13:32
http://www.biomedcentral.com/1471-2105/13/32

Page 12 of 16

regions that can contain motifs. As described above we
can calculate D(Xk), the motif occurrence distribution for
the subsequence A1, A2, ..., Ak, where k <N. However, at
each step we also check whether there exists any codon
choice {a} that would allow a motif instance to start in
a1a2 ... ak and end in ak+1ak+2 ... aN. Such a motif must
occur in the subsequence ak-Δak-Δ+1 ... ak ... ak + Δ-1ak+Δ.
The calculation of whether such a motif exists is then
constant time for a fixed motif length.
If a motif instance is possible, we continue the induc-

tion. However, if not, then the distribution on the tra-
versed sequence is independent of the distribution for
the rest of the sequence. We therefore store the current
motif occurrence distribution, denoted as Dc = D(Xk)
and scan forward in the sequence until we find the next
codon j >k such that a motif can occur. Considering this
as the beginning of a new truncated sequence,
A′

1A′
2 . . . A′

N = AjAj+1AN, we calculate a new distribution
D(Xk’). This process is repeated until the end of the
amino acid sequence. We can calculate the complete
distribution by convolving all such distributions. The
advantage of this approach is that any regions for which
a motif instance is impossible (positions k + 1 through j
- 1 in the description above) do not require convolution
calculations. For longer motifs, the set of possible motif
locations is increasingly sparse, which reduces the calcu-
lation time. This time reduction tends to offset the lar-
ger number of terms to be calculated in equation 4 for
longer motifs.
Convolution calculation
A convolution of two distributions can be calculated by
considering the values in each distribution as coeffi-
cients of two generating functions and then multiplying
the two generating functions. Term-by-term multiplica-
tion of the two generating functions will take time O
(mn) when the polynomials are of degree m and n. An
alternative approach is a Fast Fourier Transform (FFT),
which takes advantage of the fact that convolution in x-
space is equivalent to multiplication in Fourier space. In
the FFT approach, each polynomial is converted to
Fourier space, the transformed polynomials are multi-
plied, and the product is converted back to x-space [34].
The algorithm takes O(m log m + n log n) time.
We tested both the direct and FFT approaches. For the

motif lengths we investigated (4 - 7 bp), the FFT approach
is not noticeably faster than the direct polynomial multi-
plication. This is because the convolution calculations
involve a large number of multiplications in which m ≫ n
and for which log m may be comparable to n. The FFT
approach also occasionally yielded slightly negative values
for polynomial coefficients due to limits on computer pre-
cision in the transform step. Therefore in the final pro-
gram we used the direct multiplication approach.

Dinucleotide-corrected codon model
Because we were concerned that the Independent
Codon Model (ICM) did not sufficiently account for
neutral dinucleotide biases, we implemented a dinucleo-
tide-corrected codon model (DCM) which includes
dinucleotide biases in the null model. The DCM uses a
Markov model to generate the sequence, starting from
the 3’-most codon and working backward to the 5’ end.
This choice of direction simplifies the calculation, since
for most amino acids specification of the amino acid
fixes the 5’-most nucleotide of a codon. Note that
although the program is run in this direction, the results
sections describe motifs in the standard 5’ to 3’
direction.
To specify the Markov model, we use the conditional

codon usage table as observed in the reference
sequence. The probability of choosing a codon is condi-
tioned upon the amino acid of the current codon as
well as the first nucleotide of the adjacent 3’ codon. For-
mally, let F(a, b) be the number of instances in the
reference sequence for which one observes the codon a
followed by base b, such that the amino acid coincident
with a is A. Let F(A, b) be the number of instances for
which one observes amino acid A followed by base b in
the reference sequence. Then define

p(α|A, b) =
F(α, b)
F(A, b)

. (7)

In the DCM, sequences are then generated from the 3’
to the 5’ end with probabilistic weighting

p(αi+1) =
∑

αi

p(αi) ∗ p(αi+1|Ai+1, b(αi)). (8)

Here we have written b(ai) to refer to the 1st base of
codon ai, treating b as a function on a codon.
By iterating through equation 8 we can calculate the

probability of the complete sequence given the amino
acids. One source of ambiguity is how to treat the 3’-most
codon. Our rule is to use the first nucleotide 3’ to the
sequence as the starting point of the probability assign-
ment. This is a minor assumption since for most amino
acids the first base of the codon is forced. If the sequence
is a whole gene then we require b for the 3’-most codon to
be “T”, which is the first letter of all three stop codons. To
avoid arbitrariness in the choice of stop codon, we by con-
vention do not look for motifs overlapping the stop codon.
Also, when applying the optimization for sparse motifs, we
do not need to use the p(a) values of codons in the
regions where a motif is not possible. Therefore, we use a
shortcut that frees us from having to apply equation 8 in
such regions. This shortcut is to traceback the p(a) from
the region where a motif is possible to an amino acid
where there is only one possible first base of the codon.

Ding et al. BMC Bioinformatics 2012, 13:32
http://www.biomedcentral.com/1471-2105/13/32

Page 13 of 16

This typically requires consideration of only a few codons
in the 3’ direction since for the large majority of amino
acids (17/20), specification of an amino acid also specifies
the first codon base.
With this approach in mind, calculating the motif

occurrence distribution is analogous to the ICM case.
One can apply equation 4 but with the substitution of
the conditional probability

p(αk−�+2|Ak−�+2, b(αk−�+1)) (9)

for the probability factor. When the 5’ end of the
sequence is reached, the final value of Dμ(N, X) can be cal-
culated using 5, though the calculation of p({aN-Δ+2 ... aN})
for equation 6 should again use conditional probabilities.
For the DCM, this means replacing equation 6 with

p({αN−�+2 . . . αN}) = p(αN−�+2)
N∏

i=N−�+3

p(αi|Ai, b(αi−1)). (10)

Preservation of codon and dinucleotide usage by DCM
The purpose of using the DCM null instead of the ICM
was to preserve the dinucleotide frequency and codon
usage found in the reference sequence. Here we provide
an argument for why the DCM model can closely pre-
serve these quantities. Due to the structure of the
genetic code, specification of an amino acid usually fixes
the first nucleotide of the underlying codon. Only for
the amino acids Ser, Arg and Leu is there degeneracy in
the first nucleotide. Here we show that under the sim-
plifying assumption that specifying the amino acid fixes
the first nucleotide of the codon for every amino acid,
then the codon and dinucleotide usage generated by the
Markov process equals the codon and dinucleotide
usage in the reference sequence. Because this assump-
tion is approximately true for the real genetic code,
codon and dinucleotide usage will be well-preserved by
the DCM model.
Suppose in our amino acid sequence that amino acids

A and B occur at locations i + 1 and i respectively.
Since by assumption specification of B also specifies the
first base b of the underlying codon, the probability of
selecting codon a at position i + 1 is given by

p(α|AB) = p(α|A, b)

=
F(α, b)
F(A, b)

where the counts F(a, b) and F(A, b) are from the
reference sequence as defined above.
Denote the number of occurrences of a in the original

sequence as F(a), and denote the expected number of
occurrences of a codon a in a sequence generated by
our Markov process as E(a). From our definitions it is

clear that F(a) = Σb F(ab). Meanwhile for the Markov
process we have

E[α] =
∑

B

P(α|AB)F(A, B) =
∑

b

P(α|Ab)F(A, b)

=
∑

b

F(α, b)
F(A, b)

F(A, b) =
∑

b

F(α, b)

= F(α).

In the second step we have made use of the fact that
each amino acid B specifies a first base b in the codon.
Thus we see that the expected number of instances of
any codon a is equal to the number of copies in the ori-
ginal sequence.
To see that the Markov process preserves dinucleotide

counts, we again assume the idealized case in which
specification of an amino acid also specifies the first
base of the underlying codon. Denote ψxy(ab) as the
number of times a dinucleotide xy appears within the 4
bases consisting of a and the nucleotide b correspond-
ing to the first base of the codon underlying amino acid
B. Thus ψ will have a value of 0,1, 2, or 3. Then the
total number of copies of the dinucleotide xy in the ori-
ginal sequence is

F(xy) =
∑

A,b, α at A

F(αb)ψxy(αb). (11)

The expected number of copies of xy generated by the
Markov process E[xy] can be broken down into contri-
butions E[xy|Ab] corresponding to cases where an
amino acid A occurs 5’ to a base b, i.e.

E[xy] =
∑

Ab

F(A, b)E[xy|A, b]

=
∑

Ab

F(A, b)
∑

α

P(α|A, b)ψxy(αb).

Plugging in P(a|Ab) as before, we get

E[xy] =
∑

A,b,α

F(A, b)
F(αb)
F(A, b)

ψxy(αb) =
∑

A,b,α

F(αb)ψxy(αb)

= F(xy)

Coding and UTR lengths
For the initial coding and UTR length analysis, all gene
transcripts from the human genome were downloaded
from Ensembl v63. Lengths were calculated using all
transcripts having simultaneous 5’ UTR, 3’ UTR, and
coding region annotations. The observed lengths were:
5’ UTR 180 bp (s = 340 bp), 3’ UTR 820 bp (s = 1020
bp), coding region 960 bp (s = 750 bp).

Ding et al. BMC Bioinformatics 2012, 13:32
http://www.biomedcentral.com/1471-2105/13/32

Page 14 of 16

GABP and NRSF analysis
We downloaded ChIP-seq peaks for the NRSF monoclo-
nal antibody and GABP datasets of [31]. We defined
ChIP-seq regions as the 50 bp upstream and down-
stream of the annotated peak. We intersected these 100
bp regions with the set of UCSC known human coding
sequences in human build Hg18. Unique regions with
an overlap of at least 50bp with a coding sequence were
retained. Codons overlapping these regions were
obtained using the “Extract Features” tool in GALAXY
[35]. These codon annotations were used to truncate
the ends of the regions by retaining portions of the
sequence overlapping a complete codon. Regions with
ambiguous coding frames were removed from the data-
set. Most calculations were performed in GALAXY with
additional minor processing using PERL scripts. For the
count ratio statistic, we considered only motifs with at
least 3 copies in the datasets to reduce bias from out-
liers. None of these motifs with fewer copies were
matches to the canonical motifs. The input data for
CodingMotif corresponded to a very small subset of the
original ChIP-seq data, as most of the original ChIP-seq
peaks were in noncoding regions. For GABP the input
data to CodingMotif was 134 sequences (from 6442 ori-
ginal ChIP-seq peaks). For NRSF the input data to
CodingMotif was 101 sequences (from 2596 original
ChIP-seq peaks).

Human synonymous constraint elements
The SCE9 dataset was obtained from [32]. Codons over-
lapping these sequences were obtained using GALAXY
and regions with ambiguous coding frames were
removed before being used as input for CodingMotif.

Acknowledgements
We thank Kourosh Zarringhalam and Peter Clote for discussions. JHC was
supported by National Science Foundation Award 0850155 as part of the
American Recovery and Reinvestment Act.

Author details
1Department of Biology, University of Pennsylvania, Philadelphia, PA 19104,
USA. 2Department of Mathematics and Computer Science, Denison
University, Granville, OH 43023, USA. 3Department of Biology, Boston
College, Chestnut Hill, MA 02467, USA.

Authors’ contributions
YD contributed to the design of the algorithms, wrote software, and
contributed to the writing of the manuscript. WL contributed to the design
of the algorithms, wrote software, and contributed to the writing of the
manuscript. JHC contributed to the design of the algorithms, contributed to
the writing of the manuscript, and oversaw the project. All authors read and
approved the final manuscript.

Received: 7 September 2011 Accepted: 14 February 2012
Published: 14 February 2012

References
1. Jambhekar A, Derisi J: Cis-acting determinants of asymmetric, cytoplasmic

RNA transport. RNA 2007, 13:625-642.

2. Sharp P, Li W: The codon Adaptation Index-a measure of directional
synonymous codon usage bias, and its potential applications. Nucleic
Acids Research 1987, 15:1281-1295.

3. Fairbrother W, Yeh R, Sharp P, Burge C: Predictive identification of exonic
splicing enhancers in human genes. Science 2002, 297:1007-1013.

4. Kudla G, Lipinski L, Caffin F, Helwak A, Zylicz M: High guanine and
cytosine content increases mRNA levels in mammalian cells. PLoS Biology
2006, 4:e180.

5. Nackley A, Shabalina S, Tchivileva I, Satterfield K, Korchynskyi O, Makarov S,
Maixner W, Diatchenko L: Human catechol-O-methyltransferase
haplotypes modulate protein expression by altering mRNA secondary
structure. Science 2006, 314:1930-1933.

6. Hogan D, Riordan D, Gerber A, Herschlag D, Brown P: Diverse RNA-binding
proteins interact with functionally related sets of RNAs, suggesting an
extensive regulatory system. PLoS Biology 2008, 6:e255.

7. Chi S, Zang J, Mele A, Darnell R: Argonaute HITS-CLIP decodes microRNA-
mRNA interaction maps. Nature 2009, 460:479-486.

8. Koide T, Reiss D, Bare J, Pang W, Facciotti M, Schmid A, Marzolf MPB, Van P,
Lo F, Pratap A, Deutsch E, Peterson A, Martin D, Baliga N: Prevalence of
transcription promoters within archaeal operons and coding sequences.
Molecular Systems Biology 2009, 5:2085.

9. ENCODE: Identification and analysis of functional elements in 1% of the
human genome by the ENCODE pilot project. Nature 2007, 447:799.

10. Li X, MacArthur S, Bourgon R, Nix D, Pollard D, Iyer V, Hechmer A,
Simirenko LMMS, Hendriks CL, Chu H, Ogawa N, Inwood W,
Sementchenko V, Beaton A, Weiszmann R, Celniker S, Knowles D,
Gingeras T, Speed TMBME, Biggin M: Transcription factors bind thousands
of active and inactive regions in the Drosophila blastoderm. PLoS Biology
2008, 6:e27.

11. Boycheva S, Bachvarov B, Berzal-Heranz A, Ivanov I: Effect of 3’ Terminal
Codon Pairs with Different Frequency of Occurrence on the Expression
of cat Gene in Escherichia coli. Current Microbiology 2004, 48:97.

12. Kural D, Ding Y, Wu J, Korpi A, Chuang J: COMIT: identification of
noncoding motifs under selection in coding sequences. Genome Biology
2009, 10:R133.

13. Schnall-Levin M, Zhao Y, Perrimon N, Berger B: Conserved microRNA
targeting in Drosophila is as widespread in coding regions as in 3’UTRs.
PNAS 2010, 107:15751-15756.

14. Forman J, Legesse-Miller A, Coller H: A search for conserved sequences in
coding regions reveals that the let-7 microRNA targets Dicer within its
coding sequence. PNAS 2008, 105:14879.

15. Down T, Leong B, Hubbard T: A machine learning strategy to identify
candidate binding sites in human protein-coding sequence. BMC
Bioinformatics 2006, 7:419.

16. Robins H, Krasnitz M, Barak H, Levine A: A relative-entropy algorithm for
genomic fingerprinting captures host-phage similarities. J Bacteriol 2005,
187:8370-8374.

17. Itzkovitz S, Hodis E, Segal E: Overlapping codes within protein-coding
sequences. Genome Research 2010, 20:158.

18. Brocchieri L, Karlin S: Protein length in eukaryotic and prokaryotic
proteomes. Nucleic Acids Research 2005, 33:3390.

19. Robins H, Krasnitz M, Levine A: The computational detection of functional
nucleotide sequence motifs in the coding regions of organisms. Exp Biol
Med 2008, 233:665-673.

20. Stadler M, Shomron N, Yeo G, Schneider A, Xiao X, Burge C: Inference of
splicing regulatory activities by sequence neighborhood analysis. PLoS
Genetics 2006, 2:e191.

21. Jambhekar A, McDermott K, Sorber K, Shepard K, Vale R, Takizawa P,
DeRisi J: Unbiased selection of localization elements reveals cis-acting
determinants of mRNA bud localization in Saccharomyces cerevisiae.
PNAS 2005, 102:18005-18010.

22. Bailey TL, Elkan C: Fitting a mixture model by expectation maximization
to discover motifs in biopolymers. Proceedings of the Second International
Conference on Intelligent Systems for Molecular Biology 1994, 28-36.

23. Katz L, Burge C: Widespread selection for local RNA secondary structure
in coding regions of bacterial genes. Genome Research 2003,
13:2042-2051.

24. Boycheva S, Chkodrov G, Ivanov I: Codon pairs in the genome of
Escherichia coli. Bioinformatics 2003, 19:987.

Ding et al. BMC Bioinformatics 2012, 13:32
http://www.biomedcentral.com/1471-2105/13/32

Page 15 of 16

http://www.ncbi.nlm.nih.gov/pubmed/17449729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17449729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3547335?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3547335?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12114529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12114529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16700628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16700628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17185601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17185601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17185601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18959479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18959479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18959479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19536157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19536157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17571346?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17571346?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18271625?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18271625?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15057475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15057475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15057475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19930548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19930548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20729470?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20729470?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18812516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18812516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18812516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17002805?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17002805?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16321941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16321941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15951512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15951512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17121466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17121466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16326802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16326802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12952875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12952875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12761062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12761062?dopt=Abstract

25. Moura G, Pinheiro M, Silva R, Miranda I, Afreixo V, Dias G, Freitas A,
Oliveira J, Santos M: Comparative context analysis of codon pairs on an
ORFeome scale. Genome Biology 2005, 6:R28.

26. Moura G, Pinheiro M, Arrais J, Gomes A, Carreto L, Freitas A, Oliveira J,
Santos M: Large Scale Comparative Codon-Pair Context Analysis Unveils
General Rules that Fine-Tune Evolution of mRNA Primary Structure. PLoS
ONE 2007, 9:e847.

27. Burge C, Karlin S: Prediction of Complete Gene Structures in Human
Genomic DNA. J Mol Biol 1997, 268:78.

28. Ke S, Shang S, Kalachikov S, Morozova I, Yu L, Russo J, Ju J, Chasin L:
Quantitative evaluation of all hexamers as exonic splicing elements.
Genome Research 2011, 21:1360.

29. Bartel D: MicroRNAs: Target Recognition and Regulatory Functions. Cell
2009, 136:215.

30. Arndt P, Hwa T: Identification and measurement of neighbor-dependent
nucleotide substitution processes. Bioinformatics 2005, 21:2322.

31. Valouev A, Johnson D, Sundquist A, Medina C, Anton E, Batzoglou S,
Myers R, Sidow A: Genome-wide analysis of transcription factor binding
sites based on ChIP-Seq data. Nature Methods 2008, 5:829.

32. Lin M, Kheradpour P, Washietl S, Parker B, Pedersen J, Kellis M: Locating
protein-coding seqeunces under selection for additional, overlapping
functions in 29 mammalian genomes. Genome Research 2011, 21:1916.

33. Badis G, Berger M, Philippakis A, Talukder S, Gehrke A, JAeger S, Chan E,
Metzler G, Vedenko A, Chen X, Kuznetsov H, Wang C, Coburn D,
Newburger D, Morris Q, Hughes T, Bulyk M: Diversity and Complexity in
DNA Recognition by Transcription Factors. Science 2009, 324:1720.

34. Cormen T, Rivest R, Leierson C, Stein C: Polynomials and the FFT.
Introduction to Algorithms. 3 edition. Cambridge: MIT Press; 2009, 898-925.

35. Goecks J, Nekutrenko A, Taylor J: Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent computational
research in the life sciences. Genome Biology 2010, 11:R86.

doi:10.1186/1471-2105-13-32
Cite this article as: Ding et al.: CodingMotif: exact determination of over
represented nucleotide motifs in coding sequences. BMC Bioinformatics
2012 13:32.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Ding et al. BMC Bioinformatics 2012, 13:32
http://www.biomedcentral.com/1471-2105/13/32

Page 16 of 16

http://www.ncbi.nlm.nih.gov/pubmed/15774029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15774029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9149143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9149143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21659425?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19167326?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15769841?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15769841?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19160518?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19160518?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21994248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21994248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21994248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19443739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19443739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20738864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20738864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20738864?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Independent codon model
	Dinucleotide-corrected codon model
	Time scaling
	Tests of CodingMotif
	Bacterial motifs
	Mammalian splicing motifs
	Human transcription factor motifs
	Evaluation on synthetic data
	Human synonymous constraint elements

	Software usage and caveats

	Conclusions
	Methods
	Independent codon model
	Optimization for sparse motifs
	Convolution calculation

	Dinucleotide-corrected codon model
	Preservation of codon and dinucleotide usage by DCM

	Coding and UTR lengths
	GABP and NRSF analysis
	Human synonymous constraint elements

	Acknowledgements
	Author details
	Authors' contributions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

