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From entanglement witness to 
generalized Catalan numbers
E. Cohen1,2, T. Hansen3,4 & N. Itzhaki2

Being extremely important resources in quantum information and computation, it is vital to 
efficiently detect and properly characterize entangled states. We analyze in this work the problem of 
entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of 
the squared total spin can probabilistically discern separable from entangled many-particle states. 
For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement 
witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special 
constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers 
and determine the fraction of states that are decidedly entangled and also known to be somewhat 
protected against decoherence. In addition, we introduce the concept of a “sterile entanglement 
witness”, which for large enough systems detects entanglement without affecting much the system’s 
state. We discuss when our proposed entanglement witness can be regarded as a sterile one.

It is clear by now, that the phenomenon of quantum entanglement lies at the heart of quantum mechanics. 
Entanglement is recognized as an important resource for quantum computation1, quantum cryptography2, quan-
tum teleportation3, quantum black holes4 and many other quantum tasks. It was also demonstrated experimen-
tally that entanglement can affect macroscopic properties of solids, albeit at very low (critical) temperature (below 
1 Kelvin)5.

Any quantum state ρ, has an ensemble decomposition, i.e. there exist quantum states ρi with a probability 
distribution pi such that ρ =  Σ piρi.. If there exists an ensemble decomposition where every ρi is a separable state, 
then ρ is called a separable state; otherwise, it is called an entangled state.

Detecting entanglement of a given state, however, is known to be a hard computational problem (NP)6. Several 
methods of detecting entanglement are Bell and spin squeezing inequalities7,8, measurement of nonlinear prop-
erties of the state9, approximation of positive maps10. We shall focus in this paper on a method known as entan-
glement witnesses11. This method is unique because it is valid for any quantum system, regardless of the number 
and dimensions of its subsystems12. An entanglement witness (EW) is an Hermitian (non-positive) operator, 
whose expectation value is positive for any separable state. Therefore, when applied to a state of interest, a nega-
tive expectation value directly indicates the entanglement in this state. Based on the theorem below11, the EW is a 
necessary and sufficient condition for entangled states:

Theorem (Horodecki96): A density matrix ρ on HA⊗ HB is entangled if and only if there exists a Hermitian 
operator W, an entanglement witness, such that

ρ <TrW 0, (1)

and for all separable states ρsep,

ρ ≥ .TrW 0 (2)sep

Furthermore, for every entangled state, there exists an EW to detect it11. However, a specific EW can have a 
positive expectation value also when evaluated on entangled states. In fact, no entanglement witness can discern 
separable states from entangled ones with 100% success rate. That is, there are always undecideable states with 
respect to any entanglement witness (hopefully, not too many, because this will render the EW ineffective). We 
do not consider in this work the optimality property of the EW, but for the sake of completeness we note that an 
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entanglement witness is said to be optimal if there exists no other EW which is finer, i.e. has a larger set of decide-
able states13.

A drawback of this EW method is that we change the system’s state when measuring the witness (unless the 
system is in some particular eigenstate). We shall further analyze this feature and see how to overcome it using 
what we term a “sterile” entanglement witness. We will show that for many decideable states, one can evaluate the 
witness while negligibly changing the state of the system.

We will focus on spin systems having nearest-neighbors interactions, with an EW corresponding to a 
Heisenberg model without an external magnetic field. This EW describes fully coupled N spin s particles in the 
form of a complete graph14.

The outline of the work is as follows. We begin by presenting the proposed EW and show it is a “sterile” one. 
Next, a tripartite analogy is discussed between degeneracies of the witness eigenstates, tensor products of SO(3) 
representations and lattice paths which generalize the Catalan numbers. A few examples are analyzed. We then 
derive the fraction of decideable states for various s and N values and show that it remains finite when N →  ∞ .

We believe the novelty, as well as importance of the work are four-fold:

1.  It is shown that for various spin systems there exists a considerable sub-space of highly-entangled, 
decoherence-free states, which serve as an excellent resource for various quantum information processing tasks.

2.  We outline the conditions to identify such states without changing them much during the process, i.e. the con-
ditions for the proposed witness to become “sterile”.

3.  We study the interesting relations between the entanglement witness eigenstates, tensor products of SO(3) 
representations and discrete lattice walks with special constraints.

4. A family of generalized Catalan numbers, as well as the corresponding lattice walks are thereby suggested.

Results
The proposed EW is given by the square of the total spin operator, or Casimir operator

= = + +W J J JJ , (3)x y z
2 2 2 2

where = ∑ =J sx y z k
N

k x y z/ / 1 , / /  is the total spin in each direction. We find it beneficial to have this rather natural and 
experimentally feasible operator as an entanglement witness. The eigenvalues Wj are given by the familiar eigen-
values of J2

= + ∈ ∈ .{ }W j j j n( 1), , (4)j
n
2 0

This EW was previously studied by Tóth15, who used the above model for the case of spin =s 1
2

 particles.
The existence of undecideable states can be most easily demonstrated in a simple system of two spins. The 

states |↑ ↓ 〉  and |↓ ↑ 〉  are both separable. The proposed EW is a linear operator, hence we may consider their super-
position. On the one hand, these states construct the spin-0 singlet state 1

2
(|↑ ↓ 〉  −  |↓ ↑ 〉 ), which is maximally 

entangled. It has the lowest possible W value, and hence will be identified by it. On the other hand, a different 
superposition 1

2
(|↑ ↓ 〉  +  |↓ ↑ 〉 ), having spin 1, will not be recognized as an entangled state since |↑ ↑ 〉  and |↓ ↓ 〉  have 

j =  1 too.
For a spin 1

2
 system, the spin operator is given in terms of the three Pauli matrices σ= ∑ .=J x y z k

N
k x y z/ / 1

1
2 , / /  The 

expectation value of separable spin 1/2 states is bounded

≥ = .W W N /2 (5)sep
(1/2)

(This result can be proven based on the theory of entanglement detection with uncertainty relations16,17, as was 
done for instance in)18. Hence, if the measured value of the EW is small enough, the N-particle state is under-
stood to be entangled, while if the EW is high, we cannot tell with certainty if the state is entangled or separable. 
However, by knowing the degeneracy of the witness eigenstates, we can determine the fraction of all states which 
are decideable.

The degeneracy of states with eigenvalue Wj for even N were analytically found in15,19


=









+
+ +



 +



 ∈

.

d N j
j

N j
N

N j j( , )
(2 1)
/2 1 /2 ,

0, else (6)

1
2

2

0

As will be described next, d 1
2

 (N,  j) are strictly related to the so-called Catalan triangle20. Moreover, we will derive 

in what follows the above formula from the structure of SO(3) tensor products and generalize it to systems of 
arbitrary spins. We will also relate this problem to a classical problem of enumerative combinatorics - finding the 
number of constrained lattice paths in 2D.

A sterile entanglement witness. We shall start with an important question which may shed light on the 
proposed entanglement witness. It is possible to detect entanglement using the above operator W without dis-
turbing much the local dynamics of the system given by some Hamiltonian HL. In other words, we would like to 
verify that
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=H W o N[ , ] ( ), (7)L

when evaluated in some subspace of entangled states, i.e. the commutation relation, being a sub-extensive quan-
tity, is asymptotically dominated by the size of the system. This is, of course, not the usual notion of commutation 
(which evidently is not satisfied by our EW), but we find it more appropriate for describing weak operations on 
large systems as will be shown below.

To demonstrate (7) we shall use the quite general nearest-neighbors interactions within a 3D homogenous 
Heisenberg lattice:

∑=
=

+H J s s1
2

,
(8)L

k

N
k k

1

1

where sk is the vector (sx,sy,sz) of the kth particle, and the coupling constant J >  0 (corresponding to the 
anti-ferromagnetic case) is not necessarily small.

Using the well-known commutation relations between angular momentum operators, we find:

∑= 



 +




 +




 .

=

+ + +{ }H W iJ J s s J s s J s s[ , ] , , ,
(9)L

k

N

x y
i

z
i

y z
i

x
i

z x
i

y
i

1

1 1 1

Anti-parallel spins are obviously preferred by this local Hamiltonian. When the EW is evaluated, for instance, 
in the ground state of HL, we have =J O N( )x y z/ /  (the total J along each axis is low because only a few spins do 
not cancel), and hence (7) follows. This can be easily seen also in the first eigenstates of HL, where both HL and W 
remain small. Recall that Wj grows as j2, so if =j o N( ) and 〈 HL〉  =  O(1), (7) will be satisfied. This relation 
between HL and W maintains its meaning until 〈 HL〉  ≈  − 3N, which is the minimal energy of separable states in 
this Heisenberg lattice model15. Intuitively, it is clear that when having a large system in one of its lower, highly 
entangled states, Jx/y/z would be negligibly affected if evaluated on this state or this state with two altered spins, as 
in (9). This means that an entangled state, as well as the system’s energy corresponding to it, are likely to change 
only slightly after the entanglement witness W has been applied. The same does not hold though, for a separable 
state. In the limit of N →  ∞ , the asymptotic relation in (7) implies an approximate notion (in the macroscopic 
sense) of commutation. In this limit, the fraction of non-parallel spins goes to zero, while the fraction of entan-
gled states that are decideable stays finite, as we shall next. Hence, the relative change in energy due to the appli-
cation of the EW gets very small.

These arguments can be straightforwardly applied also to other forms of local dynamics such as the XY model 
and the Bose-Hubbard model using the suitable bounds which were calculated in15. Sterility might be a useful 
concept when trying to quantify in practical scenarios the degree of disturbance when some entanglement wit-
ness is measured in a given system.

The tripartite analogy. At the core of our analysis stands an analogy between three tasks: finding the degen-
eracy of entanglement witness eigenstates, calculating tensor products of SO(3) representations and counting 
classical lattice walks with special constraints. Eq. (6) follows from a general relation between tensor products of 
SO(3) representations and degeneracies of witness eigenstates. This relation is based on the fact that the eigen-
value Wj only depends on the overall spin j of the eigenstate, which specifies the irreducible representation (irrep) 
[j] of SO(3) according to which it transforms under rotations (these irreps can be constructed explicitly as the 
vector spaces of traceless symmetric rank j tensors in 3D). As a consequence the degeneracy of states with eigen-
value Wj is given by the number of distinct states of spin j. The number of states of spin j that can be created from 
N spin s irreps is given by the multiplicity of the irrep [j] in the tensor product

= ⊗ ⊗ … ⊗⊗
� ��������� ���������s s s s[ ] [ ] [ ] [ ] ,

(10)

N

N times

multiplied by the dimension of this irrep dim([j]) =  2j +  1

= .⊗d N j j s( , ) dim([ ]) mult ([ ] ) (11)s j
N

[ ]

The direct sum decomposition of the SO(3) tensor product can be formulated conveniently in terms of tensor 
product coefficients bj j j1 2 3

 (see e.g. ref. 21 for an introduction to the topic)


⊕⊗ =
∈

j j b j[ ] [ ] [ ],
(12)j

j j j1 2
/2

3
3 0

1 2 3

given by the numbers21
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+ + ∈

∧ − ≤ ≤ +

.

b
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1,

,
0, otherwise (13)

j j j

1 2 3 0

1 2 3 1 21 2 3

These constraints are familiar from the well-known Clebsch-Gordan coefficients. The coefficients bj j j1 2 3
 have the 

property b j j0 1 2
 =  δ j j1 2

 and are symmetric under any permutation of the three indices, a consequence of the 
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self-duality of representations of the SO(d) groups. The multiplicity of a given irrep in a twofold tensor product is 
trivially given by (12)

⊗ = .




j j bmult ([ ] [ ]) (14)j j j j1 23 1 2 3

Similarly the multiplicity in (11) is derived by repeated application of (12) on [s]⊗N


∑= … .⊗

… ∈−
− − −

s b b b bmult ([ ] )
(15)

j
N

j j j
sj j sj j sj j sj[ ]

, , , /2
0

N
N N N

1 2 1 0
1 1 2 2 1 1

A connection to the formula (6) can be made by visualizing each term in the sum (15) as a path on a 2D lattice 
connecting the points

→ → … → − → .−j N j N j(0, 0) (1, ) ( 1, ) ( , ) (16)N1 1

A step Δ y between two points (x, y) and (x′ , y′ ) is defined by

′ ′ = + ∆ .x y x y y( , ) ( , ) (1, ) (17)

The paths that contribute to the sum (15) are the ones where every step is according to (13) in the set

∆ ∈ − … − − .y s s s s y{ , 1, , max( , 2 )} (18)

These lattice paths are discussed below with the aid of a few examples and allow us to obtain recursion relations 
for the multiplicities ms(N, j) ≡  mult[j]([s]⊗N). The number of lattice paths up to y =  N can be expressed in terms 
of paths ending at y =  N −  1

∑=











= =

− ≤ ≤
= −

+ −

m N j

N j

m N k j Ns( , )

1, 0,

( 1, ), 0 ,

0, else, (19)

s
k j s

j s N s

s

min( ,( 1) )

where k increases in integer steps, i.e. it takes only integer or half-integer values depending on whether |j −  s| is 
an integer or half-integer. With these recursion relations it is possible to efficiently calculate the multiplicities for 
high values of N.

Spin 1/2 particles. Let us now give further insight into the lattice paths defined above by discussing the first few 
examples. Where available, we will make connections to the mathematical literature regarding the lattice paths. 
For =s 1

2
 the paths are given by the allowed steps

∆ ∈







− >

= .

{ }
{ }

y
y

y

, , 0,

, 0 (20)

1
2

1
2

1
2

Two examples are given in Fig. 1. These directed lattice paths, which do not go below the x-axis and end at a point 
(N, j) after N steps are known to be counted by the Catalan triangle C(N/2 +  j, N/2 −  j)20, which is given for any 
n ≥  k ≥  0 by

=
+ − +

+
.C n k n k n k

k n
( , ) ( ) ! ( 1)

! ( 1)! (21)

Figure 1. Lattice paths (16) for =s 1
2

. Using the steps (20), there are 5 paths from (0, 0) to (6, 0) (left) and 9 
paths from (0, 0) to (6, 1) (right). By (15) this implies 
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Using this formula it is easy to see that (6) and (11) match. For the special case of the ground state in (6) the 
degeneracy is given by the N/2 Catalan number CN/2. This degenerate ground state (macroscopic singlet state) is 
particularly interesting, e.g. for magnetometry22 and black hole entropy calculations23. In the next two subsections 
its degeneracy is stated for some higher spin systems.

Spin 1 particles. Next we consider a system of s =  1 particles. When increasing s, the lattice paths become less 
standard due to additional constraints from (18). For s =  1 the paths can only reach integer values of y and the 
allowed steps are

∆ ∈





− ≥
= .

y
y
y

{1, 0, 1}, 1,
{1}, 0 (22)

An example is given in Fig. 2. The paths with such constraints and j =  0 are known in mathematical literature 
as Riordan paths (and their multiplicity as Riordan numbers24–26. For j ≥  0 these are Riordan arrays27, whose gen-
erating functions are known to be27







+ − − −
+

− − − − 




x x x

x x
x x x

x
1 1 2 3

2 (1 )
, 1 1 2 3

2
,

(23)

2 2

from which the degeneracies d1(N, j) can be derived. For instance, d1(N, 0) is given by the Riordan numbers:

∑=
+
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− ( )d N
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N
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N k
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1 (24)k

N

1
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1

The recursion relation for the multiplicities (19) becomes in this case

∑=







= =
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.
= − |
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m N j

N j

m N k j N( , )

1, 0,

( 1, ), 0 ,

0, else (25)
k j

j N

1
1

min( 1, 1)

1

Higher spin particles
For =s 3

2
 the allowed steps are

∆ ∈







− − ≥

− =

=

= .

{ }
{ }
{ }
{ }

y

y

y

y

y

, , , , ,

, , , 1,

, , ,

, 0 (26)

3
2

1
2

1
2

3
2

3
2

3
2

1
2

1
2

3
2

1
2

1
2

3
2

For example, the degeneracies for the case of j =  0 are:
0, 1, 0, 4, 0, 34, 0, 364, 0, 4269, 0, 52844, 0, 679172, 0, 8976188, 0, 121223668.

Figure 2. Lattice paths for s = 1. Using the steps (22), there are 15 paths from (0, 0) to (6, 0), illustrating 
mult[0]([1]⊗6) = 15.
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As required, all the odd multiplicities vanish. This sequence of integers (with or without the zeroes) is not 
known in mathematical literature but can explicitly solve the s =  3/2 case as was done above for lower spin 
systems.

Continuing according to the same logic, the allowed steps for s =  2 are

∆ ∈







− − ≥
=
= .

y
y
y
y

{2, 1, 0, 1, 2}, 2,
{2, 1, 0}, 1,
{2}, 0 (27)

For instance, the degeneracies for the case of j =  0 are:
0, 1, 1, 5, 16, 65, 260, 1085, 4600, 19845, 86725, 383251, 1709566.
These degeneracies, and also the ones for j >  0, are known in literature28,29, but we have not seen them in the 

context of 2D lattice paths.
We end this subsection by describing the degeneracies for the s =  3, j =  0 case: 0, 1, 1, 7, 31, 175, 981, 5719, 

33922, 204687, 1251460, 7737807, 48297536.
To our knowledge, this sequence has not been extensively studied yet in mathematical literature. We elaborate 

in the next section on the fraction of decideable states in all the above cases.

The Fraction of Decidable States. To generalize (5), we employ the fact that for every N particle separable 
state it was shown that16,18:

∆ + ∆ + ∆ ≥ .J J J Ns( ) ( ) ( ) (28)x y z
2 2 2

Therefore, if we define in a system of N spin-s particles the EW as the total magnetization (4), then for separa-
ble states it is bounded from below by Ns:

≥ = .W W Ns (29)sep
s( )

All states with witness eigenvalues below this bound are entangled, so using the witness levels (4) one finds the 
fraction of decidable states to be

s fs(∞)

1/2 0.4275 ± 0.0058

1 0.3177 ± 0.0035

3/2 0.2470 ± 0.0023

2 0.1987 ± 0.0017

5/2 0.1642 ± 0.0013

3 0.1386 ± 0.0010

7/2 0.11897 ± 0.00082

4 0.10356 ± 0.00068

9/2 0.09119 ± 0.00056

5 0.08110 ± 0.00049

Table 1.  Approximate values for fs(∞) based on the last jump appearing below N =10,000.

Figure 3. f N( )1
2

 for N up to 10,000.
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d N j
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( , ) (30)
s

j j j Ns s

j s

{ /2 ( 1) }

/2

0

0

In Figs 3–6 this fraction is plotted for =s , 1 , 2,1
2

3
2

 respectively, where systems comprised of up to 10,000 
spins were analyzed. Computing the tensor products to such high orders was possible only owing to the recursion 
relation (19). Interestingly, the points lie on curves that are constrained to a certain range. For half-integer s the 
points for even and odd N (the case of odd N is studied here for the first time) lie on different curves, while for 
integer s they lie on the same curves. It seems that fs(N) converges for large N, meaning that all points lie between 
two curves which monotonically approach the same constant fs(∞ ). A good approximation of these constants can 
be made based on the rightmost jump in fs(N) in a given graph. For example, the last jump in f N( )1

2
 below 

N =  10,000 is at

≈ .

≈ .

f

f

(9940) 0 42169,

(9942) 0 43338,
(31)

1
2

1
2

hence fs(∞ ) must lie in between these values

∞ =
+

±
−

= . ± . .

f
f f f f

( )
(9942) (9940)

2

(9942) (9940)

2
0 4275 0 0058 (32)

1
2

1
2

1
2

1
2

1
2

The corresponding values fs(∞ ) for s up to 5 are given in Table 1. They are plotted in Fig. 7, together with a 
fitted curve given by

Figure 4. f1(N) for N up to 10,000. 

Figure 5. f N( )3
2

 for N up to 10,000.
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∞ ≈
+

f
as c

( ) 1 ,
(33)s b

where

= . = . = . .a b c1 36273, 1 26448, 1 7738 (34)

The sum of squared residuals of the fit is

∑ε = . ⋅ .−3 6 10
(35)i

i
2 6

The results of the graphs below suggest that for various spin systems of arbitrary size, there is a considerable 
amount of many-body entangled states that can be detected by the proposed EW. Even though this (quite natural) 
EW may not be the optimal one, it enables to identify a considerable sub-space of the multi-particle Hilbert space, 
comprised only of entangled states. These states, which are known to be more protected against decoherence 
than other states corresponding to large values of W, can be used as a resource for measurement based quantum 
computation and for quantum information storage18. For any N and s, the j =  0 states are especially important in 
that aspect, being “decoherence free”30.

Discussion
We have introduced in this work a tripartite analogy between the degeneracy of witness eigenstates, tensor prod-
ucts of SO(3) representations and classical lattice walks with special constraints. Furthermore, we found that the 
solution to the above problems is given by generalized Catalan numbers. This analogy enabled us to construct 
a “sterile” entanglement witness for arbitrary spin systems, which marginally changes them upon measuring 
highly entangled states. Being an important resource for various quantum information processing tasks, we have 
derived the fraction of decideable states for such a witness and examined its dependency on the spin s and the 
number of particles N. It was found to be a decreasing function in s and an asymptotically constant function 
in N. We conclude now with a short note of comparison. For obvious reasons, entanglement detection in large 
spin-s systems was less studied until now in comparison to spin-1/2 systems. Four examples of works who did 

Figure 6. f2(N) for N up to 10,000. 
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Figure 7. fs(∞) from Table 1 with fit (parameters given in (34)). 
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explore the former are31–34. The measure of negativity which was studied in31 was shown in32 to be a less sufficient 
condition for entanglement detection than that posed by entanglement witness created by energy measurements, 
similar to those proposed here. In addition, we find the EW suggested above simpler (theoretically as well as 
experimentally) than negativity31 and spin swapping33. Moreover, and in contrast with31–34, which focused on 
a specific Heisenberg lattice, we believe the proposed EW to be of more general character, applicable for a wide 
variety of systems because of the universality of J2. This is emphasized by the role of the total angular momentum 
in spin-squeezing35, in finding metrologically useful states36 and the recent measurements of macroscopic suscep-
tibility for entanglement detection as an EW37,38.
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