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Genome rearrangements are the evolutionary events on level of genomes. It is a 
global view on evolution research of species to analyze the genome rearrangements. 
We introduce a new method called RGRPT (recovering the genome rearrangements 
based on phylogenetic tree) used to identify the genome rearrangements. We test 
the RGRPT using simulated data. The results of experiments show that RGRPT 
have high sensitivity and specificity compared with other tools when to predict 
rearrangement events. We use RGRPT to predict the rearrangement events of six 
mammalian genomes (human, chimpanzee, rhesus macaque, mouse, rat, and dog). 
RGRPT has recognized a total of 1,157 rearrangement events for them at 10 kb 
resolution, including 858 reversals, 16 translocations, 249 transpositions, and 34 
fusions/fissions. And RGRPT has recognized 475 rearrangement events for them at 
50 kb resolution, including 332 reversals, 13 translocations, 94 transpositions, and 
36 fusions/fissions. The code source of RGRPT is available from https://github.com/
wangjuanimu/data-of-genome-rearrangement.
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INTRODUCTION

The rapid development of sequencing technologies makes the phylogenetic analysis from the level 
of whole genome possible. A studied genome is represented as a line of conserved segments (called 
syntenic blocks). The genome rearrangements of species are changes of syntenic block orderings 
and losing of sequence blocks. These events include reversal, translocation, transposition, fusion, 
fission, and so on (Xu et al., 2017; Cheng et al., 2019; Dong et al., 2018). The research on genome 
rearrangements is mainly three aspects.

One is the computation of evolutionary distance between two species by considering genome 
rearrangements. Researchers have proposed a lot of metric for measuring the dissimilarity of 
evolution between species and a large amount of algorithms for computing the metrics. The 
breakpoint distance is the minimum rearrangement operations transforming one genome to 
the other genome, which is computed by means of breakpoint graph (Blanchette et al., 1997; 
Sankoff and Blanchette, 1998). There are lots of algorithms for computing breakpoint distance. 
In 1995, Hannenhalli and Pevzner put forward an algorithm with O(n5) time complexity to 
compute the breakpoint distance just considering reversal events (Hannenhalli and Pevzner, 
1999). Later, Kaplan improved the algorithm to time complexity O(n5) (Kaplan et al., 2000). 
In 1996, Hannenhalli designed an algorithm with O(n3) time complexity to compute it by 
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considering translocation events (Hannenhalli, 1995). In 
2001, Zhu et al. improved the algorithm to time complexity 
O(n2logn) (Zhu and Ma, 2002). And then Zhu et al. devised 
an algorithm with O(n2) time complexity (Liu et al., 2004). 
The DCJ distance is introduced by Yancopoulos et al. (Sophia 
et  al., 2005), which uses the double cut and join (DCJ for 
short) operation to model rearrangement events, such as 
reversal, translocation, transposition, fusion, and fission in 
an unified way. Yancopoulos et al. first propose a method to 
compute the DCJ distance by considering only translocations 
and reversals on linear chromosomes (Sophia et al., 2005). 
Paper (Lu et al., 2006) has proposed an O(n2) time algorithm 
to compute the distance by considering the fusions and 
fissions between circular unsigned chromosomes. Unimog 
(Hilker et al., 2012) is software for computing DCJ distance 
which implements lots of algorithms (Erdös et al., 2011; Jakub 
et al., 2011). SoRT is a tool to compute breakpoint distance 
and the DCJ distance for linear/circular multi-chromosomal 
gene orders (Yen-Lin et  al., 2010). SCJ distance (Feijão and 
Meidanis, 2011) is defined using the single cut and join (SCJ 
for short) operations, which is in analogy to DCJ measure. 
The distance can be computed by a speedily computable.

Two is the reconstruction of the ancestral gene orders by 
using the genomes of extant species. Ma et al. (Ma et al., 2006) 
use maximum parsimony principle to recover reliably ancestral 
genomes starting from phylogenetic tree and adjacent genes in 
genome and make the probabilistic reconstruction accuracy 
analysis for the six mammalian genome (human, mouse, rat, 
dog, opossum, and chicken) based on the improved Jukes–
Cantor model. PMAG utilized the Bayesian theorem in the 
probabilistic framework to infer ancestral genomes (Yang et al., 
2014). Multiple Genome Rearrangements (MGR) recovers 
the ancestral genome by minimizing the rearrangement 
distance (Bourque and Pevzner, 2002). Multiple Genome 
Rearrangements and Ancestors (MGRA) is developed to 
reconstruct ancestral genomes based on multiple breakpoint 
graphs and is used to analyze rearrangement evolutionary 
events of seven mammalian genomes (human, chimpanzee, 
macaque, mouse, rat, dog, and opossum) (Alekseyev and 
Pevzner, 2009). Decostar (Duchemin et al., 2017) is a software 
which reconstructs neighborhood relations of ancestral genes 
aiming at reconstructing the organization of ancestral genomes.

Three is the recognition of the rearrangement events of 
existing species. Efficient Method to Recover Ancestral Events 
(EMRAE) is an algorithm which can recognize rearrangement 
events in evolution described by phylogenetic tree by means of 
adjacent genes in genomes (Zhao and Bourque, 2009).

MATERIALS AND METHODS

Preliminaries
A genome is composed of several chromosomes, and each 
chromosome is an ordering of syntenic blocks. For convenience, 
each syntenic block is recorded by an integer, so a chromosome is 
represented by a signed permutation X=c1c2⋯gn, where ci(1≤i≤n) 

is an integer representing a syntenic block, its sign is assigned 
with the orientation that is either positive (recorded by ci) or 
negative (recorded by –ci). The chromosome X=c1c2⋯cn is the 
same as –X = – cn – cn – 1

… – c1.
A reversal r (i, j) (i ≤ j) converts chromosome X=c1c2⋯cn into 

a new chromosome Xʹ=c1c2⋯−cj−cj–1⋯−ci+1−cicj+1⋯cn, where the 
reversal is from ci to cj.

A translocation event breaks two chromosomes into four 
segments and then reconnects them into two new chromosomes. 
Given two chromosomes X = X1X2 and Y = Y1Y2, where 
X1=x1x2⋯xi–1,X2=xixi+1⋯xm,Y1=y1y2⋯yj–1, and Y2=yjyj+1⋯yn, a 
translocation is represented by tl(i,j). X1 and Y1 are exchanged to 
form two new chromosomes Xʹ=Y1X2 and Yʹ=X1Y2, or X1 and Y2 
are exchanged to form two new chromosomes X” = – Y2X2 and 
Y” = X1 – Y1. 

A transposition event is to exchange two adjacent 
fragments on one chromosome into a new chromosome. A 
transposition is represented by tp(i, j, k), i.e., the fragment ci⋯cj 
of one chromosome inserted into after ck. If ck is on the same 
chromosome (k > j or k < i), then the transposition tp(i, j, k) is 
called intra-chromosomal; otherwise, it is inter-chromosomal. 
Given a chromosome X=c1c2⋯cici+1⋯cj–1cj⋯ck⋯cn and 
an intra-chromosomal transposition, X is converted into 
Xʹ=c1c2⋯ckcici+1⋯cjck+1⋯cn.

A fusion event is to connect two chromosomes into a new 
chromosome. The fusion acting on chromosomes X1 and X2 
is represented by f u(X1, X2) and forming a new chromosome 
X1X2 or X1−X2. A fission is to split a chromosome into two new 
chromosomes. A fission acting on the chromosome X = X1X2 is 
represented by f i(X) and forming two new chromosomes X1 and 
X2 (where X1 and X2 are non-empty segments).

An adjacency a(ci,ci+1) of genome X is two adjacent integers 
in one chromosome of X. a(ci,ci+1) is the same as a(−ci+1,−ci). For 
example, all adjacencies on chromosome X = 1,234 are a(1, 2), 
a(2, 3), and a(3, 4). For a set of genomes S, an adjacency a is 
effective w.r.t. S if it belongs to at least one genome and not all 
genomes. For example, two uni-chromosomal genomes G1 and 
G2, the chromosome X = 1,234 of G1 and the chromosome Y = 
1 – 3 − 24 of G2, then all effective adjacencies w.r.t. G1 and G2 are 
a(1, 2), a(2, 3), a(3, 4), a(1, −3), and a(−2, 4).

EMRAE
Given a phylogenetic tree T describing the evolution of the 
genomes G, EMRAE first computes all effective adjacencies 
w.r.t. G. Then, it predicts the rearrangement events for each 
edge of T by means of inference rules (will be introduced in 
the following).

Figure 1 shows a reversal r(2, 3) during the evolution from 
A to B, where A and B are two uni-chromosomal genomes, and 
the chromosomes are X = 1,234 and Y = 1 – 3 – 24, respectively. 
The set of genomes will be divided into two subsets recorded 
by SA and SB after removing the edge e from T. Suppose there 
is not any rearrangement events inside SA and SB. Then, 
adjacencies a(1, 2) and a(3, 4) can be found in each genome of 
SA and not in any one genome of SB; a(1,−3) and a(−2,4) can be 
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found in each genome of SB and not in any one genome of SA. 
In turn, we can utilize the four adjacencies a(1, 2), a(3, 4), a(1, 
−3), and a(−2,4) to identify a reversal r(2, 3) occurring on the 
edge e. The EMRAE method infers the rearrangement events 
by means of the similar rules.

Let e = (A, B) be an edge of T, G={G1,G2,⋯,Gm}the genomes 
of leaves, and a1,a2,⋯ai the children of A and b1,b2,⋯bj the 
children of B. EMRAE first selects a number of adjacencies as 
candidate adjacencies Ca(e,A) for edge e and node A according 
the following steps.

1. Find the adjacencies are in each genome of SA and not in any 
one genome of SB, then put them to Ca(e, A);

2. If A is an internal node, find all edges connected with A except 
e and record them with e1,e2,⋯,ek. For each ei=(ui,A)(1≤i≤k), 
G can be divided into two parts after removing ei, Sui is the 
part not including A.
a. Find the adjacencies that are in one genome of each 

Sui (1 ≤ i ≤ k) and not in any one genome of SB, then 
put them to Ca(e,A);

b. Compute Ca(ei, ui) and Ca(ei,u)(1≤i≤k). For each one 
Ca(ei, ui), find the adjacency a1 from Ca(ei, ui), such 
that a1 is not overlap gene with any one adjacency in 
Ca(ei, u), a1 has overlap gene with one adjacency a2 in 
each Ca(ej,uj)(1≤j≠i≤k), and a2 has overlap gene with 
at least one adjacency in Ca(ej, u), then put a\s\do5(1) 
to Ca(e, u).

EMRAE then infers rearrangement from Ca(e, A) and Ca(e, B) 
for edge e = (A, B) with the help of inference rules in the following 
section. From the definitions of genome rearrangements, 
we find that each genome rearrangement can change several 
adjacencies. For example, each reversal r(i, j)(i ≤ j) can change 
two adjacencies a1=a(ci–1,ci) and a2=a(cj,cj+1) into b1 = a(ci–1, – cj) 
and b2=a(−ci,cj+1). Based on those facts, we obtain the inference 
rules introduced in the following section.

Inference Rule
Let e = (A,B) be an edge of the phylogenetic tree T. Given 
adjacencies a1 = a (c1–1, ci), a2 = a (cj, cj+1) in Ca(e,A) and b1=a(ci–1,−
cj), b2=a(−ci,cj+1) in Ca(e,B), EMRAE infers a reversal r(i,j) from A 
to B if all genomes are uni-chromosomal or a1, a2 are in the same 
chromosome in SA and b1, and b2 are in the same chromosome 
in SB. Otherwise, we infer a translocation tl(i, j). Similarly, given 

adjacencies a1=a(ci–1,ci), a2=a(cjcj+1) in Ca(e,A) and b1=a(ci+1,cj+1), 
b2=a(cj,ci) in Ca(e,B), EMRAE infers a translocation tl(i,j), or a 
reversal for a1, a2 in Ca(e,A) and adjacencies b1, b2 in Ca(e,B).

Assume that there are adjacencies a1=a(ci–1,ci), a2=a(cj,cj+1), 
and a3=a(ck,ck+1) in Ca(e,A) and b1=a(ci–1,cj+1), b2=a(ck,ci), and 
b3=a(cj,ck+1) in Ca(e,B). EMRAE can predict a transposition 
tp(i,j,k) during the evolution from A to B if all genomes are 
uni-chromosomal. Otherwise, suppose m genomes in SA have 
a1 and a2, then EMRAE can predict a transposition tp(i,j,k) 
if there are at least m/2 genomes such that the four integers 
of a1 and a2 on the same chromosome, or there are at least 
m/2 genomes such that the four integers of a2 and a3 on the 
same chromosome.

Assume that there is a=a(ci,cj) in Ca(e,A). EMRAE can predict 
a fission that splits the adjacency a=a(ci,cj) if a is sign-compatible 
for each genome Gk in SB. The fusion from A to B can be seen as 
a fission from B to A.

Recovering the Genome Rearrangements 
Based on Phylogenetic Tree
EMRAE can not identify the rearrangement occurring in the 
frontier of genomes. We take Figure 2, for example, where 
species A, B, and C are uni-chromosomal genomes A = 1,234, 
B = −2 – 134, and C = 1,234. A reversal r(1,2) has occurred in 
the evolution from A to B. EMRAE can compute the candidate 
adjacencies a(−1,3) for Ca(e1,B) and a(2,3) for Ca(e1,A). So, 
EMRAE can not infer the reversal r(1,2) on the edge e1 according 
to the candidate adjacencies.

We improve EMRAE so that the improved method (called 
RGRPT) is able to infer the rearrangement events occurring in 
the frontier region. The inference rule of RGRPT is the same as 
that of EMRAE. The difference between RGRPT and EMRAE 
is that they have different candidate adjacencies. RGRPT puts 
0 to the head and tail for each chromosome, so there will be 
added a lot of adjacencies for each genome. For example, 
considering the uni-chromosomal genomes X = 1,234 and 
Y = −2 −134, the two additional candidate adjacencies a(0,1) 
and a(0,−2) are added.

RGRPT adds candidate adjacencies in the step b of EMRAE. 
For each one Ca(ei,ui) and an adjacency a1 from Ca(ei,ui), if there 
is an adjacency a2 in each Ca(ej,uj)(1≤j≠i≤k) such that a1 with a2 
has overlap gene, then put a1 to Ca(e,u).

FIGURE 1 | A reversal r (2, 3) during the evolution from A to B; S\s\do5 (A) 
and S\s\do5 (B) are two subsets of all leaves species divided by the edge e.

FIGURE 2 | The tree topology with two taxa (B and C). 
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RESULTS

All of the experiments were performed on a computer with Intel 
Vostro 14 2.0 GHz CPU, 4 GB RAM, and 500 GB Hard Disk 
Drives (HDD). The operating system was Win10 64 bit with Java 
1.6 installed. RGRPT was written in Java.

We tested RGRPT with both simulated data and the practical 
data (i.e., real biological data) introduced by the following section.

Simulated Data
Here, we start with an uni-chromosomal genome as the ancestor, 
and it evolves along the phylogenetic tree with n taxa whose 
topology sees the Figure 3.

We generate two simulated data sets in order to test the 
affectivity of RGRPT. One of them is created from the 
phylogeny only with reversals events. The other data set is 
generated from the phylogeny with kinds of events, including 
reversals, translocation, transposition, fusion, and fission, 
and the quantity of those events is in a certain ratio. The two 
data sets can test the ability of methods to recover the simple 
and the complex evolution histories. First data set is created 
just using reversal events. Since the reversal on only one gene 
is rare (Korbel et al., 2007), we set the ratio of reversal on 
one gene and on more than one gene as 1:3. The number of 
leaves is from 3 to 10 with step 1. For each number of leaves, 

the ancestor genome with m gene, where m from 50 to 150 
with step 10. Each edge will happen k reverse, where k is 
random integer number from 3 to 10. So, there are 11 groups 
data for each leaf number. Sensibility is the percentage of 
correctly predicted events in all practical events. Specificity 
is the percentage of correctly predicted events in all predicted 
events. We compute the sensibility and specificity for RGRPT 
and EMRAE for each group data. Table 1 shows the average 
sensitivity and specificity for each leaf number. The second 
column of the table records the number of all events, and its 
last row records the average values.

Table 1 shows that RGRPT achieves higher sensibility than 
EMRAE, and RGRPT achieves comparable specificity with 
EMRAE. Obviously, RGRPT can distinguish more actually 
occurred events than EMRAE. So, the experimental results show 
that the RGRPT is more efficient than EMRAE for predicting 
reversal events.

Second data set is generated by using all events, i.e., 
reversal, translocation, transposition, fusion, and fission. The 
reversals are generally more than the other rearrangement 
events. The fusions and the fissions are very rare; so, we 
record the number of the two events together. Here, we set the 
ratio of those events as 10:2:2:0.1. The ancestor genome has 
5 chromosomes and each chromosome with 100 genes. The 
ancestor genome evolves along the topology with four leaves 
(see Figure 3). Each edge happen k events, where k is random 
number from 1 to μ and μ is 6, 12, 18, and 24. For each μ, it 
runs 10 times; so, we can obtain 10 groups data for each μ. 
Table 2 shows the average of 10 groups data for each μ. This 
table indicates that the RGRPT is more efficient than EMRAE 
for predicting all events.

Practical Data
The practical data is from the paper (Zhao and Bourque, 2009). 
It contains six mammalian genomes, i.e., human, chimpanzee, 
rhesus monkey, mouse, voles, and dog. The data are created from 
two different levels of resolution 10 kb and 50 kb. Figure 4 is the 
tree describing the phylogeny of species. The results are shown 
in Tables 3 and 4. EM and RG represent EMRAE and RGRPT 
respectively, and Rev, Tloc, Tran, Fus, and Fis represent reversal, 

TABLE 1 | Results of EMRAE and recovering the genome rearrangements based on phylogenetic tree algorithms in predicting reversal events.

Leaves Reversal Sensibility Specificity

EMRAE RGRPT EMRAE RGRPT

3 24 64% 76% 89% 90%
4 39 65% 76% 94% 94%
5 45 61% 72% 92% 93%
6 59 57% 66% 90% 90%
7 69 54% 65% 92% 91%
8 79 59% 80% 92% 92%
9 92 55% 63% 90% 90%
10 104 55% 62% 89% 89%

Mean 58.7% 70% 91% 91.1%

FIGURE 3 | The topology used to generate the simulation data.
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translocation, transposition, fusion, and fission, respectively. 
Each row in the table records the ancestor rearrangement events 
of the edge. For example, the values in the human row are the 
rearrangement events from D to human; the values in MR row 
are the rearrangement events from A and B.

At 10 kb resolution, the RGRPT algorithm predicts 1,157 
ancestor rearrangement events, including 858 reversals, 16 
translocations, 249 transpositions, and 34 fusions and fissions. 
It identifies 48 rearrangement events more than the EMRAE. 
The reversal events are in the majority in all predicted events. 
At 50 kb resolution, the RGRPT algorithm predicts 475 
ancestor rearrangement events, including 332 reversals, 13 
translocations, 94 transpositions, and 36 fusion and fissions. 
RGRPT identifies 21 rearrangement events more than EMRAE 
algorithm. The rearrangement events identified in the rat 

TABLE 2 | Results of EMRAE and recovering the genome rearrangements based on phylogenetic tree algorithms in predicting all events.

Events of each edge All events Sensibility Specificity

EMRAE RGRPT EMRAE RGRPT

6 19 75.8% 85.7% 95.8% 96.2%
12 29 74.2% 80.3% 97% 96.5%
18 38 53.5% 58.1% 95.4% 96.7%
24 50 47.7% 50.5% 94.9% 94.1%

Mean 62.8% 68.7% 95.8% 95.9%

FIGURE 4 | The tree describing the phylogeny of mammalian species.

TABLE 3 | Genome rearrangement predictions of EMRAE and recovering the genome rearrangements based on phylogenetic tree at 10 kb resolution.

Species Rev Tloc Tran Fus/Fis Total events

EM RG EM RG EM RG EM RG EM RG

Human 12 13 0 0 4 5 0 0 16 18
HC 29 32 0 0 15 15 0 1 44 48
HCP 83 84 0 0 8 10 2 8 93 102
Chimp 17 19 0 0 7 8 1 1 25 28
Rhesus 49 50 0 0 40 42 1 2 90 94
Mouse 90 95 3 3 10 13 5 5 108 116
Rat 227 233 0 0 127 129 3 3 357 365
MR 140 143 2 3 9 10 0 0 151 156
Dog 184 189 10 10 17 17 14 14 225 230
Total 831 858 15 16 237 249 26 34 1,109 1,157

TABLE 4 | Genome rearrangement predictions of EMRAE and recovering the genome rearrangements based on phylogenetic tree at 50 kb resolution.

Species Rev Tloc Tran Fus/Fis Total events

EM RG EM RG EM RG EM RG EM RG

Human 2 2 0 0 1 1 0 0 3 3
HC 19 19 0 0 4 4 1 1 24 24
HCP 27 29 0 0 5 6 2 6 34 41
Chimp 17 19 0 0 7 8 1 1 25 28
Rhesus 22 23 0 0 6 7 1 3 29 33
Mouse 25 27 3 3 0 0 5 6 33 36
Rat 128 131 0 0 65 65 5 5 198 201
MR 41 42 2 2 2 2 0 0 45 46
Dog 46 47 7 8 8 8 13 14 74 77
Total 322 332 12 13 92 94 28 36 454 475
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edge are mostly in all edges either at 10 kb resolution or at 
50 kb resolution. The syntenic blocks of genomes at 10 kb 
resolution are more than the syntenic blocks of genomes at 50 
kb resolution. The fact reduces the recognized rearrangement 
events at 10 kb resolution that are more than the recognized 
rearrangement events at 50 kb resolution. Experiments show 
that RGRPT can recover more ancestor events than EMRAE.

DISCUSSION

This paper proposes a new method, RGRPT, to infer ancestor 
rearrangement events. RGRPT takes a phylogenetic tree describing 
the evolution of species and the genomes of species as input. 
Experiments on the simulated data and practical data show that 
RGRPT is more efficient than EMRAE and can recover more 
ancestor rearrangement events than EMRAE. RGRPT provides a 
method for us to research the genome rearrangement of species. We 
can use RGRPT to recognize the ancestral genome rearrangement 
for the evolution of other species in future (Tian et al., 2018).
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