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A B S T R A C T   

Children in poverty must contend with systems that do not meet their needs. We explored what, at a neural level, 
helps explain children’s resilience in these contexts. Lower coupling between lateral frontoparietal network 
(LFPN) and default mode network (DMN)—linked, respectively, to externally- and internally-directed 
thought—has previously been associated with better cognitive performance. However, we recently found the 
opposite pattern for children in poverty. Here, we probed ecologically-valid assessments of performance. In a pre- 
registered study, we investigated trajectories of network coupling over ages 9–13 and their relation to school 
grades and attention problems. We analyzed longitudinal data from ABCD Study (N = 8366 children at baseline; 
1303 below poverty). The link between cognitive performance and grades was weaker for children in poverty, 
highlighting the importance of ecologically-valid measures. As predicted, higher LFPN-DMN connectivity was 
linked to worse grades and attentional problems for children living above poverty, while children below poverty 
showed opposite tendencies. This interaction between LFPN-DMN connectivity and poverty related to children’s 
grades two years later; however, it was attenuated when controlling for baseline grades and was not related to 
attention longitudinally. Together, these findings suggest network connectivity is differentially related to per-
formance in real-world settings for children above and below poverty.   

1. Introduction 

Resources are not equally distributed across a nation’s population; in 
the United States, the inequity is particularly stark (Zucman, 2019). 
There is a large body of research focused on the detriments of growing 
up without as many economic and educational resources (low socio-
economic status, SES). By comparison, far less research has examined 
how some children in lower-resource contexts are able to adapt and 
ultimately thrive educationally, exhibiting resilience in the face of 
structural barriers to success. Measuring children’s brain function is one 
way to investigate pathways to resilience. For example, one can ask 
whether children growing up with fewer resources rely on the same 
neural pathways as their well-off peers to perform well in school, or 
whether they achieve the same results through alternate means, having 
adapted meaningfully in order to overcome societal barriers to success. 
This question has important implications for interventions meant to 
promote educational success. Should the end-goal of interventions be to 
make lower-income children’s brain development more closely 
resemble that of their higher-income peers? If children from different 

backgrounds achieve success through different neural pathways, a 
one-size-fits-all approach may not be effective. While single studies 
alone cannot answer these questions, they can open the door to such 
lines of inquiry. 

A number of brain imaging studies have shown environment- 
dependent differences in neural recruitment during performance of 
cognitive tasks (Merz et al., 2019). These studies suggest that the homes, 
neighborhoods, and schools that form our lived experiences shape our 
mental and neural processes. This should hardly be surprising, given 
decades of animal research on experience-dependent brain plasticity 
(DeFelipe, 2006; Diamond et al., 1964). 

In this study, we focus on patterns of brain activation that support 
behavioral performance in childhood, and where they diverge as a 
function of family income, a proxy for resource access. One relevant 
study found that children from higher- and lower-income homes relied 
on different brain regions to perform well on a working memory task 
(Finn et al., 2017). Children from higher-income families showed more 
overall brain activation during task performance: the more they 
recruited temporal and frontal brain regions, the better they did. 
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Children from lower-income families, on the other hand, showed less 
activation and did better the less they recruited temporal and frontal 
brain regions. Contrastive findings such as these abound; researchers 
have typically found differences in frontal and parietal lobe activation as 
a function of family income, and differences in the ways brain function 
and structure relates to children’s performance on tasks such as working 
memory, rule learning, reasoning, and attention (Leonard et al., 2019; 
Merz et al., 2019; Sheridan et al., 2012). 

Another way to test for experience-dependent differences in brain 
function is with resting state functional MRI (rs-fMRI). This method may 
more effectively capture the cumulative history of individuals’ experi-
ences and thought patterns (Mackey et al., 2013; Power et al., 2014b; for 
a review see Guerra-Carrillo et al., 2014). With rs-fMRI, we measure 
children’s unconstrained brain activity while they lie in the MRI scan-
ner. The strength of temporal coupling, or so-called functional connec-
tivity, between brain regions—that is, how often they fluctuate in 
tandem at “rest”—is thought to reflect recent history of coactivation of 
those regions. Advantages of this method are that it is not influenced by 
differences in children’s strategy or effort on a particular MRI task, 
which can be confounds in group comparisons. Functional connectivity 
measured with rs-fMRI is sensitive to current mental states (e.g., Liston 
et al., 2009), but also captures brain network connectivity on a broader 
timescale than a single task performed on a single day. 

Here, we focus specifically on children’s resting-state functional 
connectivity between several brain networks relevant to cognitive and 
self-referential processing. The lateral frontoparietal network (LFPN) is 
consistently activated in higher-level cognitive tasks, such as those 
taxing executive functions or reasoning (Vincent et al., 2008). In 
contrast, the default mode network (DMN) is more active during inter-
nally oriented processing, such as reflecting on one’s self (Raichle et al., 
2001), as well as during tasks that require thinking outside of the 
here-and-now, such as thinking about the past or future (Spreng, 2012). 
The cingulo-opercular network (CON), sometimes referred to as the 
“salience network,” has been theorized to serve as an interface between 
the DMN and LFPN, alerting LFPN to challenges that may require a 
controlled response, and thus play an important role in switching from 
the so-called “default” mode to the top-down control mode (Sridharan 
et al., 2008; Uddin et al., 2011). 

The interactions between resting-state networks change as children’s 
brains develop, though the changes that have been reported depend on 
the networks and the developmental period in question (Baum et al., 
2017; Grayson and Fair, 2017; Marek et al., 2015; Pines et al., 2021). 
Networks can either become more integrated or more segregated, 
showing either increased or decreased between-network functional 
connectivity; network segregation is thought to support network 
specialization (Baum et al., 2017; Grayson and Fair, 2017; Marek et al., 
2015; Pines et al., 2021). 

A body of evidence suggests that it is adaptive for LFPN and DMN to 
be more segregated. First, task-related fMRI studies have shown that 
stronger activation of the LFPN and stronger deactivation of the DMN is 
associated with better performance on tasks that require focus on 
externally presented stimuli (Weissman et al., 2006). Secondly, rs-fMRI 
research in both adults and children has consistently found that rela-
tively lower functional connectivity between LFPN and DMN is related 
to better cognitive, emotional, and behavioral outcomes (Chai et al., 
2014; DeSerisy et al., 2021; Lopez et al., 2020; Sherman et al., 2014; 
Whitfield-Gabrieli et al., 2020). 

However, LFPN-DMN segregation may not always be adaptive. 
Mounting evidence suggests that engagement of both the LFPN and 
DMN is actually beneficial when performing certain kinds of tasks, 
especially those on which intentional mind-wandering is helpful, such as 
mentalizing or creative thinking (Christoff et al., 2009; Dixon et al., 
2014; Kucyi et al., 2021). Indeed, engaging in deliberate mind--
wandering—argued to be distinct from uncontrolled mind--
wandering—is thought to help fuel creative insights (Agnoli et al., 2018) 
and be associated with less reactive emotional processing (Seli et al., 

2015). Coactivation of LFPN and DMN has been implicated in perfor-
mance on a variety of creative thinking tasks (Beaty et al., 2016, 2017; 
Jaarsveld and Lachmann, 2017), as well as tasks that benefit from 
drawing on prior knowledge (Spreng and Turner, 2019). 

Thus, it is important to understand whether lower LFPN-DMN con-
nectivity is adaptive for all adolescents, whether this relation changes 
across development, and whether it is adaptive for more ecologically 
valid measures of cognitive or behavioral performance. In a prior study 
(Ellwood-Lowe et al., 2021), we found that lower LFPN-DMN connec-
tivity at age 9–11 was linked to better performance on tests of executive 
functioning and reasoning, but only for children with higher family in-
comes. To the contrary, children living below poverty—particularly 
those with specific environmental challenges—tended to show a positive 
relation between LFPN-DMN connectivity and test performance. This 
study raises the possibility that children in poverty who more frequently 
coactivate LFPN-DMN in their day-to-day lives are better poised for 
academic success, perhaps as a result of engaging in some of the 
cognitive processes described above. Importantly, however, this study 
was cross-sectional and only tested performance on laboratory-based 
cognitive tasks, leaving open questions about the duration and scope 
of this dissociation between brain development and cognitive 
performance. 

Unlike laboratory-based cognitive tests, children’s grades in school 
represent their performance in real-world settings, and carry meaningful 
weight for their future opportunities. On top of this, schools as in-
stitutions may be designed in ways that discriminate against children in 
poverty, particularly those of color (e.g., Darling-Hammond, 2001; 
Reardon and Owens, 2014; Shedd, 2015). Thus, it is important to un-
derstand not only children’s individual test performance, but how this 
relates to their performance in real institutional settings, which often 
pose additional or alternative barriers to success. While cognitive test 
performance and grades are typically correlated (e.g., Best et al., 2011; 
Cowan, 2014; St Clair-Thompson and Gathercole, 2006; Willoughby 
et al., 2019), we hypothesized that they may be less so for children in 
poverty. With regard to brain function, it is possible that the dissociation 
between children above and below poverty for LFPN-DMN connectivity 
would not be observed for this more real-world measure of performance 
in institutional contexts. However, given prior evidence that this 
dissociation may have something to do with adapting in the face of 
structural barriers (Ellwood-Lowe et al., 2021), we predicted that it 
would also be present for children’s grades in school. 

Another more ecologically valid assessment of performance in the 
real-world is that of children’s attention problems. Attention problems 
can pervade many aspects of children’s lives, from their performance in 
school to self-esteem to relationships with peers, teachers, and family 
members (Harpin, 2005). Importantly, less LFPN-DMN connectivity has 
been linked to fewer attention problems (Whitfield-Gabrieli et al., 
2020). Thus, one possibility is that children in poverty with higher 
LFPN-DMN connectivity are similarly at elevated risk of other problems, 
such as attentional difficulties. Alternatively, the dissociation found 
previously between LFPN-DMN connectivity and cognitive test perfor-
mance may also be observed for attentional problems. 

Given the purported role of the CON in toggling between internally 
and externally focused attention, the interplay between CON and the 
DMN and LFPN may also be related to grades and/or attentional prob-
lems, in a way that may depend on children’s environments. Previous 
research has shown that CON network dynamics are related to perfor-
mance on IQ tests (Hilger et al., 2017). Moreover, in a previous 
exploratory analysis, we observed a trend such that higher CON-DMN 
connectivity was directionally related to better test scores for children 
in households above poverty and worse scores for children in house-
holds below poverty. Thus, it is of interest to further explore patterns of 
CON connectivity with the DMN and LFPN. 
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2. Present study 

We sought to test three primary aims related to LFPN-DMN con-
nectivity, grades, and attention, as well as two secondary aims related to 
CON connectivity (see Supplementary Table 1). Data came from a 
baseline assessment when children were approximately ten years old 
(T0) and a follow-up assessment two years later (T2). By using these 
measures, we sought to better understand the neural basis of children’s 
resilience with regard to societal constraints. Importantly, these mea-
sures assess functioning over a broader timeframe than their score on a 
set of tests completed on a single day. We delineate our aims and pre- 
registered predictions below, along with relevant exploratory follow- 
up analyses. 

2.1. Primary aim 1 

First, we sought to characterize longitudinal changes in LFPN-DMN 
resting-state functional connectivity, and test whether they varied as a 
function of poverty status. Based on prior findings (Baum et al., 2017; 
Sherman et al., 2014), we predicted that the LFPN and DMN would 
generally become less coupled over early adolescence for children above 
poverty. Given that we had not previously observed baseline differences 
between the groups in LFPN-DMN connectivity (Ellwood-Lowe et al., 
2021), we hypothesized that children below poverty would show a 
similar decline in connectivity to these higher-income peers (H1). 

2.1.1. Exploratory 
Because our previous study showed that lower-performing children 

below poverty showed lower LFPN-DMN connectivity than other chil-
dren, we conducted follow-up analyses investigating whether trajec-
tories of network connectivity differ as a function of children’s cognitive 
test scores and their poverty status. While not pre-registered, this 
exploratory analysis tested our pre-registered aim to consider three 
equally plausible hypothetical patterns of data: convergence, further 
divergence, or stability of differences in functional connectivity between 
lower-performing children below poverty and other children. 

2.2. Primary aim 2 

Second, to characterize concurrent and longitudinal relations be-
tween our behavioral variables, we sought to assess the extent to which 
laboratory-based cognitive tests are linked to more ecologically valid 
measures of performance for children above and below poverty. In 
particular, we examined cross-sectional and longitudinal associations 
between test scores and children’s grades in school, for children above 
and below poverty. 

2.2.1. Concurrent 
We predicted that children’s performance on cognitive tests at 

baseline would be associated with their grades in school (H2a). How-
ever, we hypothesized that the concurrent association between cogni-
tive performance and grades may be weaker for children in poverty, who 
face many potential barriers to academic success (H2b). If this were the 
case, we expected to find an interaction for the relation between con-
current cognitive performance and grades as a function of poverty 
status. 

2.2.2. Longitudinal 
Given Cattell’s classic hypothesis that current cognitive functioning 

supports the acquisition of crystallized knowledge, we planned to test 
whether cognitive test performance at T0 predicted grades at T2, con-
trolling for grades at T0. We hypothesized that the longitudinal associ-
ation between cognitive performance and grades may be weaker for 
children in poverty (H3). If this were the case, we expected to find an 
interaction for the relation between cognitive performance and grades 
as a function of poverty status. 

2.3. Primary aim 3 

Third, we sought to assess the extent to which LFPN-DMN connec-
tivity is linked to more ecologically valid measures of cognitive perfor-
mance for children above and below poverty. Specifically, we planned to 
examine cross-sectional and longitudinal associations between LFPN- 
DMN connectivity and grades and attention problems, for children 
above and below poverty. 

2.3.1. Grades, concurrent 
We hypothesized that LFPN-DMN connectivity would be differen-

tially associated with academic performance for children above and 
below poverty. Our primary prediction was a concurrent relation (H4): 
higher LFPN-DMN connectivity would be associated with higher grades 
for children in poverty and lower grades for children above poverty, 
mirroring our findings for test scores. 

2.3.2. Grades, longitudinal 
Based on prior research showing longitudinal but not concurrent 

brain-behavior relations, we also sought to test the hypothesis that 
LFPN-DMN connectivity supports knowledge acquisition (H5). We pre-
dicted that LFPN-DMN connectivity would be longitudinally associated 
with grades, controlling for grades at T0. 

2.3.3. Attention, concurrent (exploratory) 
As described next, we predicted a longitudinal relation involving this 

measure; by contrast, we did not have a strong predictions for a cross- 
sectional relation. However, for the sake of completeness, we also ran 
an exploratory cross-sectional analysis testing concurrent relationships 
between LFPN-DMN connectivity and attention problems at T0 for 
children above and below poverty. 

2.3.4. Attention, longitudinal 
Given prior evidence that stronger LFPN-DMN connectivity was 

linked to more attention problems longitudinally but not concurrently 
(Whitfield-Gabrieli et al., 2020), we sought to assess whether stronger 
LFPN-DMN connectivity is associated with greater attention problems 
longitudinally for children above poverty, controlling for attention 
problems at T0. If this is a general phenomenon, we would expect 
children below poverty to show the same relation (H6a). However, given 
our prior findings regarding differential brain-behavior relations for 
cognitive performance, children below poverty could conceivably show 
the opposite pattern (H6b). 

2.4. Secondary aims 

Our secondary aims focused on CON-DMN and CON-LFPN given that 
CON is theorized to serve as an intermediary the DMN and LFPN, 
enabling switching attention between internally and externally guided 
mental states. Overall, we predicted that both networks would decrease 
in coupling across early adolescence, though potentially less so for 
children in poverty. Further, we predicted lower CON-LFPN would be 
related to children’s grades in school. Finally, we predicted that lower 
CON-DMN and CON-LFPN would be related to fewer attention prob-
lems, though this effect might be stronger for children in poverty. (See 
Supplement for full description of aims and associated analyses.). 

3. Methods 

3.1. Parent study 

Data were drawn from the Adolescent Brain Cognitive Development 
(ABCD) study, which was designed to recruit a large cohort of children 
who closely represented the United States populations (http://abcdstud 
y.org; see Garavan et al., 2018). The ABCD study is a multisite, longi-
tudinal study intended to run for at least 10 years following 11,878 
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children, recruited at ages 9–11, into late adolescence. A wide variety of 
data are collected on each youth including mental and physical health 
assessments, behavioral data, imaging data, and more. This study was 
approved by the Institutional Review Board at each study site, with 
centralized IRB approval from the University of California, San Diego. 
Informed consent and assent were obtained from all parents and chil-
dren, respectively. We include data from two timepoints: T0 (baseline 
assessment; ages 8.9–11.1) and T2 (two-year follow-up; ages 
10.6–13.6). We note that while there is a range of ages represented at 
each timepoint, overall ages were relatively tight; most children were 
almost precisely ten years old at T0 and twelve years old at T2 (see  
Table 1). Children also completed behavioral measures at an interim 
one-year follow-up (T1); while not the focus of the current study, we 
report additional analyses with T1 data in the Supplement. 

3.2. Present study 

Planned analyses were pre-registered prior to data access (htt 
ps://aspredicted.org/QWQ_C5N; https://aspredicted.org/NTG_RRB) 
and analysis scripts are available on the Open Science Framework (htt 
ps://osf.io/gcjn8/?view_only=d0f098d6a8ab47d5bf0bbb29014 
1bbd3). The original data are available with permissions on the NIMH 
Data Archive (https://nda.nih.gov/abcd). All deviations from the initial 
analysis plan are fully described in the Supplement. 

Children from the full sample were excluded if they did not provide 
data on any of the measures used in our analyses. Specifically, children 
were excluded from analyses if their caregiver did not provide infor-
mation about family income at baseline (N = 1146), if they were missing 
rs-MRI data at baseline (N = 101) or their rs-fMRI data did not meet 
ABCD’s usability criteria (N = 2390), if they did not provide usable 
cognitive test score data at baseline (N = 237), or if there was no in-
formation about the child’s age, sex, or family ID (used to track whether 
participants were siblings; N = 2; see Supplement for exclusion flow- 
charts for T0 and T2). After these initial exclusions, children who had 
data related to attention problems were included in analyses relevant to 
attention (N = 8366), and those with data related to grades in school 
were included in analyses relevant to grades (N = 7751; see Table 1). 
Because the former group included slightly more children, we used this 
sample when conducting analyses that did not include behavioral data. 

On average, children who were excluded were more likely to be 
younger, be male, have more attention problems, have lower grades, 
and have lower cognitive test scores. While children in poverty were also 
more likely to be excluded, these differences between included and 
excluded participants were observed for both children above and below 
poverty (see Supplement). 

We estimated poverty status at baseline for each child based on their 
combined family income bracket, the number of people living in the 

home, and the average supplemental poverty level for the study sites 
included in the sample, as in our previous work (Ellwood-Lowe et al., 
2021). Based on the factors used to estimate poverty status, we 
considered children to be living below the poverty line if they were 
living in a household of 4 with a total income of less than $25,000, or a 
household of 5 or more with a total income of less than $35,000 at T0 
(Table 1). We did not consider whether poverty status changed after T0. 

3.3. Behavioral measures 

Children’s cognitive performance was measured at T0 with a 
cognitive test battery that included measures from the NIH Toolbox 
(http://www.nihtoolbox.org). The NIH Toolbox Fluid Cognition com-
posite measure includes two tests of working memory (Picture Sequence 
Memory Test, List Sorting Working Memory Test), two tests of executive 
functions that tap into cognitive flexibility and inhibitory control 
(Dimensional Card Sort and Flanker tasks), and one test of processing 
speed (Pattern Comparison Processing Speed Test). The administered 
test battery also included the Matrix Reasoning Task from the Wechsler 
Intelligence Test for Children-V (WISC-V), a measure of abstract 
reasoning (Wechsler, 2014). More details on each of these tests and their 
administration in the current study is described elsewhere (Luciana 
et al., 2018). 

Attention and behavioral problems were measured with the Atten-
tion subscale of the Child Behavior Checklist (CBCL). The CBCL is a 
standardized form which is used to characterize children’s externalizing 
and internalizing behaviors (Achenbach and Ruffle, 2000). From the 
initial baseline assessment onwards, parents completed an automated 
version of the CBCL annually, reporting on their child’s behavior over 
the past six months (Barch et al., 2018). Each item on the CBCL was 
rated using a three-point rating scale: “not true,” “somewhat or some-
times true,” “very true or often true.” There were 11 items in the 
attention subscale. We used the mean of all items at T0 and T2, sepa-
rately, for each child. Higher scores indicated more attentional and 
behavioral problems. 

Children’s academic performance was measured via parent-reported 
grades in the ABCD Longitudinal Parent Diagnostic Interview for DSM-5 
Background Items Full (KSAD). Parents were asked what kind of grades 
their child received on average: 1 = As/excellent, 2 = B’s/Good; 3 =
C’s/Average; 4 = D’s/Below Average; 5 = F’s/Struggling a lot; 6 =
ungraded, − 1 = unapplicable. This question was asked at T0 and T2. 

3.4. MRI scan procedure 

Scans were collected on one of three types of 3 T scanners (Siemens, 
Philips, or GE) with an adult-size head coil. Resting state scans were 
completed at T0 and T2. Scans were typically completed on the same 
day as the cognitive battery, but could also be completed at a second 
testing session. After completing motion compliance training in a 
simulated scanning environment, participants first completed a struc-
tural T1-weighted scan. Next, they completed three to four five-minute 
resting state fMRI scans, during which they were instructed to lay with 
their eyes open while viewing a crosshair on the screen. The first two 
resting state scans were completed immediately following the T1- 
weighted scan; children then completed two other structural scans, 
followed by one or two more resting state scans, depending on the 
protocol at each specific study site. 

Scan parameters were optimized to be compatible across scanners, 
allowing for maximal comparability across the 19 study sites. T1- 
weighted scans were collected axially with 1 mm3 voxel resolution, 
256 × 256 matrix, 8º flip angle, and 2x parallel imaging. Other scan 
parameters varied by scanner platform (Siemens: 176 slices, 256 ×256 
FOV, 2500 ms TR, 2.88 ms TE, 1060 ms TI; Philips: 255 slices, 256 ×240 
FOV, 6.31 ms TR, 2.9 ms TE, 1060 ms TI; GE: 208 slices, 256 ×256 FOV, 
2500 ms TR, 2 ms TE, 1060 ms TI). fMRI scans were collected axially 
with 2.4 mm3 voxel resolution, 60 slices, 90 × 90 matrix, 216 × 216 

Table 1 
Sample sizes, age (range; mean(SD)), and parent-reported child sex for children 
above and below poverty, at T0 and T2. Sample sizes differ slightly for those 
analyses focusing on grades and those focusing on attention, based on the 
number of children providing usable data.  

Timepoint  Attention data (N = 8366) Grades data (N = 7751) 

Above 
poverty 

Below 
poverty 

Above 
poverty 

Below 
poverty 

Baseline (T0) N 7063 1303 6510 1241 
Sex F: 3532 

M: 3531 
F: 653 
M: 650 

F: 3277 
M: 3233 

F: 624 
M: 617 

Age 8.9–11.1; 
9.95(0.63) 

8.9–11.1; 
9.90(0.62) 

8.9–11.1; 
9.96(0.63) 

8.9–11.1; 
9.90(0.62) 

Two-year 
follow-up 
(T2) 

N 4087 640 3663 593 
Sex F: 2013 

M: 2074 
F: 309 
M: 331 

F: 1814 
M: 1849 

F: 290 
M: 303 

Age 10.6–13.6; 
12.01 
(0.65) 

10.6–13.6; 
11.86 
(0.64) 

10.6–13.6; 
12.02 
(0.64) 

10.6–13.6; 
11.88 
(0.64)  
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FOV, 800 ms TR, 30 ms TE, 52º flip angle, and 6 factor MultiBand Ac-
celeration. Head motion was monitored during scan acquisition using 
real-time procedures (fMRI Integrated Real-time Motion Monitor; Dos-
enbach et al., 2017) to adjust scanning procedures and collect additional 
data as necessary (Casey et al., 2018). This prospective motion correc-
tion procedure significantly reduces scan artifacts due to head motion 
(Hagler et al., 2019), which are known to affect functional connectivity 
estimates (Power et al., 2015; Satterthwaite et al., 2013). 

Structural and functional images underwent automated quality 
control procedures (including detecting excessive movement and poor 
signal-to-noise ratios) and visual inspection and rating (for structural 
scans) of images for artifacts or other irregularities (described in Hagler 
et al., 2019). Participants were excluded if they did not meet the ABCD 
study’s quality control criteria for both structural and functional scans. 
Specifically, structural scans were excluded if there was evidence of 
severe inaccuracy of structural surface reconstruction based on any of 
the five categories: motion, intensity inhomogeneity, white matter un-
derestimation, pial overestimation, or magnetic susceptibility artifact. 
Functional scans were excluded if they did not meet motion criteria, 
described further below. In total, 2390 participants were excluded based 
on these criteria; in the ABCD dataset, data that passes quality control 
checks are denoted as IMGINCL_RSFMRI_INCLUDE= =1. Excluded 
participants differed meaningfully from the rest of the sample (see 
above; more information in Supplement). 

Altogether, there was a four-step process for reducing the effect of 
head motion on rs-fMRI results. First there was real-time head motion 
monitoring and correction, as described above. Second, there was a 
thorough and systematic check of scan quality in collaboration with 
ABCD’s Data Analysis and Informatics Center. Third, signal from motion 
timecourses was regressed out during preprocessing, and frames with 
greater than 0.2 mm of framewise displacement were excluded from 
calculations altogether, as were time periods with less than five 
contiguous low-motion frames. Fourth, a final censoring procedure was 
employed to identify potential lingering effects of motion by excluding 
any frames with outliers in spatial variation across the brain (Hagler 
et al., 2019). In combination, these procedures reduce motion artifacts 
(Power et al., 2014a). 

3.5. Resting state fMRI preprocessing 

Data preprocessing was carried out using the ABCD pipeline and 
carried out by the ABCD Data Analysis and Informatics Core; more de-
tails are reported by Hagler et al. (2019). The approach for calculating 
between-network connectivity was decided by the ABCD consortium 
based on best practices for the field; we use the publicly available pro-
cessed data in these analyses, but outline the processing steps described 
in Hagler et al. (2019) here. 

Briefly, T1-weighted MR images were corrected for gradient 
nonlinearity distortion and intensity inhomogeneity, and rigidly regis-
tered to a custom reference brain (Friston et al., 1995). These images 
were run through FreeSurfer’s automated brain segmentation to derive 
white matter, ventricle, and whole brain ROIs. Resting state fMRI data 
were first corrected for head motion, displacement estimated from field 
map scans, B0 distortions, and gradient nonlinearity distortions, and 
registered to the structural images using mutual information. Initial scan 
volumes were removed, and each voxel was normalized and de-meaned. 
Signal from estimated head motion timecourses (including six motion 
parameters, their derivatives, and their squares), quadratic trends, and 
mean timecourses of white matter, gray matter, and whole brain, plus 
first derivatives, were regressed out, and frames with more than 0.2 mm 
displacement were excluded. The data then underwent temporal band-
pass filtering (0.009 – 0.08 Hz). 

To derive between-network connectivity metrics, data were then 
projected onto each individual’s cortical surface space, and ROIs were 
labeled using Freesurfer’s anatomically-defined parcellations (Desikan 
et al., 2006; Destrieux et al., 2010). ROIs were assigned to one of 13 

functionally defined networks, as defined by Gordon et al. (2016); for a 
list of every ROI and its network assignment, see Supplementary Table 5 
in Hagler et al. (2019). To calculate between-network connectivity, the 
timecourse of each ROI in one network was correlated with the time-
course of each ROI in the other network, in a pairwise fashion. These 
pairwise correlations were z-transformed and averaged to calculate 
between-network connectivity across all networks. Thus, this 
between-network connectivity metric represents the average correlation 
of each ROI in one network with each ROI in the other network. Here, 
we examined between-network LFPN-DMN, CON-DMN, and CON-LFPN 
connectivity. 

3.6. Analyses 

Analyses were performed using the software package R (version 
4.0.2; R Core Team, 2017). To determine significance in our models, we 
performed nested model comparison. In all cases, we compared models 
without the inclusion of the variable of interest to models with this 
variable included; we calculated whether the variable of interest 
contributed significantly to model fit using the anova function for like-
lihood ratio test model comparison. For models in which the dependent 
variable was continuous, we performed linear mixed effects models 
using the lme4 package (Bates et al., 2015); for models in which this 
variable was an ordered factor (e.g., grades), we performed cumulative 
link mixed models using the ordinal package (Christensen, 2018). 

To determine whether to include potential covariates in our model, 
we tested whether each of the following variables contributed signifi-
cantly to model fit: (1) a random intercept of study site, (2) a random 
intercept of families, (3) a fixed effect of sex, (4) a fixed effect of child 
age, and (5) a fixed effect of head motion (mean framewise displace-
ment) during the resting state scan. All covariates besides age contrib-
uted to model fit at a level of p < .05 and were thus retained in final 
models. 

3.6.1. Longitudinal changes in brain network connectivity 
We examined network changes over early adolescence, and whether 

these changes differed as a function of poverty status. We performed 
three separate linear mixed effects models testing the interaction of 
timepoint (T0, T2) with poverty status (above, below), in association 
with (1) LFPN-DMN connectivity, (2) CON-DMN connectivity, and (3) 
CON-LFPN connectivity. 

3.6.2. Behavioral measures 
We assessed the concurrent and longitudinal relations between 

cognitive test performance and grades, and tested whether the relation 
varied as a function of poverty status. To this end, we conducted cu-
mulative link mixed models to test grades in association with an inter-
action between poverty status and test performance. We had 
preregistered an analysis plan using linear mixed effects models to test 
these relations. However, because grades are a categorical ordered 
variable, cumulative link mixed models are more appropriate. Thus, we 
report the latter analyses for all tests including grades as an outcome 
variable. Results are not meaningfully different when performing the 
pre-registered linear mixed effects models. 

3.6.3. Functional connectivity in relation to grades and attention 
We investigated the relation between children’s grades and LFPN- 

DMN connectivity at T0 and T2. We performed two separate cumula-
tive link mixed models to characterize the relation between children’s 
academic performance and LFPN-DMN connectivity. The first model 
tested this relation at T0, with an interaction between LFPN-DMN con-
nectivity and poverty status. The second model tested this relation 
longitudinally, to see whether LFPN-DMN at T0 and its interaction with 
poverty status related to children’s academic performance at T2, 
respectively, when controlling for children’s academic performance at 
T0. 
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Similarly to our analyses focused on grades, we examined the rela-
tion between children’s attention problems and LFPN-DMN connectivity 
at T0 and T2. While the concurrent association was not pre-registered, 
this exploratory analysis allowed us to test for the stability of this as-
sociation over time. As attention was a continuous variable, we per-
formed two separate linear mixed effects models testing the interaction 
between LFPN-DMN connectivity with poverty status, in association 
with (1) attention problems at T0 and (2) attention problems at T2, 
controlling for children’s attention at T0. 

In preregistered secondary analyses, we also examined relations 
between these behavioral measures and CON network connectivity. 

3.6.4. Exploratory analyses 
We conducted several additional follow-up analyses, following a 

similar analytic approach to those above, for which we did not have 
strong predictions but that provide a more complete picture of the re-
lations among key variables. These additional analyses are reported in 
the main text and Supplementary Materials. Those that were not pre-
registered are indicated as exploratory. 

4. Results 

4.1. Aim 1: longitudinal changes in network connectivity 

4.1.1. LFPN-DMN connectivity over adolescence 
As a primary analysis, we first, we examined how network connec-

tivity changed between T0 and T2 in LFPN-DMN resting-state functional 
connectivity. We predicted that these networks would become less 
coupled between ages 9 and 13. However, there was no significant 
change in LFPN-DMN connectivity across the group over the course of 
the two years, B = 0.001, SD = 0.001, χ2 (2) = 1.01, p = .605. We also 
predicted that children above and below poverty would not exhibit 
differential trajectories of change; in line with this prediction, there was 
no evidence for a significant interaction of poverty status with time-
point, interaction: B = − 0.001, SD = 0.002, χ2 (1) = 0.2, p = .651. 
Rather, we observed marked individual variability in the slope and 
magnitude of change over time (Supplementary Fig. 1). An exploratory 

analysis further suggested that this effect was not meaningfully 
moderated by children’s cognitive test performance at T0 (see 
Supplement). 

4.1.2. CON-DMN and CON-LFPN connectivity over adolescence 
As secondary analyses, we tested change in connectivity between our 

two CON networks of interest. As predicted, both CON-DMN and CON- 
LFPN both decreased in connectivity between T0 and T2. Also as pre-
dicted, the decrease in CON-DMN connectivity was attenuated for 
children in poverty; change in CON-LFPN connectivity did not mean-
ingfully differ between groups (see Supplement). 

4.2. Aim 2. Associations between cognitive test performance and 
children’s grades in school and attention problems 

As primary analyses, we next tested cross-sectional and longitudinal 
relations between parent-reported grades and cognitive test scores. We 
predicted that children’s performance on cognitive tests at T0 would be 
concurrently related with their grades in school. Furthermore, we pre-
dicted that this relation would differ as a function of poverty status, with 
children in poverty showing a weaker relation. 

4.2.1. Concurrent relations between test scores and grades 
As predicted, higher scores on the NIH composite were related to 

better grades in school concurrently, B = − 0.08, SD = 0.004, χ2 (2) =
752.25, p < .001 (Fig. 1). Additionally, as predicted, the relation be-
tween cognitive performance and academic achievement differed as a 
function of poverty status, B = 0.03, SD = 0.01, χ2 (1) = 24.31, p < .001. 
Follow-up analyses showed that the relation was significant for children 
above and below poverty (below poverty: B = − 0.04, SD = 0.01, χ2 (1) 
= 63.70, p < .001; above poverty: B = − 0.08, SD = 0.004, χ2 (1) =
688.89, p < .001), although the effect was stronger for children above 
poverty. Thus, children’s performance on cognitive tests at T0 is 
concurrently associated with their grades in school, albeit less so for 
children in poverty than those above poverty. 

Fig. 1. Relations between children’s test performance at baseline (T0) and their grades in school at baseline (T0; left panel) and two-year follow up (T2; right panel). 
Each point represents a different child; lighter teal color indicates children above poverty, while purple indicates children below poverty. Box plots for both groups at 
both timepoints are also displayed. 
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4.2.2. Longitudinal relations between test scores and grades 
We expected to observe a similar pattern of results longitudinally – 

that is, when testing whether cognitive test performance at T0 predicts 
future academic performance. Higher cognitive test scores were related 
to higher grades in school one year later, controlling for grades at T0, B 
= − 0.04, SD = 0.005, χ2 (2) = 72.81, p < .001. Contrary to predictions, 
this relation did not interact significantly as a function of poverty status, 
interaction: B = 0.02, SD = 0.01, χ2 (1) = 2.79, p = .095 (Fig. 1). Thus, 
we found that cognitive test performance is somewhat predictive of 
concurrent and future academic performance, consistent with prior 
work. This relation was stronger for children above poverty at T0, but 
not longitudinally after controlling for T0. 

Because grades at the two timepoints were correlated (r = 0.60; see 
Supplementary Fig. 2), we conducted the same longitudinal analysis at 
T2 without controlling for grades at T0. This exploratory analysis 
revealed a significant interaction between children’s cognitive test 
performance at T0 and poverty status in predicting grades at T2 
(interaction at T2: χ2 (1) = 9.55, p = .002). Mirroring results at T0, 
follow-up analyses showed a significant relation at T2 both for children 
above and below poverty, though the effect was stronger for children 
above poverty (below poverty: B = − 0.04, SD = 0.01, χ2 (1) = 26.55, 
p < .001; above poverty: B = − 0.07, SD = 0.004, χ2 (1) = 291.74, 
p < .001). Thus, grades at both timepoints were more strongly corre-
lated with baseline cognitive test performance for children above than 
below poverty. 

4.3. Aim 3. Investigating associations between network connectivity and 
children’s grades in school and attention problems 

4.3.1. Relations between academic performance and network connectivity 

4.3.1.1. Concurrent relations between grades and network connectivity. As 
primary analyses, we next asked whether the relation between LFPN- 
DMN connectivity and children’s academic performance differed as a 
function of poverty status. We predicted that higher LFPN-DMN con-
nectivity would be associated with lower grades for children above 
poverty but higher grades for children in poverty. On average, higher 
LFPN-DMN connectivity was related to worse grades concurrently at T0, 
B = 1.17, SD = 0.51, χ2 (2) = 9.23, p = .010. However, as predicted, this 
relation differed significantly as a function of poverty status, interaction: 

B = − 3.11, SD = 1.11, χ2 (1) = 7.94, p = .005 (Fig. 2). Follow-up ana-
lyses revealed that higher LFPN-DMN connectivity was related to worse 
grades for children above poverty; by contrast, it was directionally, 
though non-significantly, related to better grades for children below 
poverty (above poverty: B = 1.20, SD = 0.51, χ2 (1) = 5.51, p = .019; 
below poverty: B = − 1.58, SD = 0.98, χ2 (1) = 2.61, p = .106). Thus, as 
predicted, LFPN-DMN connectivity was differentially associated with 
academic performance for children above and below poverty. 

Secondary analyses showed that, as predicted, higher CON-LFPN 
connectivity was also associated with worse grades concurrently, for 
children above and below poverty (see Supplement). 

4.3.1.2. Longitudinal relations between grades and network connectivity. 
As primary analyses, we also conducted LFPN-DMN analyses longitu-
dinally, to test the hypothesis that LFPN-DMN connectivity supports 
knowledge acquisition over the course of two years. We predicted that 
LFPN-DMN connectivity at T0 would be longitudinally associated with 
grades at T2. In contrast to this prediction, we found that there was no 
significant relation between LFPN-DMN connectivity and grades at T2 
after controlling for T0 grades, B = 0.11, SD = 0.75, χ2 (2) = 0.88, 
p = .645, and this relation did not differ as a function of poverty status, 
interaction: B = − 1.52, SD = 1.69, χ2 (1) = 0.81, p = .369. 

Because grades at the two timepoints were correlated (r = .60; see 
Supplementary Fig. 2), we conducted the same longitudinal analyses at 
T2 without controlling for grades at T0. This exploratory analysis 
revealed a significant interaction between children’s LFPN-DMN con-
nectivity and poverty status at T0 in predicting grades at T2 (interaction 
at T2: χ2 (1) = 4.73, p =[ 0.030. Mirroring results at T0, the direction of 
the relation between LFPN-DMN connectivity and grades differed for the 
two groups, though it was not significant for either (below poverty: B =
− 2.50, SD = 1.36, χ2 (1) = 3.44, p = .064; above poverty: B = 0.49, SD 
= 0.70, χ2 (1) = 0.51, p = .475). Thus, the differential relation between 
connectivity at baseline and children’s grades was observed at two 
timepoints separated by two years. 

We also tested associations longitudinally at an intermediate time-
point between T0 and T2 (T1), although we had not preregistered an-
alyses involving T1 data. As reported in the Supplement, we found the 
expected interaction at T1, whereby higher LFPN-DMN connectivity 
appeared to be related to worse grades for children above poverty, but 
directionally related to better grades for children below poverty, even 

Fig. 2. Relations between children’s LFPN-DMN connectivity at baseline (T0), after controlling for head motion, and their grades in school at baseline (T0; left panel) 
and two-year follow up (T2; right panel). Each point represents a different child; lighter teal color indicates children above poverty, while purple indicates children 
below poverty. Box plots for both groups at both timepoints are also displayed. 
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after controlling for grades at T0. 

4.3.2. Relations between attention problems and network connectivity 
As with grades, we next tested associations between children’s 

attention problems at T0 and T2, and network connectivity at T0. We 
predicted that stronger LFPN-DMN connectivity would be associated 
with greater attention problems longitudinally. Moreover, given our 
prior findings, we hypothesized that children below poverty might show 
the opposite pattern, such that higher connectivity would be related to 
fewer attention problems. 

4.3.2.1. Concurrent relations between attention problems and network 
connectivity. While not pre-registered, we first tested cross-sectional 
associations to parallel analyses with grades and to set the stage for 
longitudinal analyses. On average, higher LFPN-DMN connectivity was 
related to more attention problems concurrently, B = 3.57, SD = 1.26, 
χ2 (2) = 10.33, p = .006; importantly, however, this relation differed 
significantly as a function of poverty status, interaction: B = − 7.58, SD 
= 2.95, χ2 (1) = 6.61, p = .010 (Fig. 3). While higher LFPN-DMN con-
nectivity was related to more severe attention problems for children 
above poverty, it was not related to attention problems for children 
below poverty (above poverty: B = 3.72, SD = 1.20, χ2 (1) = 9.55, 
p = .002; below poverty: B = − 3.70, SD = 3.33, χ2 (1) = 1.24, 
p = .265). Thus, stronger LFPN-DMN connectivity was associated with 
not only worse grades but also worse attention problems for children 
above poverty, but this was not the case for children below poverty. 

As secondary analyses, we also tested whether patterns of CON 
connectivity at baseline were differentially associated with attention 
problems for children above and below poverty, after accounting for 
LFPN-DMN connectivity and its interaction with poverty status. As 
predicted, we found that higher CON-DMN connectivity was associated 
with more attention problems, and this effect was strongest for children 
in poverty. Contrary to predictions, we did not find any significant as-
sociations with CON-LFPN connectivity. 

4.3.2.2. Longitudinal relations between attention problems and network 
connectivity. We next tested our hypothesis that higher LFPN-DMN 
connectivity would be associated with more attention problems longi-
tudinally, controlling for attention at T0. Contrary to our prediction, we 
found no significant relation between LFPN-DMN and attention at T2 

when controlling for attention at T0 (T1: B = − 0.89, SD = 0.84, χ2 (2) 
= 1.49, p = .474; T2: B = − 0.14, SD = 1.12, χ2 (2) = 0.17, p = .919). 
Further, this relation did not differ significantly as a function of poverty 
status (interaction: B = 1.15, SD = 2.77, χ2 (1) = 0.17, p = .684; Fig. 3). 

Because attention problems were correlated across timepoints 
(r = .68; see Supplementary Fig. 2), we also conducted an exploratory 
analysis without controlling for attention at T0. There was similarly no 
interaction at T2 when not controlling for attention at T0, X2 (1) 
= 0.010, p =[ 0.925 Thus, individual variability in attention problems 
was linked to LFPN-DMN connectivity only at ages 9–10—and at that 
time, it was linked in opposite directions as a function of poverty status. 

4.4. Summary of results 

A summary of our pre-registered hypotheses, analyses, and results 
can be found in Supplementary Table 1. Overall, we found that CON- 
DMN and CON-LFPN connectivity declined over early adolescence, but 
LFPN-DMN connectivity did not. Children above poverty showed a 
steeper decline in CON-DMN connectivity than those below. Turning to 
behavioral measures, we found that children’s scores on standardized 
cognitive tests were related to their grades in school both concurrently 
and longitudinally, though the association was attenuated for children 
in poverty. Finally, we found all three networks were associated with 
children’s grades and attention problems. Confirming hypotheses, the 
link between LFPN-DMN connectivity and behavior differed for children 
above and below poverty, with lower LFPN-DMN connectivity being 
adaptive only for children above poverty. On the other hand, lower 
CON-LFPN connectivity was uniformly related to better grades, while 
lower CON-DMN was related to more attention problems, particularly 
among children in poverty. 

5. Discussion 

In this study, we sought to investigate trajectories of LFPN and DMN, 
as well as CON, network coupling over middle childhood and early 
adolescence, and their relation to academic and behavioral resilience. 
To this end, we examined rs-fMRI network coupling longitudinally in 
relation to grades and attention problems in a diverse sample of par-
ticipants at two timepoints approximately two years apart, spanning 
ages 9–13 across the sample. The central goal of this study was to assess 
whether associations between functional connectivity and performance 

Fig. 3. Relations between children’s LFPN-DMN connectivity at baseline (T0), after controlling for head motion, and their attention problems at baseline (T0; left 
panel) and two-year follow up (T2; right panel). Each point represents a different child; lighter teal color indicates children above poverty, while purple indicates 
children below poverty. 
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differ meaningfully between children whose families lived above and 
below poverty. Unlike studies that have examined brain differences 
between relatively higher- and lower-income children, this study 
included children living below the poverty line, some of whom are able 
to cope with severe adversity. Further, by examining more ecologically 
valid measures of children’s cognitive performance, we sought to better 
capture the neural basis of children’s resilience with regard to societal 
constraints. 

On the cognitive side, we found that there is not a universally strong 
link between performance on tests of executive functioning and these 
more real-world outcome measures. Despite countless studies showing 
relations between performance on these tests and performance in school 
(e.g., Best et al., 2011; Cowan, 2014; St Clair-Thompson and Gathercole, 
2006; Willoughby et al., 2019), we found that cognitive test scores were 
more highly correlated with academic performance in children above 
than below poverty. The lower correlation for children below poverty 
likely reflects obstacles that hinder their ability to reach their full po-
tential, such as fewer school resources and lower quality of instruction 
(Horng, 2005; Orfield and Lee, 2005; Reardon and Owens, 2014) and 
discrimination at school (Darling-Hammond, 2001; Hettleman, 2003; 
Scott et al., 2020). 

The weaker link between test scores and school performance for 
children below poverty could stem in part from the use of cognitive tests 
that are argued to be culturally biased methods of assessment (Miller--
Cotto et al., 2021). Of course, scholastic assessments are themselves 
considered to be culturally biased—a concern that led to the develop-
ment of cognitive tests designed to measure aptitude without requiring 
extensive background knowledge. Most importantly, for our purposes, 
academic performance is directly tied to children’s longer-term pros-
pects, whereas performance on abstract cognitive tests is not. The group 
difference in the strength of the association between these metrics 
highlights the importance of examining real-world outcomes in relation 
to brain network development. 

5.1. Network associations with children’s grades 

Turning to associations with children’s resting state connectivity, we 
found that having lower LFPN-DMN connectivity was concurrently 
related to having better grades—but only among the children above 
poverty; for children living below poverty, this association was in the 
opposite direction. An exploratory analysis found that the same disso-
ciation was present for grades two years later; however, because grades 
at T2 and T0 were correlated, this relation was not significant when 
controlling for grades at T0. Additional exploratory analyses suggested 
that the dissociation was significant at T1, even when controlling for 
grades at T0, pointing to its relative stability over time. 

Further, the data did not suggest that high-performing children 
below poverty exhibited a pattern of connectivity that was beneficial at 
age 9–10 but that later became detrimental. Instead, there are qualita-
tive differences in what appears to be academically adaptive for children 
above and below poverty; these differences may be established earlier in 
childhood and then attenuate slightly across middle childhood and early 
adolescence. 

We also found that higher CON-LFPN was related to worse academic 
performance for both children above and below poverty. By contrast, 
prior evidence suggests that higher CON between-network connectivity 
is related to better executive functioning (Marek et al., 2015). Further, 
though there is little work linking children’s performance in school to 
their resting state connectivity, one notable study found that greater 
network integration at ages 7–9 was associated with higher scholastic 
performance (Chaddock-Heyman et al., 2018). As there are a number of 
possible reasons for these discrepant findings, including differences in 
age range, additional work will be needed to reconcile them. 

5.2. Network associations with children’s attention problems 

With regard to attention problems, our primary hypotheses focused 
on longitudinal associations, given a prior study showing that LFPN- 
DMN connectivity at age 7 predicted changes in attention problems 
across four years, controlling for attention problems at the initial time-
point (Whitfield-Gabrieli et al., 2020). Here, we did not find that 
LFPN-DMN connectivity at baseline was related to attention problems 
two years later, either for children above or below poverty, when con-
trolling for baseline attention problems. There are several possible rea-
sons for our discrepant findings with the prior study (Whitfield-Gabrieli 
et al., 2020), including its seed-based approach, longer lag between 
timepoints, younger ages at baseline, and small sample size. 

However, exploratory analyses examining cross-sectional associa-
tions found results broadly consistent with prior evidence: stronger 
LFPN-DMN connectivity was associated with greater attention problems 
for children above poverty. For children below poverty, on the other 
hand, this effect was non-significant and in the opposite direction, and 
the group interaction was significant. In contrast to our findings with 
grades, this interaction was not evident longitudinally, even when not 
controlling for baseline attention, suggesting that the dissociation be-
tween LFPN-DMN connectivity and attention problems for children 
above and below poverty is attenuated with age. 

Importantly, other network interactions appear to be more reliable 
markers of attention problems for children below poverty than is LFPN- 
DMN. Indeed, secondary and exploratory analyses in the present study 
indicate that stronger CON-DMN connectivity was associated with more 
severe attention problems for children below poverty, both concurrently 
and longitudinally. Additionally, another study involving the ABCD 
dataset showed that weaker anti-correlations between the Dorsal 
Attention Network and the DMN is associated with more attention 
problems, and that it is also related to socioeconomic status (Owens 
et al., 2020). Thus, segregation of the DMN from both the CON and 
Dorsal Attention Network may be associated with better behavioral 
outcomes, for children above and below poverty. 

5.3. Network changes over time 

Based on prior literature, we anticipated that the LFPN and DMN 
would become less coupled over time across the full sample (Baum et al., 
2017; Grayson and Fair, 2017; Sherman et al., 2014). However, we 
found that LFPN-DMN connectivity did not change consistently over the 
two-year study period; connectivity decreased for some individuals and 
increased for others. This null result may reflect the relatively brief time 
window (two years) and/or the particular age range over which we 
examined changes (9–11 at the first timepoint; 10–13 at the third). We 
note that one prior study found increasing segregation between nodes of 
the DMN and LFPN longitudinally over ages 10–11, though this research 
used a seed-based approach that differed from our network-based 
approach (Sherman et al., 2014). 

Thus, there was no consistent developmental change in LFPN-DMN 
connectivity across the two years for either group. However, because 
we had seen differential patterns of connectivity across poverty levels as 
a function of cognitive performance, we additionally conducted 
exploratory analyses testing whether children’s cognitive test scores at 
baseline influenced individuals’ trajectory of change in connectivity. 
However, this possibility was not borne out by the data either: trajec-
tories of LFPN-DMN connectivity did not differ as a function of chil-
dren’s initial cognitive test scores. 

Other studies have provided evidence of accelerated physical and 
brain development among children growing up in adversity, which 
could help them to adapt more readily to harsher living conditions 
(Belsky, 2019; Callaghan and Tottenham, 2016; Gee et al., 2013; 
McDermott et al., 2021; Tooley et al., 2021). Here, we do not see evi-
dence for accelerated rate of LFPN-DMN network development for 
children below poverty—at least, not at this point in development. 
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However, it is possible that a differential trajectory of change is visible 
earlier in childhood, at a time when networks affiliations are changing 
more markedly and/or more consistently. 

Given prior literature indicating that the LFPN and DMN interact 
with the CON, a network that has also been implicated in cognitive 
functioning, we also explored the development of CON connectivity. We 
found that CON-LFPN and CON-DMN connectivity decreased longitu-
dinally, on average. These findings fit with the broad characterization of 
network segregation over development, but differ from past studies 
showing increased CON integration with other brain networks from ages 
8–21 (Lopez et al., 2020) or 10–26 (Marek et al., 2015). This discrepancy 
could stem from the fact that our participants were at the youngest end 
of the broad age ranges reported in these cross-sectional studies; it is also 
possible that two years was insufficiently long to see significant change. 
Additionally or alternatively, discrepancies in results could be related to 
the different connectivity metrics used across studies. 

Importantly, however, we also found that the trajectory of change in 
between-network connectivity for the CON differed as a function of 
whether children were in poverty at baseline. This interaction was sig-
nificant for CON-DMN connectivity but not CON-LFPN connectivity. 
Follow-up analyses revealed that only the children above poverty 
showed a significant decrease in CON-DMN connectivity. There was no 
significant change for children below poverty—and we showed subse-
quently that this did not depend on cognitive performance. This pattern 
of results fits with findings of other recent work (Chahal et al., 2022) and 
raises the possibility that the children living below poverty reached CON 
network maturity slightly earlier, potentially consistent with the accel-
erated development hypothesis for these particular networks (Belsky, 
2019; Callaghan and Tottenham, 2016; Gee et al., 2013; McDermott 
et al., 2021; Tooley et al., 2021). To ascertain which neural systems 
show accelerated maturation in the face of adversity, it will be necessary 
to test for differential trajectories during a dynamic window of devel-
opment for a given system. 

Of note, exploratory analyses suggested the rate of network change 
for LFPN-DMN, CON-DMN, and CON-LFPN did not interact with chil-
dren’s initial cognitive test performance. Thus, there is no evidence that 
there is any one trajectory of network change that is particularly 
adaptive in terms of cognitive performance, either for children above or 
below poverty. We therefore cannot conclude that children in poverty 
who show more evidence for accelerated CON maturation than their 
peers are at greater risk in terms of cognitive development. Clearly, 
more research is needed that continues to follow these trajectories—and 
their associations with later outcomes—over time. 

5.4. Conclusions, limitations, and future directions 

Overall, these results build on a prior study suggesting that lower 
LFPN-DMN connectivity is adaptive for higher- but not lower-income 
children, as measured by performance on tests of executive func-
tioning and reasoning (Ellwood-Lowe et al., 2021). Here, we extend this 
result in several ways. In particular, we show the same pattern for more 
ecologically valid measures that capture children’s resilience in 
real-world contexts and—given the importance of scholastic achieve-
ment for upward social mobility—that can directly impact their op-
portunities in life. Further, we show that the dissociation observed 
previously is, at the very least, not linked to worse outcomes over the 
longer term for higher-performing children in poverty. 

The phenomena established by these initial results across two studies 
lay a foundation for more detailed analysis of functional connectivity. 
For example, it may be useful to explore subnetworks of LFPN and DMN, 
given distinctions in their contributions to cognition (Buckner and 
DiNicola, 2019; Dixon et al., 2018; Fornito et al., 2012; Lopez et al., 
2020). In addition, it will be important to assess individual-level net-
works (Seitzman et al., 2019), to see whether network boundaries differ 
meaningfully as a function of children’s experiences. Further, it would 
be interesting to determine which specific aspects of children’s home 

environment underlie the effects reported here, given that experiences 
differ markedly even among children living in poverty (DeJoseph et al., 
2021; Ellwood-Lowe et al., 2021; Humphreys and Zeanah, 2015; 
McLaughlin et al., 2014; Rakesh, Seguin et al., 2021a, 2021b). While the 
differential patterns of brain activity we see here may reflect years of 
childhood experiences, other research has shown that rs-fMRI changes 
as a function of even brief experiences, even in adulthood (Guerra--
Carrillo et al., 2014). Similarly, the developmental trajectory of brain 
coupling is likely not immutable; to the extent that an individual brain 
show stability in connectivity over time, this could in large part reflect 
stability in the context in which they live—their challenges and 
opportunities. 

With the current data, we cannot say whether these dissociations in 
rs-fMRI connectivity would also be reflected in children’s performance 
during externally-directed cognitive tasks, or whether they simply 
represent cumulative differences in other thought patterns. In other 
words, do high-performing children in poverty deactivate DMN less 
during cognitive task performance? Or do they engage in more creative 
thinking in day-to-day life, for example, or other thought patterns that 
frequently coactivate these networks? Future studies should measure 
LFPN and DMN coupling during cognitive task performance and 
whether it differs as a function of poverty status. Of note for future in-
vestigations, other networks may also show differential relations with 
behavior as a function of poverty status. 

Given the societal relevance of this work, a cautionary note is war-
ranted. The effect sizes were quite small, and there was substantial 
overlap in network connectivity and its relation to behavior between 
children living above and below poverty. Because children below 
poverty are typically underrepresented in neuroimaging research, we 
chose to examine them as a separate group, defined based on their 
combined family income and the number of people in their household 
(see also Ellwood-Lowe et al., 2021). Of course, this is a somewhat 
arbitrary distinction based on an estimate of whether a child’s family has 
the financial resources they need to meet their basic needs; more than 
likely, this dataset includes a substantial number of children in poverty 
who have more common experiences with those above poverty, and vice 
versa. Numerous experiences beyond financial resources shape mental 
processes. In addition, numerous other features of brain structure and 
function contribute to these individual differences in mental processing. 
Further, we only considered poverty status at baseline, but future studies 
should explore whether effects change for children who move in or out 
of poverty over adolescence. 

Compounding the issue of underrepresentation of certain groups in 
research, the children who were included in our sample differed 
meaningfully from those who were excluded based on low fMRI data 
quality or incomplete behavioral data. On average, children who were 
excluded were more likely to be in poverty; they were also more likely to 
be younger, be male, have more attention problems, have lower grades, 
and have lower cognitive test scores. Across the socioeconomic spec-
trum, demands associated with the study—in particular, producing us-
able rs-fMRI data—selected for children who were older, female, and 
higher-performing. Thus, we cannot say whether the same patterns as 
in our current study would be found for children who were among the 
lowest performing in both the below and above poverty groups. More 
broadly, this differential exclusion illustrates how even representative 
neuroimaging studies lose important information about children who 
struggle to stay still in the scanner, contributing to difficulties making 
accurate generalizations about children (Falk et al., 2013). Despite these 
issues, we should note that our remaining sample is still quite diverse 
with respect to all of these characteristics. 

Our findings highlight that a one-size-fits-all approach to promoting 
healthy brain development may not be possible, given the inequities of 
structural barriers faced by different students. These patterns of resting- 
state functional connectivity suggest that students in poverty who 
perform well may rely on different thought patterns to do so. Moreover, 
this short-term cognitive resilience may come with more long-term costs 
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for children in poverty. For example, the burden of trying to adapt to 
unfair structural conditions may contribute to chronic stress and 
increased allostatic load (McEwen and Wingfield, 2003); future research 
should investigate this possibility. Indeed, there is recent evidence from 
the ABCD sample that patterns of brain development are associated 
meaningfully with the implementation of social and economic policies 
aimed at mitigating resource strain for low SES children, pointing to the 
importance of focusing efforts on removing structural barriers to chil-
dren’s success (Weissman et al., 2021). 

Taken together, these results show that the cognitive and neural 
factors that influence achievement are not exactly the same for children 
above and below poverty. Within a deficit framework, a goal toward 
promoting equity in academic achievement might be to “correct” brain 
networks, such that children below poverty show a pattern more closely 
resembling that of children above poverty. The findings presented here 
complicate this idea, suggesting that in the absence of taking children 
out of poverty, approaches that maximize their specific developmental 
trajectories and capacities may be needed. Our findings also highlight 
the importance of recruiting diverse samples for understanding human 
development; even among children living within the United States, who 
themselves share many experiences in common, there appear to be 
important experience-dependent differences in patterns of brain 
network development that support academic and behavioral resilience. 

Data availability 

The data are available with permissions on the NIMH Data Archive 
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